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Abstract: TiO2 nanotubes/Au nanoparticles/enzyme photoelectrochemical biosensor is developed
by the chemical bonding of acetylcholinesterase with Au nanoparticles-modified TiO2 photoactive
electrode, based on the inhibitory effect of aflatoxin B1 on acetylcholinesterase activity. In this
method, AuNPs were deposited on the surface of the electrode by potentiostatic deposition and
the acetylcholinesterase was chemically crosslinked to the surface for determination of aflatoxin
B1. Enzymatic hydrolysate is generated to capture the photogenerated holes of UV-sensitized TiO2

nanotube arrays, causing magnification of the photoelectrochemical signal. The photoelectrochemical
biosensor morphological and structural details were evaluated, applying different techniques, such
as X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Aflatoxin B1 competitively
inhibits acetylcholinesterase, leading to a decrease in photocurrent that should have been increased.
The detection performance of biosensors for different concentrations of AFB1 is discussed. The linear
response range of the biosensor is from 1–6 nM with detection limitation of 0.33 nM, the linear
equation is I (µA) = −0.13C (nM) + 9.98 (µA), with a correlation coefficient of 0.988. This new
biosensor could be used to detect Aflatoxin B1 in foods.

Keywords: photoelectrochemical; aflatoxin B1; acetylcholinesterase; TiO2 nanotubes

1. Introduction

Aflatoxin B1 (AFB1) has a strong toxicity, carcinogenicity, mutagenicity, and teratogenic toxicity,
existing extensively in natural food. Previous studies have shown that AFB1 is 10 times more toxic
than potassium cyanide, 68 times more toxic than arsenic [1], and its carcinogenicity is 70-fold
that of dimethylnitrosamine. It was also defined by the IARC (international agency for research
on cancer) [2,3]. The chronic exposure of human to AFB1, even at a low concentration level,
will cause the drastic health problems, such as nausea, fever, jaundice, lower extremity edema,
and even fulminant hepatic failure. What is worse is that it has very stable physical and chemical
properties under high temperature during cooking process. Thus, it is very important to develop
a simple and rapid method to detect AFB1 in the environment to protect public health and ensure
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food safety. To date, a number of analysis methods are usually used to interrogate AFB1 levels in
foods, including liquid chromatography-mass spectrometry (LC-MS), enzyme-linked immunosorbent
assay (ELISA), and immune colloidal gold technique (GICT) [4]. Other immunological-based
technologies are also available to quickly detect aflatoxins, such as radioimmunoassay, time-resolved
fluorescence immunoassay, fluorescence polarization immunoassay, and lateral flow immunoassay [5].
The traditional analytical tests often require expensive instruments, tedious sample preparation,
pre-treatment procedures and trained testers.

The photoelectrochemical (PEC) test, a newly developed detection method, uses light and
electricity energy for the sensor excitation and determination, which can effectively reduce
unwanted background noise and improve sensitivity. A molecular imprinted polymer thin film
for photoelectrochemical (PEC) sensing of chlorpyrifos molecules could be successfully applied to the
detection of reduced chlorpyrifos in green vegetables [6]. Based on the nanocomposite of CdSe@ZnS
quantum dots (QDs) and graphene deposited on the ITO coated glass electrode as a photoactive
electrode, a sensitive photoelectrochemical (PEC) biosensor had been applied in the detection of
organophosphorus pesticides (OPs) [7]. The fabricated derivative photoelectrochemical sensor based
on the perylene-3,4,9,10-tetracarboxylic acid/titanium dioxide (PTCA/TiO2) heterojunction had been
successfully applied to the detection of parathion-methyl in green vegetables [8]. The photonic charge
process of the photoactive materials, such as organic dyes and inorganic semiconductor materials,
are highly sensitive to the surface chemistry and microenvironment fluctuation. TiO2 is a very
attractive candidate for PEC detection, because of its strong light absorption, high chemical stability,
environmental benignity, and low cost [9]. Among the matrixes, TiO2-based nanostructures feature
a high degree of vertically oriented geometry and unidirectional charge transfer channel, thereby
making them prime candidates for photocatalytic and PEC applications [10], and their semiconducting
nanostructures have proven to be potential electrode materials that can immobilize biomolecules.
Nonetheless, poor light absorption in the visible light spectrum and fast recombination of photoexcited
electron-hole charge carriers remarkably hinder the potential applications of TiO2. To overpass these
obstacles, various synthetic strategies have been explored, including metal or nonmetal doping [11,12],
metal deposition [13], and heterocoupling with narrow-band gap semiconductors [14]. In our study, the
introduction of precious metal Au nanoparticles on the surface of titanium dioxide, excited electrons
flow from the semiconductor to the metal under light irradiation, and then the Schottky barrier between
the titanium oxide and the metal nanoparticles prevents electrons from flowing to the titanium dioxide
and prevents electron-hole recombination, acting as an electron trap, thereby improving the stability of
the photocatalyst [15,16]. We mainly explore the simple, sensitive, and rapid photoelectrochemical
method for detecting aflatoxin B1 in food. In the photoelectrochemical (PEC) test of TiO2, the use of
electronic detection makes the optoelectrochemical apparatus easier and low-cost when compared
with traditional optical methods.

