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Abstract: Ultra-high reflectors, working as a critical optical component, has been widely applied as a
cavity mirror in fine optical systems such as laser gyro, F-P interferometer, etc. For decades, ion beam
sputtering (IBS) technology, which can deposit ultra-low loss and dense layers, has been commonly
believed to be the only and irreplaceable method to fabricate ultra-high reflectors. Thus, reports on
other methods are rare and a reflectivity above 99.99% obtained by evaporation technology (including
ion assisted evaporation) has not been seen yet. In the present study, an energetic radio frequency
(RF) ion source was introduced during the electron beam evaporation process, which improved
the layer quality dramatically. An ultra-high reflector at 1319 nm with reflectivity of 99.992%
(measured by cavity-ring down method) was successfully deposited on a φ100 mm × 25 mm single
crystal silicon substrate whose surface roughness was approximately 0.420 nm. The surface figure of
the reflector was accurately controlled superior to 1/6λ (λ = 632.8 nm). The measured absorption
was approximately 3–5 ppm and the calculated scatter based on surface roughness measurement
was approximately 6.64 ppm. Total loss of the reflector was systematically discussed. This study
showed that it is possible to apply electron beam evaporation in ultra-high reflector manufacture and
the method is capable of depositing reflectors with an aperture larger than φ600 mm which is the
maximum capacity of current IBS technology.
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1. Introduction

Ultra-high reflector, as a critical component, has been widely applied as a cavity mirror in fine
optical systems. To meet the demand of laser gyro industry, ion beam sputtering (IBS) was initially
developed to fabricate small (<25 mm) and ultra-high reflectors in 1970s [1,2]. Driven by strong
demands for ultra-high reflectors for cutting-edge optical technology—such as laser interferometer
gravitational-wave observatory (LIGO), ring laser gyro (RLG), high-precision laser resonator [3–6],
etc.—a lot of research has been carried out on IBS technology ranging from device improvement to
deposition process. High reflectors fabricated by IBS can reach total losses below 1 ppm [7] and a
reflectivity of 99.99984% [8]. For decades, IBS technology has been commonly believed to be the only
and irreplaceable method to fabricate ultra-high reflectors. Thus, reports on other methods are rare and
a reflectivity above 99.99% obtained by evaporation technology (including ion assisted evaporation)
has not been seen yet. Due to the extraordinary properties, the IBS technique has also been tried
to fabricate supermirrors with large aperture such as VIRGO mirrors [9]. However, the current IBS
technique cannot handle substrates above φ600 mm due to limitations of ion source technology to the
best of our knowledge.
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Electron beam evaporation has always been the most popular method for optical film deposition.
Typical application in the frontier of optical technology is the inertial confinement fusion (ICF) laser
optics, which are large mirrors (>1 m), has significantly reduced loss requirements and a high damage
threshold [10]. Great effort has been made for the evaporation process to reduce defects and improve
the damage threshold [11]. Although ion assisted evaporation (IAE) has made great progress [12,13] in
past decades, it was still considered an unsuitable method to deposit ultra-high reflectors due to the
porous layer structure or rougher interface compared with IBS technology [14]. Commonly reported
reflectivity achieved by ion assisted evaporation is below 99.9% [15,16].

To explore the possibility of fabricating super mirror with large aperture, the present paper
introduced an energetic RF ion source during the electron beam evaporation process to improve
the layer quality. A 1319 nm ultra-high reflector (reflectivity >99.99%) was successfully fabricated.
The surface figure was controlled accurately and optical loss of the reflector was measured
and analyzed.

2. Experiments

2.1. Sample Preparation

Figure 1 shows the schema of deposition system in present study, which is a traditional electron
beam evaporation system (OTFC-1300, Optorun Co., Ltd., Kawagoe-shi, Japan), equipped with a
three-Mo-grids RF ion source. The substrate, facing downward, was mounted on a spinning planetary
holder. An optical thickness monitor and quartz thickness monitor were deployed in the center of the
chamber to control the thickness and deposition rate, respectively. Electron beam evaporation sources
and an RF ion source were deployed in the bottom of the chamber. Uniformity masks were used below
the substrate holder to adjust the layer thickness distribution across the deposition area. After using
the mask, uniformity was superior to ±0.1%.
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Figure 1. Schema of deposition system.

