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Abstract: This study is aimed to evaluate the effect of concentrated benzimidazole (BIM) on
the cathodic disbonding (CP) of an epoxy coating applied on steel substrate. For this purpose,
the polymeric coatings, formulated with different concentrations of BIM (0 wt.%, 0.5 wt.%, 0.75 wt.%,
and 1 wt.%, were subjected to the CP test at the potential of −1.2 V vs. Ag/AgCl during 24 h
immersion in 3.5 wt.% NaCl solutions. The optimum formulation was found through taking
advantage of the CP test results, FESEM/EDX, and EIS data. Moreover, a pull-off test was used to
measure the wet adhesion strength. For insight into the inhibition function of the organic inhibitor,
the behavior of steel in the sodium chloride solutions, with and without BIM, was compared using
EIS and surface analysis.
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1. Introduction

For protection of metals exposed to a corrosive environment, application of organic coatings
is a reliable way. In the case of coated metals, bare metal is exposed to the aggressive environment
in the damaged or defect areas of coating, leading to the occurrence and progress of underfilm
corrosion. Therefore, cathodic protection is proposed to resolve the problem. In fact, organic coatings
applied on the metallic substrates reduce the current required for cathodic protection. Despite
the many advantages of cathodic protection, the technique may increase the possibility of coating
delamination. Some parameters such as coating thickness, coating composition, surface treatment,
dissolved oxygen, NaCl concentration, and cathodic potential can affect the delaminated area [1–6].
The voltage applied for cathodic protection promotes the reduction of oxygen penetrating through the
coating matrix. Therefore, OH− ions accumulate in the metal/coating interface. As sodium cations
access the disbonding front, the alkalinity can destroy the bond between the coating and metal surface,
particularly on the edge of defects [7–14].

One of the effective strategies for controlling the film delamination is to modify the coating
formulation. For instance, addition of anticorrosion pigments [15–17], organic inhibitors, e.g., azole
derivatives [18–20], thioglycolate esters, mercaptocarboxylic acids [21], organic sulfides, organic
amines, organic phosphates, phenols [22] disodium oleamidesulfosucinate, lignosulfonic acid-doped
polyanilin [23], and also inhibitor loaded nanocontainers [24] have been proposed to increase the
coating resistance against the destroying phenomena. The electrolyte penetrating into the coating
may transfer organic inhibitor molecules and inhibiting species liberated from pigment particles to
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the interface, where the materials make a complex passive layer on the metal surface, blocking the
active regions and reducing the rate of electrochemical reactions [25–29]. In the case of inhibitor loaded
nanocontainers, Izadi et al. [24], for example, showed that release of Nettle molecules as green corrosion
inhibitor and zinc cations from a nanocontainer, synthesized by l-b-l process with the core of Fe3O4

nanoparticles, provide epoxy coating with a significant cathodic disbonding protection. Moreover,
the positive effect of zinc aluminum hydrotalcite intercalated with benzothiazolylthio-succinic acid on
the cathodic delamination resistance of epoxy coating was reported by Hang et al. [30]. Interestingly,
the influence of either direct or indirect addition of corrosion inhibitors to the conversion coatings
or any pretreatments on the cathodic delamination of overlaying polymeric films has been studied
in some literature [24,31,32]. Ramezanzadeh et al. [31] achieved an improved cathodic disbonding
and adhesion properties through application of epoxy coating on the steel substrate covered by zinc
phosphate conversion coating containing poly(vinyl) alcohol. Pretreatment of steel with silane layer
incorporating amino and isocyanate silane functionalized graphene oxide nanosheets was shown to
decrease the cathodic disbondment of epoxy top coating [32].

Previously, we reported the positive role of second and third generations of phosphate based
anticorrosion pigments on the function of epoxy coating on the steel substrate in the condition of its
application of cathodic protection [15–17]. In other words, zinc aluminum phosphate, zinc aluminum
polyphosphate, and strontium aluminum polyphosphate (zinc-free pigment) were shown to play an
important role in the disbonding front through decreasing pH and the deposition of an insoluble
layer on the surface, which disrupts electrochemical reactions and increases the coating-metal bonding
strength. In this work, we include benzimidazole as an organic corrosion inhibitor to an epoxy
coating formulation to reduce the cathodic disbandment rate. In order to find the most effective
inhibitor concentration, electrochemical impedance spectroscopy (EIS), pull-off test, and surface
analysis methods were employed.

