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Abstract: Most studies on superhydrophobic fabrics focus on their realization using additive
manufacturing (bottom-up) techniques. Here we present the direct modification of three different
fabrics using a plasma-based method to obtain anti-adhesive and self-cleaning properties. A two-step
plasma processing method is used: (a) for the creation of micro-nanoscale features on the fabric surface
(plasma texturing step) and (b) the minimization of the fabric surface energy (by a short plasma
deposition step of a very thin, low surface energy layer). The entire process takes only 14 min and all
fabrics after processing exhibit high water static contact angles (WSCA > 150◦), low contact angle
hysteresis (CAH < 7◦) and advantageous mechanical durability against hand-rumpling. The method
is simple and generic, and it can be therefore expanded to other polymeric fabrics (i.e., acrylic) in
addition to polyester, without any limitation rising from the weaving characteristics of the fabric or
the starting nature of the material (i.e., hydrophobic or hydrophilic).

Keywords: plasma micro-nanotexturing; superhydrophobic fabrics; mechanical durability

1. Introduction

A lot of attention has been recently given on optimizing the properties of fabrics. It is clear that
clothing is the most important industry for fabrics; however fabrics can also be used in other interesting
applications (i.e., oil-water separation [1]). Polymeric fabrics and textiles with special functionalities
should have durability against laundry wear, dry cleaning and other mechanical wear stresses [2–4],
if they are intended to be used for clothing. For this reason, such durability tests have become very
popular [5]. Functionalities which emerge from surface engineering, such as antibacterial [6,7] or
non-staining properties [8] have attracted a lot of attention recently and many ideas have already been
applied in polymeric fabrics [8,9].

Most of the superhydrophobic fabrics are prepared after coating with a superhydrophobic
coating (additive manufacturing) [2] rather than treating the fabric itself. Such an example is the
superhydrophobic PDMS/ODA-coated PET fabric presented by Xue et al. [10]. Similarly, robust
superamphiphobic fabrics were prepared after coating with a solution comprising poly(vinylidene
fluoride-co-hexafluoropropylene), fluoroalkyl silane, and a volatile solvent. This fabric exhibited
contact angles of 162◦, 156◦, and 150◦ for water, olive oil, and silicone oil, respectively [11]. In another
similar approach, a superhydrophobic cotton fabric was prepared by introducing a fluorinated acrylate
monomer, 1H,1H,2H,2H–nonafluorohexyl–1–acrylate, onto cotton fabric under simultaneous radiation.
This fabric was also found to be durable against 250 domestic laundry cycles [12]. Zhou et al. [13]
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reported a fabric that retained its superhydrophobic properties after evaluation using a standard
protocol (AATCC Test Method 61-2006 test No. 2A) and no significant changes in water contact angle,
water sliding angle and topography were observed after 500 washing cycles. Zimmermann et al. [14]
presented superhydrophobic textile fabrics with durability against immersion in water, whereas Zeng
and coworkers [5] presented cotton fabrics coated with a mixture of SU-8 photoresist, a fluorinated
alkylsilane and silica nanoparticles that exhibited superhydrophobic properties and durability against
long immersion times in organic solvents, as well as acid and base solutions.

As stated above, another interesting aspect for the clothing industry is the creation of antibacterial
clothes. Approaches to control the bacteria adhesion have been recently reviewed [15], and it is
apparent that again additive techniques are very popular. For example, superhydrophobic and
antibacterial cotton fabric was fabricated after sol–gel coating and exhibited reduction of bacteria
reaching 100% [16], while others [17,18] incorporated silver nanoparticles to prepare fabrics with
antibacterial properties against both Gram-positive (Staphylococcus aureus) and Gram-negative
bacteria (Escherichia coli). Except clothing, fabrics can also be used in other applications. For example,
in oil-water separation; polyester fabrics coated with a 20 wt % fluorodecyl Poss/x-PEGDA blend have
been presented [19], while cotton fabrics coated with vapor phase deposition of aniline have been
presented by Zhou et al. [1].

In all these studies, the fabrics were prepared either by synthesis or by additive manufacturing,
therefore direct modification of the fabrics is rare in the literature. This work focuses on the direct
modification approach and as received commercially available polyester (PES) fabrics are transformed
to superhydrophobic using plasma processing independently of their starting nature (both hydrophilic
and hydrophobic fabrics are transformed to superhydrophobic).

The presented fabrics are intended to be used for covering wind turbine blades to grant them
self-cleaning properties and for this reason they were processed in large pieces. To our knowledge,
except for some scattered newsletters reporting that General Electric is working on superhydrophobic
coatings that will allow the turbine operation in sub-zero temperatures and some papers from
Karmouch et al. [20,21] and others [22] this use has not been previously reported. We believe that this
work can pave the road towards such applications. Previous studies report that blades lose 10% of their
annual power production from icing and other debris [23], thus the adaption of superhydrophobic
coatings or fabrics covering the turbine blades will be advantageous.