The layer design of ultra-high reflector was S|(HL)17 H|A, where H denoted high index material
(Ta2O5 in present study) with one QWOT (quarter wavelength optical thickness) and L denoted
low index material (SiO2 in present study) with one QWOT. S denoted substrate and A denoted the
incidence medium (air). The theoretical normal-incidence reflectivity of the design is 99.99961% and
the total loss is 3.9 ppm, which was calculated by the well-known Matrix method [17]. In the present
study, the refractive index was 2.142 and 1.452 for Ta2O5 and SiO2, respectively.
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A single crystal silicon substrate with diameter 100 mm and thickness 25 mm was chosen. The RF
ion beam parameters of IAE process were set as: beam voltage = 1100 and 900 V for Ta2O5 and SiO2,
respectively; beam current density = 67.8 µA/cm2 for both materials. Compared with traditional
ion assisted evaporation, the ion energy is much higher in the present study. O2 was used as the
working gas of the ion source, which can also adjust the stoichiometry of the layers. The depositing
pressure, which was accurately controlled by an auto pressure control system (APC), was set to
1.63 × 10−2 Pa for Ta2O5 and 1.45 × 10−2 Pa for SiO2. The purity of all the working gas was above
99.999%. The deposition rate for Ta2O5 is 0.3 nm/s, while 0.6 nm/s for SiO2.

2.2. Property Measurements

2.2.1. Measurement of Ultra-High Reflectivity

Cavity ring-down method is the only and well-known way to measure ultra-high reflectivity.
The basic principles and detailed description of the method have been already reported in literature [18,19].
The present study used cavity ring-down spectroscopy at 1319 nm to measure the ultra-reflectivity.
Figure 2 gave the schema of the test platform. The incidence angle is 5◦. The reflectivity can be calculated
by the formula:

R = e[
L
C×( 1

t0
− 1

t1
)] (1)

where L is the length of the cavity (1 m in our study) and C is the velocity of light. t0 and t1 the
decay time of the ring-down signal in the straight cavity and folding cavity, respectively, which can be
obtained by fitting the ring-down signal to the equation:

y = A × exp
(
−x

t

)
+ B (2)

where t is the decay time.

Coatings 2018, 8, x FOR PEER REVIEW  3 of 9 

 

as the working gas of the ion source, which can also adjust the stoichiometry of the layers. The 
depositing pressure, which was accurately controlled by an auto pressure control system (APC), was 
set to 1.63 × 10−2 Pa for Ta2O5 and 1.45 × 10−2 Pa for SiO2. The purity of all the working gas was above 
99.999%. The deposition rate for Ta2O5 is 0.3 nm/s, while 0.6 nm/s for SiO2. 

2.2. Property Measurements 

2.2.1. Measurement of Ultra-High Reflectivity 

Cavity ring-down method is the only and well-known way to measure ultra-high reflectivity. 
The basic principles and detailed description of the method have been already reported in literature 
[18,19]. The present study used cavity ring-down spectroscopy at 1319 nm to measure the 
ultra-reflectivity. Figure 2 gave the schema of the test platform. The incidence angle is 5°. The 
reflectivity can be calculated by the formula: = e  (1) 

where L is the length of the cavity (1 m in our study) and C is the velocity of light. t0 and t1 the decay 
time of the ring-down signal in the straight cavity and folding cavity, respectively, which can be 
obtained by fitting the ring-down signal to the equation: = exp − +  (2) 

where t is the decay time. 

 
Figure 2. Schema of cavity ring-down spectroscopy. 