2. Experimental

2.1. Materials and Sample Preparation

ST37 steel panels with the composition mentioned in the previous work [15] and with a 1 mm
thickness were polished using magnetic polisher to reach a desirable surface, then degreasing with
acetone. In the solution phase study, the panels were immersed in 3.5 wt.% NaCl aqueous solutions
containing 1 mM of Benzimidazole (BIM), purchased from Merck and used with no further purification.
To prepare polymeric coatings, 0 wt.%, 0.5 wt.%, 0.75 wt.%, and 1 wt.% of the organic inhibitor were
mixed in polyamide (Crayamid 115). Then, the prepared polyamide was mixed in epoxy resin
Epiran-01X75 (Khouzestan petrochemical Co., Bandar Jomeiny, Iran) at a stoichiometric ratio of
60:100. BYK-306 (BYK-Chemie GmbH, Wesel, Germany) was used as a leveling agent in the coating
formulation. After curing at a temperature of 80◦ C for 40 min, the thickness of dry film measured
using Elcometere-445 (Elcometer Inc., Manchester, UK) was approximately 20 ± 3 µm.

2.2. Methods

The electrochemical impedance spectroscopy was carried out using Autolab PGSTAT12 (Metrohm
AG, Herisau, Switzerland) an open circuit potential (OCP) in the frequency domain of 10 kHz to
10 mHz using a 10 mV amplitude perturbation. A setup containing the sample (bare metal or coated
substrate) as working electrode, platinum counter electrode, and Ag/AgCl reference electrode was
used for EIS test. The electrical connection was provided by a copper wire attached to one surface of
the working electrode. For the bare plates with 1 cm2 surface area exposed to 3.5 wt.% NaCl solutions
with and without 1 mM benzimidazole, EIS tests were performed at room temperature after 5 and
24 h of immersion. The electrochemical tests for the coated samples after subjection to a cathodic
disbonding test were conducted after 12 and 24 h immersion in 3.5 wt.% NaCl solution. The data of
EIS performed on three replicates was analyzed with the use of ZsimpWin software (v3.22).
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The steel samples, which were covered by the epoxy coatings containing different amounts of
BIM with an artificial circular hole (1 mm in diameter), were subjected to cathodic disbonding tests.
In the test, the samples immersed in 3.5 wt.% NaCl solution were polarized at −1.2 V vs. Ag/AgCl.
Some radial cuts intersecting at the hole were provided on the films at the end of cathodic disbonding
test and the detached coatings were removed with a sharp knife to determine the average surface
area of disbondment. In other words, the average distance between the hole and intact parts of
polymeric film was considered as the radius of disbondment.

After attachment of dollies on the epoxy coating using a 2-part Araldit epoxy, a pull-off test
was performed with a PosiTest digital adhesion tester (DeFelsko Corp., Ogdensburg, NY, USA).
In the wet mode, the dollies were detached from the sample surface after 24 h immersion in 3.5 wt.%
NaCl solution to obtain bonding strength of the coatings with and without the organic inhibitor.

A field emission electron microscopy (FE-SEM/EDS, TESCAN MIRA 3 Lumbers, Brno,
Czech Republic) was employed to characterize the surface of (1) bare steel after 24 h dipping in
3.5 wt.% NaCl solution with 1 mM BIM and (2) areas beneath the delaminated epoxy coating with
BIM after a cathodic disbonding test.