The same fabrics can find additional applications (i.e., oil-water separation, antibacterial fabrics,
etc.). For the modification of the fabrics we use a two-step process: First, an oxygen plasma
etching step is used to create random micro-nanoscale features on the fabric surface and then a
short plasma deposition step using C4F8 is used to alter the surface chemistry from hydrophilic to
hydrophobic. Similar methods (highly anisotropic etching of polymers) have been used in the past for
the modification of other polymeric substrates [24]. In addition, polymeric micro-nanotextured surfaces
have been shown to exhibit antibacterial properties for a wide range of bacteria concentrations) [7].
Here we use a slightly different method in a reactive ion etching reactor for the transformation of
large fabric pieces (10 cm × 20 cm) to superhydrophobic, highlighting the ability to produce large area
surfaces with consistent superhydrophobic properties. A first durability evaluation of the fabrics has
been performed by hand-rumpling the processed, superhydrophobic fabrics and the results suggest
that durability can be enhanced by carefully choosing the fabric type and properties as well as by
tuning the plasma processing conditions.

2. Experimental Section

2.1. Materials

The fabrics used in this work were provided by Felix Schaller (Grafing, Germany, http://www.
felixschaller.com). Three fabrics with different patterns made from polyester (PES) were transformed to
superhydrophobic. Some of the fabrics were initially coated and thus had different wetting properties.

http://www.felixschaller.com
http://www.felixschaller.com
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Fabric A (fiber diameter 11 µm) is a dual layered 100% PES that is coated with FC (Fluor Carbon)
and has high hydrophobic properties, no air permeability and is stretchable. Fabric B (fiber diameter
13.5 µm) is 100% PES, with medium filter function (air permeability) and hydrophobic properties since
it is coated with TEFLON®. Finally, fabric C (fiber diameter 9 µm) is a non-stretchable fabric consisting
of PES 99% + Carbon 1%, (carbon fiber grid) and in contrast to fabrics A and B it is not coated with
a hydrophobic coating. The samples were cut in large pieces of 10 cm × 20 cm and were processed
in a Reactive Ion Etcher to demonstrate the ability to fabricate large area superhydrophobic fabrics.
Figure 1 shows SEM images of the fabrics weaving characteristics. Additional information about the
fabric’s properties can be found in the supporting information file.
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Figure 1. Top down SEM images of the fabrics surface before the plasma micro-nanotexturing: (a) Fabric
A; (b) Fabric B; (c) Fabric C.

The fabrics have dense weave and different warp and weft characteristics, SEM images reveal
that fabric A stretchability is the result of looser weave observed in fabric A. The fabric weave affects
wetting properties, because it influences the surface fraction. Nevertheless, the micro-nanotexture is
the most critical factor determining wetting properties as we will show below, since the fiber diameter
is similar in all the fabrics we processed.

2.2. Plasma Treatment

The fabrics were processed in a Reactive Ion Etcher (Alcatel Nextral NE 330), which is designed
for batch wafer processing and it can take samples with dimensions up to 20 cm. It uses the reactive
ion etching mode to give good anisotropy, selectivity, and uniformity in etching. It offers the advantage
of providing good reproducibility and large area processing. The surface modification method is a
two-step process comprising:
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• A plasma etching step to create micro-nanotexture at the following conditions: O2 flow:
100 sccm, power: 400 W, pressure: 10 mT for 12 min. At these conditions, other polymers
(cyclo-olefin polymer COP, polystyrene PS, etc.) are etched with an etch rate of 100–200 nm/min.
Shorter etching duration have also been tested but the resulting topography was not sufficient
for superhydrophobicity.

• A plasma hydrophobization step for 2 min using C4F8 (10 mT, 50 W, 16 sccm). The resulting low
surface energy (hydrophobic) layer thickness is 20 nm on a flat surface, while on a rough surface
will be noticeably thinner but it is expected to alter the surface chemistry from hydrophilic to
hydrophobic. For this reason, we consider that the proposed method is not categorized as an
additive manufacturing method (bottom-up). Additionally, during the etching step, material is
removed and therefore the thickness of the fibers on the treated fabrics will be lower than on the
untreated ones.

The topography created after the plasma treatment is a result of co-deposition of minute amounts
of quartz sputtered from the quartz reactor substrate and the highly anisotropic etching conditions
applied for the fabrics treatment. Sputtered quartz areas act as etch inhibitors which for oxygen plasma
enables the formation of nanotexture, which can grow to micro-nanotexture depending on the etching
time [17]. This plasma etching process, which simultaneously removes material and textures the
surface according to the above described mechanism, is well established and extremely reproducible
with variation lower than 10%. Depending on the application targeted, one or both sides of the fabric
may be modified.