2.2.2. Optical Absorption Measurement 

Optical absorption was measured by surface thermal lensing (STL) method [20]. STL is based 
on creation of phase mismatch between the central and annular portions of the probe beam (632.8 
nm, continuous wave (CW)) which is due to the thermal-optic effect caused by the heat deposit by 
pump beam (1319 nm). Figure 3 gives the schema of the measurement setup. Since the 
self-interference inside the probe beam, a localized perturbation at the chopping frequency occurs at 
the center of the Gaussian profile at one Rayleigh length. The non-perturbed annulus of the probe 
beam is stripped off with an iris and the perturbed components then detected by the position sensor. 
The wave front phase difference of the perturbed beam can be measured, from which the 
absorption can be deduced. The platform was calibrated by using a standard sample, which had 
absorption of 23% at 1319 nm. Counting on this platform, absorptions as low as 0.1 ppm could be 
detected and measured. 

Figure 2. Schema of cavity ring-down spectroscopy.

2.2.2. Optical Absorption Measurement

Optical absorption was measured by surface thermal lensing (STL) method [20]. STL is based on
creation of phase mismatch between the central and annular portions of the probe beam (632.8 nm,
continuous wave (CW)) which is due to the thermal-optic effect caused by the heat deposit by pump
beam (1319 nm). Figure 3 gives the schema of the measurement setup. Since the self-interference
inside the probe beam, a localized perturbation at the chopping frequency occurs at the center of the
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Gaussian profile at one Rayleigh length. The non-perturbed annulus of the probe beam is stripped
off with an iris and the perturbed components then detected by the position sensor. The wave front
phase difference of the perturbed beam can be measured, from which the absorption can be deduced.
The platform was calibrated by using a standard sample, which had absorption of 23% at 1319 nm.
Counting on this platform, absorptions as low as 0.1 ppm could be detected and measured.Coatings 2018, 8, x FOR PEER REVIEW  4 of 9 
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2.2.3. Other Measurement

Roughness (RMS) was determined in by AFM (Atomic Force Microscope, D3100, Veeco, Plainview,
NY, USA). Each sample was scanned in 10 different areas with size of 10 µm × 10 µm and the sample’s
roughness was determined by the mean value. All the roughness determinations, including substrate
and high reflector samples, were carried out in this procedure. The surface figure was measured by
interferometer (GPI-XP, Zygo Corporation, Middlefield, CT, USA).

3. Results and Discussion

3.1. Optical Loss Analysis and Reflectivity

Figure 4 gives the surface profile before and after the reflector deposition measured by AFM.
It can be seen that surface roughness decreased from 0.420 to 0.323 nm after the layer deposition.
The coating process exhibited a planarization effect, which was also observed in the IBS deposition
coating process [15], while never being reported in the evaporation coating process. This planarization
effect can be explained by the classic thin film growth dynamics: if deposited atoms do not have
enough energy to migrate on the surface of substrates, the films would have porous microstructure
and rough surface. On the contrary, energetic deposited atoms are capable of migrating long distance
on the surface of substrates and stop at proper location with lowest surface energy. The films would
possess dense microstructure and smoother surface. Present study used the energetic RF ion source
to overcome the shortage of low energy electron beam evaporation. Thus, the deposition atoms can
obtain enough energy by momentum transfer with the energetic ions.

The scattering of the ultra-high reflector can be analyzed from the surface roughness. Particular
roughness with spatial frequencies range from the wavelength of light to the spot size is the direct
contributor to scattering. The correlation between roughness and optical scattering is described in the
equation [21].

TIS = 32π2n0nH

(
nH − nL

nH + nL

)(σ
λ

)2
(3)

where TIS is total integrated scattering, σ is surface roughness, and λ is working wavelength. n0, nH,
and nL are refractive index of incidence media, Ta2O5, and SiO2, respectively. Based on this equation,
the total scatter of our ultra-high reflector should be 6.64 ppm.
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Figure 5 gives the results of absorption measurement. The measured absorption is approximately
3–5 ppm. This absorption level was much higher than the reported results obtained by IBS and
traditional electron beam evaporation [22]. The reason was probably due to the impurities introduced
by the energetic ion bombardment [23]. This result was also in accordance with reported conclusions
of traditional ion-assisted deposition.Coatings 2018, 8, x FOR PEER REVIEW  5 of 9 
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Figure 5. Absorption of the ultra-high reflector.