3. Results and Discussion

Prior to introducing of the inhibitor into the epoxy coating, the effect of BIM on the corrosion of
uncoated ST37 panels in the sodium chloride electrolyte was evaluated by the electrochemical
impedance spectroscopy technique. Figure 1 compares the Nyquist plots of bare specimens after
five and 24 h immersion in 3.5 wt.% NaCl electrolyte with and without 1 mM BIM. In the presence of
the organic molecule in the two immersion periods, semicircles with larger diameter were visible,
indicating a kind of corrosion inhibition. Moreover, increasing the time of exposure to the blank
electrolyte resulted in smaller spectra, while the exposure period had no noticeable effect on the
spectra in the presence of BIM. Since only one relaxation time was detected in the AC impedance
spectra of both cases after five and 24 h exposure, the simple equivalent circuit illustrated in Figure 2
was selected to model the data. As shown in Figure 2, Rs represents the solution resistance, Rct the
charge transfer resistance, and CPEdl the constant phase element of double layer. The data resulting
from the modeling is presented in Table 1.
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Figure 1. Nyquist diagrams of the bare specimens dipped in 3.5 wt.% NaCl electrolyte with and
without 1 mM BIM after 5 and 24 h.
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In order to determine the double layer capacitance values in Table 1, Equation (1) was used [33]:

Cdl = (Y0Rct
−n)1/n (1)

where Y0 and n are, respectively, the admittance and exponent of CPE.
Some important features can be derived from the table. The presence of BIM in the aggressive

electrolyte resulted in a decrease in double layer capacitance and increase in the charge transfer
resistance. For instance, the Rct value in the presence of BIM was approximately 2.5 times higher than
that in the absence of BIM at the end of the 24 h dipping period. Besides the magnitude, increasing the
time of exposure to the blank sodium chloride solution had a decreasing effect on the charge transfer
resistance, while an increasing trend was observed for the metallic specimen dipped in the electrolyte
with BIM. Considering the inverse proportion of the charge transfer resistance to corrosion current
density, the trend and magnitude of the resistance parameter in the presence of the organic molecule
indicated an inhibition function [34]. The replacement of a water molecule with the organic molecules
(BIM) might be responsible for the drop in the double layer capacitance values after both five and
24 dipping durations. These results were in agreement with the data we acquired for some organic
inhibitors in the chloride solution [35,36]. The organic molecules existing in the extract of Mentha
longifolia in sodium chloride solution was reported to provide a maximum inhibition efficiency of
69.5% after 24 h [35]. We also found, in another research, that the presence of 4,5-imidazoledicarboxylic
in NaCl solution led to a kind of corrosion inhibition for steel plates and the obtained impedance
spectra during 24 h immersion had only a one time constant [36].
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Table 1. The data resulting from modeling of the AC impedance spectra of bare ST37 steels after 5 and
24 h dipping in 3.5 wt.% NaCl solution in the absence and presence of 1 mM BIM.

BIM Concentration (mM) Immersion Time (h) Rct (Ω·cm2) Cdl (µF·cm−2)

0
5 1292 752

24 912 529

1
5 2001 469

24 2256 404

Standard deviation
Rc 1.7%–9.3%
Cdl 3.8%–13.8%

The appearance of bare ST37 specimens after 24 h immersion in the NaCl solution with and
without the organic moiety is shown in Figure 3. A decrease of corrosion products on the specimen
surface immersed in the electrolyte containing benzimidazole was clearly visible, confirming the
electrochemical data.

In order to further investigate the function of BIM, SEM-EDS tests were performed on the
surface of bare ST37 specimens after 24 h immersion in the electrolyte (Figure 4). As seen from Figure 4,
a layer was observed on the surface exposed to the NaCl solution containing BIM. The elemental
composition of the detected layer, which was obtained by EDS, was Fe (49.64%), Na (1.41%), Cl (0.58%),
O (36.84%), N (3.35%), and C (8.18%). The presence of nitrogen and carbon in the EDS surface analysis
result may show that the organic BIM molecule engaged in the surface film formation.
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Figure 4. The result of FE-SEM test on bare sample surface after 24 h exposure to 3.5 wt.% NaCl
electrolyte containing 1 mM BIM.