2.3. Characterization Methods

The wetting properties and the morphology of the fabrics have been evaluated before and after
plasma processing to demonstrate the effect of the method proposed. Moreover, the mechanical
durability of the fabrics has been probed using a qualitative assessment test of rumpling the fabrics
several times. The morphology characterization was done on a FEI inset SEM.

The contact angle analysis was performed with GBX Digidrop system (GBX, France, http://
www.gbxonline.com/DGD_-_DX.html). Static contact angles were measured using typically 5 µL
liquid droplets in three different spots of the fabric to check the homogeneity of its surface properties.
Dynamic measurements were done by measuring advancing and receding angles as the droplet volume
was continuously increased and decreased, respectively. Then, contact angle hysteresis (CAH) was
calculated as the difference between advancing and receding contact angle. Standard deviation is
typically around 2◦.

The thickness of the hydrophobic film after plasma deposition using C4F8 gas was measured on
flat Si pieces using a spectroscopic ellipsometer model M2000F by Woollam Co. (Lincoln, NE, USA).

3. Results and Discussion

3.1. Fabrics Topography after the Plasma Micro-Nanotexturing

Oxygen plasma treatment using high anisotropic conditions was used to modify the fabrics,
yielding to a random micro-nanotopography on the fabric fibers. Figure 2 shows that the fabrics
surface after the plasma micro-nanotexturing step exhibit random topography with micron and
sub-micron scale features (nano) on the fibers. This topography is similar to the topography observed
on other polymeric materials after plasma etching [24]. We observe that in all fabrics regardless of their
initial weaving, fabric material and coating characteristics micro-nanoscale topography was created.
The extent of the topography is of course influenced by the weaving, fabric material, and coating
characteristics, but the strength of the plasma micro-nanotexturing technology is that it allows for
such topography to be created on the surface of any polymeric material. This micro-nano texture in
combination with an ultrathin coating can render all fabric materials superhydrophobic, as will be
seen below. As we will demonstrate in the next section, all fabrics were successfully transformed to

http://www.gbxonline.com/DGD_-_DX.html
http://www.gbxonline.com/DGD_-_DX.html
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superhydrophobic (water contact angle > 150◦, hysteresis < 10◦). Thus, the feature dimensions and
distribution in combination with the low surface energy are appropriate for superhydrophobicity.
These micro-nanoscale features in combination with the fabric weave determine surface fraction, which
is the ratio of the wet surface area divided by the projected one on the solid plane. We have shown
that for water, the upper limit in surface fraction in order to achieve superhydrophobicity is 0.25 [25]
and we assume that this is fulfilled in all fabrics tested. In addition, we have shown that surfaces
with features like the ones on fabric A are extremely stable superhydrophobic surfaces [26]. A more
careful look in Figure 2 reveals that the topography is thicker and higher in fabric A, and smaller
in fabrics B and C. This results in a slightly higher water contact angle on fabric A. The topography
differences can be attributed to: (a) the TEFLON® coating material existing in fabrics A and B which
can result in different etching rates between different areas and the (b) fabric weaving characteristics
which influence the surface fraction.
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However, the topography created is not appropriate for superoleophobicity (as we will see below
in Table 1), due to the fabric weaving characteristics and the small size of the topography created
after the plasma texturing step. These two factors, as explained above, influence the surface fraction
value, keeping it higher than 0.1 which is the upper limit for achieving superoleophobicity (soya oil
static contact angle > 150◦, contact angle hysteresis << 10◦) according to the Cassie equation [25].
Higher etching duration might provide superoleophobic properties by increasing the height and of the
topography and providing more undercut structures, but we did not increase the plasma duration in
order not to compromise the topography durability, as we have shown in our previous work [24].

3.2. Wetting Properties

The wetting properties of the three fabrics were evaluated using dynamic (hysteresis) and static
contact angle (SCA) measurements. All measurements are listed below in Table 1. Contact angle (CA)
measurements in three different spots on each sample were done and average water contact angle and
standard deviation were calculated.

Table 1. Wetting properties of PES fabrics as received (1), after coating with a plasma deposited
hydrophobic layer (2) and after plasma processing (3). CAH is given inside brackets. The adhesion
behavior of each fabric (sticky, slippery) is given inside parentheses.

Sample
Water Static Contact

Angle (WSCA) Samples
as Received (1)

Water Static Contact Angle
(WSCA) after ONLY Plasma
Deposition of Hydrophobic

Film (2)

Water Static Contact Angle (WSCA)
after Plasma Nanotexturing AND

Plasma Deposition of Hydrophobic
Film (3)

Fabric A 108◦ (sticky) 124◦ (sticky) 157◦± 3◦ [4◦] (slippery)
Fabric B 120◦ (sticky) 128◦ (sticky) 153◦± 3◦ [7◦] (slippery)
Fabric C superhydrophilic – 154◦± 2◦ [5◦] (slippery)

Note: Standard deviation in SCA hysteresis measurement ±2◦.