Figure 6a,b shows decay curve of ring-down signals of the straight cavity and folding cavity,
respectively. The obtained reflectivity was 99.992%, which is the highest reported reflectivity achieved
by electron beam evaporation. According to the measured reflectivity, the total loss of our ultra-high
reflectivity is 80 ppm. However, the total loss (scatter and absorption) based on absorption
measurement and scatter calculation should be below 11.64 ppm, which is much lower than actual
loss. The reasons of this phenomenon are probably due to the scatter: (1) the interface of multilayer
was rougher than surface according to the planarization effect discussed above; (2) scattering did not
only happen in the interface, but also in the layer due to defects of layer microstructure, which was
ignored in above analysis. Thus, the actual value of scatter would be much larger than 6.64 ppm.
Limited by our experiment condition, the scattering cannot be directly measured. Compared with the
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surface roughness of substrate applied in ring laser gyroscopes (below 0.1 nm), the substrate used in
the present study was much rougher. Thus, it can be predicted that our reflectivity would be much
higher if ultra-smoothing substrate was available for us.Coatings 2018, 8, x FOR PEER REVIEW  6 of 9 
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3.2. Surface Figure Control

Surface figure is the deviation between the theoretical and actual profile of the optical surface,
which directly influences the wave front of transmission. The surface figure of the reflector can be
modified by the residual stress introduced by the coating deposition.

In the present study, the residual stress was calculated based on the Stoney Equation [24]:

σ =
Esd2

s
6(1 − γs)df

(
1

R1
− 1

R2
) (4)

σ is the residual stress of the coating. Es and γs is the elastic modulus and Poisson ratio of the substrate,
respectively. df is the thickness of the film. R1 and R2 are the radius of curvature before and after
the coating. ds is the thickness of substrate. Figure 7 shows the schema of substrate surface. D is the
diameter of the substrate. Since the θ is small enough due to the flat surface. The following equation
can be deduced from the geometry:

D ≈ l = 2Rθ (5)

PV = h = R(1 − cos θ) = 2R sin2 (
θ

2
) ≈ D2

8R
(6)

The power value change (∆PV) which can be measured by ZYGO interferometer meets
the equation:

∆PV = PV1 − PV2 =
D2

8
(

1
R1

− 1
R2

) (7)

Thus, the Stoney equation can be written as:

σ =
4Esd2

s
3(1 − γs)D2

∆PV
df

(8)

For single crystal silicon substrate, Es = 130 GPa and γs = 0.23 were used in the calculation.
The diameter of the substrate is 100 mm while the thickness is 25 mm. For our study, df = 6477 nm.
∆PV is the power value change which can be measured by ZYGO interferometer in the present study.

Figure 8a,b showed the surface figure of the substrates and post-deposited ultra-high reflector,
respectively. The power value of the surface changed from 0.105λ to −0.224λ (λ = 632.8 nm).
The multilayer exhibited compressive stress and the value is 452 MPa, which was fairly high.
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To compensate the surface figure change, SiO2 single layer were deposited on the backside of the
reflector and the surface figure was controlled superior to 1/6λ (λ = 632.8 nm). Figure 8c was the final
surface figure of the ultra-high reflector.Coatings 2018, 8, x FOR PEER REVIEW  7 of 9 
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4. Conclusions

An ultra-high reflector at 1319 nm with a reflectivity of 99.992% was successfully deposited on
single crystal silicon substrate by electron beam evaporation assisted by an energetic RF ion source.
To our best knowledge, this was the highest reflectivity obtained by the ion-assisted evaporation
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technology. The absorption of the reflector was below 5 ppm and the main loss was from the scatter.
It can be predicted that higher reflectivity can be obtained if a smoother substrate is used, which we
will try in our future work. Backside coating was deposited to control the surface figure of the reflector
and high accuracy can be achieved. The present study showed that it is possible to apply electron beam
evaporation in ultra-high reflector manufacture and the method is capable of depositing reflectors
with aperture larger than φ600 mm which is the maximum capacity of current IBS technology limited
by our knowledge.
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