At the next step, different concentrations of benzimidazole (0 wt.%, 0.5 wt.%, 0.75 wt.%,
and 1 wt.%) were introduced into the epoxy-polyamide coating formulation applied on ST37 substrate
and cathodic disbonding test (−1.2 V vs. Ag/AgCl for 24 h) was conducted on the coated samples.
The evolution of disbonded area for different samples is demonstrated in Figure 5 as bar diagrams.
From the figure, the disbonded areas for the samples either with or without the organic inhibitor
increased with elapsing the immersion time. Moreover, the presence of BIM had a positive impact
on the cathodic disbonding resistance. To top it off, it was clearly visible that the polymeric coating
resistance to cathodic disbonding is noticeably dependent on the concentration of bezimidazole.
The coating containing 0.75 wt.% BIM revealed the lowest disbondment and generally the disbonded
areas increased following the order 0 wt.% > 1 wt.% > 0.5 wt.% > 0.75 wt.% BIM. Inclusion of the organic
inhibitor into the polymeric matrix may result in some contradictory impacts on the coating function.
The disbonding front might be covered by a protective layer when the organic molecules access the
substrate surface. This can improve the strength of bonding of the polymeric film to the metallic
specimen and decrease the generation of hydroxyl ion as a result of restriction of electrochemical
reactions on the surface. This was previously shown in the results of the solution phase study.
By increasing the organic molecule content, the chance of formation of the mentioned surface film
increases. On the other hand, the interaction between molecules of inhibitor and polymeric matrix may
affect the curing process and final film integrity [37]. Another drawback of the addition of the organic
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material to the coating is uncontrollable liberation of inhibiting species [38]. The consequence of these
contradictory issues was inferior and superior behavior of the epoxy coatings with one and 0.75 wt.%
BIM, respectively. This was in agreement with the results of our previous works, where exceeding
the optimum concentration of corrosion inhibitors adversely affected the coating performance [35,39].
In the case of organic inhibitors liberated from Mentha longifolia, the efficient concentration was
200 ppm and incorporation of 400 ppm caused coating to lose its integrity. In other words, the amount of
this green inhibitor was suggested to have a negative effect on the film formation and to decrease the
crosslinking density, making the film more permeable [35]. Interestingly, the disbonded surface area of
epoxy-polyamide coating containing 0.75 wt.% BIM was approximately half of that of the rest after
24 h subjection to the cathodic disbonding test. The effective role of organic molecules on the cathodic
disbonding resistance of polymeric coating was also shown in Izadi and coworkers research where
epoxy coating was formulated by a nanocontainer doped with Nettle molecules as a green corrosion
inhibitor [24].
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Figure 5. Evolution of delaminated area for the epoxy-polyamide coatings with different formulations
on the ST37 substrate.

To provide further investigation on the effect of the concentration of BIM corrosion inhibitor on
the cathodic disbonding of epoxy coating applied on ST37, AC impedance spectra were gathered.
According to the literature, the cathodic delamination behavior of polymeric coatings can be analyzed
through taking advantage of the EIS data [16,40,41]. For instance, Chen et al. [41] used electrochemical
impedance spectroscopy for investigating the mechanism of the cathodic disbonding behavior of the
three-layer polyethylene pipeline coating in chloride solution. The Nyquist plots for the ST37 panels
coated with the epoxy films including different concentrations of BIM after polarization at −1.2 V vs.
Ag/AgCl in 3.5 wt.% NaCl solution for 12 and 24 h are shown in Figure 6, and a typical Bode-phase and
modulus diagram of the metal coated with epoxy containing 0.75 wt.% BIM is illustrated in Figure 7.
Emerging as only a one time constant for all spectra caused a simple selection R(RC) equivalent circuit
for modeling of the data. The results of fitting with an R(RC) equivalent circuit are introduced in Table 2.
From the Nyquist diagrams for both exposure periods, the sample containing 0.75 wt.% BIM was
characterized with the largest semicircles. While semicircles all got smaller by expanding the exposure,
the sample containing 0.75 wt.% of corrosion inhibitor kept its superiority. In addition to showing the
dependency of the resistance and capacitance elements on the corrosion inhibitor amount, the data
presented in Table 2 revealed that the samples with 0.75 wt.% BIM possess the highest resistance and
the lowest capacitance values, particularly after 24 h. In agreement with the results of a cathodic
disbonding test in Figure 5, the superiority of this sample was found on the basis of the direct and
inverse proportion of capacitance and resistance, respectively, to the delaminated surface area [42,43].
The substrate surface coverage with a layer composed of the organic molecules might be responsible
for the behavior, as discussed before. Accordingly, the progress of delamination for all specimens,
by increasing the time of subjection to the cathodic disbonding test, can also be evidenced.
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Figure 7. Typical Bode-modulus and phase diagram obtained for ST37 panel coated with the epoxy
containing 0.75 wt.% of BIM after 12 h polarization at −1.2 V vs. Ag/AgCl in 3.5 wt.% NaCl solution.
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Table 2. Fitting results of spectra of the ST37 panels coated with the epoxy films including different
concentrations of BIM (0 wt.%, 0.5 wt.%, 0.75 wt.%, and 1 wt.%) after polarization at −1.2 V vs.
Ag/AgCl in 3.5 wt.% NaCl solution for 12 and 24 h.