All fabrics after the plasma micro-nanotexturing step are superhydrophilic (water contact angle
< 10◦) and after the deposition of the hydrophobic layer become superhydrophobic (column 3). It is
evident that the water (γlv = 72.8 mN·m−1) contact angle increases by at least 25◦ in all samples
(fabrics A and B are hydrophobic as received). In fabric C we have an initially superhydrophilic
fabric that is transformed to superhydrophobic. Fabrics B and C after the process are also oleophobic
and the soya oil (γlv = 34.1 mN·m−1) SCA exceeds 90◦. Interestingly, fabric A is simultaneously
superoleophilic and superhydrophobic, indicating that this fabric can be potentially used for oil-water
separation applications. As a proof of concept for this application, Figure 3a shows two drops, a water
and a soya oil drop on fabric A (drop volume 20 µL). Soya is completely absorbed, while water is
repelled exhibiting CA higher than 150◦. In Figure 3b,c water drops on fabrics B and C are shown
(WSCA exceeds 150◦ and CAH is below 10◦, water drop volumes are 20 µL for visualization reasons).
The water and soya drops (volume 5 µL) that were used to measure the SCA and hysteresis in each
fabric, as recorded by the camera of the GBX Digidrop system, are included as insets in Figure 3.
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3.3. Mechanical Evaluation

Durability is the main obstacle for the successful application of any superhydrophobic surface [8].
Here, in particularly as wind turbine is exposed to various types of whether conditions of long
periods of time, long-lasting superhydrophobicity is required. We evaluated the durability of the
fabrics using a qualitative evaluation test (hand-rumpling). The fabrics showed remarkable stability
of their wetting properties even after hand-rumpling them eight times. The evaluation test against
mechanical rumpling is shown in Figure 4. It shows that WSCA remains above 150◦ and CAH below
10◦ after rumpling for five (5) times. After the 5th rumpling WSCA starts to decrease and consequently
CAH increases. More specifically after the 5th rumpling, CAH in fabrics B and C exceeds 10◦ which
is considered the upper limit for superhydrophobicity. In fabric B it continuous to increase and
reaches 15◦ after rumpling eight times, while in fabric C it remains stable around 11◦–12◦. A possible
explanation for the good mechanical durability that all fabrics exhibited is the enhanced adhesion of
the hydrophobic coating. Previous studies with the same coating imply that the coating adhesion is
enhanced by the oxygen plasma micro-nanotexturing step done prior the deposition [27]. We believe
that the same effect is observed here. Additionally, to this enhanced durability against rumpling,
all fabrics retained their superhydrophobic properties after one year of storage in the laboratory
environment. However, the best performance is observed on fabric A where hysteresis does not exceed
10◦ even after rumpling eight times. The video showing the rumpling tests of the fabrics can be found
in supporting information.

The enhanced durability of fabric A is due to the combination of two additional factors: (a) fabric
A properties (fabric A is the only stretchable one) and (b) the thicker microscale features created after
the plasma micro-nanotexturing step (compared to other two fabrics, see Figure 2), which makes the
topography more robust against mechanical stresses. This finding is confirmed by the SEM image after
rumpling eight times (insert in Figure 4), which shows that no significant changes of the topography
of fabric A are observed after rumpling.
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Figure 4. Stability against rumpling for the three different fabrics. Fabric A exhibits the highest
durability against rumpling. On the right axis hysteresis is shown. The red dashed line is the Hysteresis
upper limit for superhydrophobicity. An SEM image of fabric A after rumpling the fabric eight times is
given as insert. If one compares this image with the SEM image of the fabric A in Figure 2, it is clear
that the topography created after plasma micro-nanotexturing is not destroyed after rumpling.

4. Conclusions

We have developed a simple and generic method to produce superhydrophobic fabrics based
on direct plasma-induced surface modification. All materials tested exhibit good mechanical stability
after rumpling the samples at least five times. Our approach involves two steps: (1) plasma
micro-nanotexturing and (2) plasma deposition to render the fabrics superhydrophobic. Here,
PES fabrics were tested as a proof of concept, but the method can be easily adapted to other polymeric
fabrics. The fabrics herein are intended for use as self-cleaning fabrics covering wind turbine blades,
which is expected to improve the wind turbines performance and reduce their maintenance cost.
Similar fabrics can also be used in other applications (i.e., antibacterial fabrics, oil-water separation).
We intend to test them for such applications in the future.
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