BIM Concentration (wt.%) Immersion Time (h) R (kΩ·cm2) C (µF·cm−2)

0
12 15.7 39.6
24 14.8 39.4

0.5
12 17.5 31.1
24 12.5 43.4

0.75
12 27.8 36.2
24 23.6 22.9

1
12 15.9 17.2
24 14.9 46.4

Standard deviation
R 1.3%–10.1%
C 3%–14.4%

To assess the effect of BIM on the adhesion strength of epoxy coating with and without 0.75 wt.%
BIM (the optimum concentration previously determined in EIS and cathodic disbonding tests), pull-off
test was employed. Adhesion strength values of the coatings with and without BIM before and after
24 h immersion in 3.5 wt.% NaCl are shown in Figure 8. As can be observed from the figure in the
dry mode, the coating with no inhibitor revealed stronger adhesion to the ST37 substrate. This fact
could be related to the increase of the coating heterogeneity as a result of the introduction of the
inhibitor. The heterogeneity might lead to a decrease in the adhesion of coating film to the metal
surface [10]. In contrast, the coating formulated with 0.75 wt.% BIM possessed a higher value of
bonding strength after 24 of dipping in the aggressive electrolyte. As mentioned previously, in both the
coating and solution phase studies, the surface layer precipitated in the presence of BIM, limiting the
electrochemical reaction rate and reinforcing the interface, can increase the polymeric film adhesion.
Moreover, it is also reported that the presence of the inhibitor may lead to the stabilization of the
corrosion products, decreasing coating delamination [10].Coatings 2018, 8, 471 9 of 12 
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Figure 8. The impact of BIM on the bonding strength of the epoxy-polyamide coating before (dry) and
after 24 h immersion in 3.5 wt.% NaCl electrolyte (wet).

The result of SEM analysis of the ST37 sample surface beneath the disbonded area of epoxy coating
formulated with 0.75 wt.% BIM after 24 h polarization at −1.2 V vs. Ag/AgCl in 3.5 wt.% NaCl solution
is shown in Figure 9, where deposition of a layer can be clearly observed. Moreover, detection of
N (4.16 wt.%) and C (13.34 wt.%) in the EDS analysis can confirm the speculation made in the cathodic
disbonding section relating to the engagement of the corrosion inhibitor in the film formation at the
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disbonding front. As mentioned before, the layer had an important role in the control of coating
delamination through affecting the electrochemical reactions generation hydroxyl ions.
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Figure 9. The result of SEM analysis of the ST37 sample surface beneath the disbonded area of epoxy
coating formulated with 0.75 wt.% BIM after 24 h polarization at −1.2 V vs. Ag/AgCl in 3.5 wt.%
NaCl solution.

4. Conclusions

Assessment of the influence of benzoimidazole concentration on the cathodic delamination of
epoxy coating applied on ST37 substrate came down to the following conclusions:

• The solution phase study indicated that addition of benzoimidazole to chloride solution decreased
the corrosion of bare ST37 sample through development of a protective layer on the surface or
stabilization of the corrosion products.

• Cathodic disbonding resistance of epoxy-polyamide coating was shown to be dependent on the
inhibitor content.

• Inclusion of 0.75 wt.% corrosion inhibitor to the epoxy-polyamide coating formulation decreased
the cathodic disbonded surface area effectively, which is consistent with the electrochemical data.

• The wet adhesion of the polymeric coating was significantly enhanced through the addition of
0.75 wt.% benzoimidazole.
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