In this manuscript, a photoelectrochemical biosensor is developed by the chemical bonding of
acetylcholinesterase (AchE) on TiO2 photoactive electrode modified with Au nanoparticles (AuNPs),
based on the inhibitory effect of AFB1. By this means, enzymatic hydrolysate (sulfhydryl) was
generated to capture the photogenerated holes UV-sensitized TiO2 nanotube arrays (TiO2NTs),
resulting in an amplification of the photocurrent signal. AFB1 could competitively inhibit AchE
activity, leading to a decrease in photocurrent. In addition, we found that the bandgap effect of doped
AuNPs on TiO2NTs contributed significantly to the enhanced PEC and photocatalytic performances of
ternary nanostructures. This detection technique could be applied to detect aflatoxins B1 in foods.

2. Materials and Methods

Ammonium fluoride (≥99.99% trace metal basis), glycerol (anhydrous, 99.8%), dibasic sodium
phosphate (≥99.0%, powder), potassium dihydrogen phosphate (≥99.0%, powder), acetone (≥99.0%),
anhydrous ethanol (≥99.0%), chloroauric acid, chitosan (CS, deacetylation, 95%), glutaraldehyde
(CAD ≥ 99.0%), acetylcholinesterase (AchE, specific activity 1000 U/mg), 2-acetylsulfanylethyl
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(trimethyl) azanium, chloride (ATCl), aflatoxin B1 (AFB1), and methanol (≥99.0%) were purchased by
Sigma-Aldrich St. Louis, MO, USA. Titanium tablets (≥99.7%) and aluminum sheet (≥99.7%) were
used as a substrate material. All of the solutions were prepared with ultrapure water (Milli-Q, Merck,
Darmstadt, Germany).

All electrochemical experiments we reported were executed with CHI660E electrochemical
workstation (CH Instruments Ins., Austin, TX, USA) and three-electrode arrangement. Constant
potential deposition and amperometric i-t method was performed with Ag/AgCl (3 M NaCl type)
and platinum wire as reference and auxiliary electrodes, separately. The exposed or modified form
of TiO2NTs was used as the working electrode. The potential was 0 V and sample interval is 0.1 s.
The working electrode surface was irradiated by a focused UV light beam from a high-pressure
mercury lamp (365 nm, F8T5). Scanning electron microscopy studies were performed with S-4800
(Hitachi S-4800, Tokyo, Japan). Samples were coated with platinum (5 nm) prior to imaging with SEM.
X-ray diffraction spectra (XRD) of the samples were performed using Rigaku MiniFlex 600, Tokyo,
Japan. All of the samples were detected at a scan rate of 1◦/min and a step of 0.03◦ in the 2θ range of
10◦–90◦.

2.1. Biosensors Preparation

2.1.1. Fabrication of TiO2NTs Electrode

TiO2NTs electrode was fabricated using an anodization process described elsewhere [17].
Specifically, titanium foils of thickness 0.25 mm and 99.8% purity were used to fabricate titania
nanotubes. The electrolyte consisted of 0.5 wt % NH4F-glycerol and water (1:1), a platinum electrode
served as a cathode, and titanium served as anode. Anodization was carried out at a constant voltage
of 20 V for 2 h. Then, the anodized samples were ultrasonically cleaned in absolute ethanol and
deionized water for 15 s to remove surface debris. The nanotubes were then annealed at 500 ◦C for
1 h in dry oxygen because these environmental conditions are known to affect the phase transition of
titanium dioxide. Titanium dioxide with pore size of 100 nm was obtained ultimately.

2.1.2. Fabrication of Au/TiO2NTs Composite Electrode

Au/TiO2NTs composite electrode was prepared by potentiostatic electrodeposition of chloroauric
acid. Three-electrode arrangement was used for electrochemical deposition. The TiO2NTs electrode
was immersed in a 0.1 mM HAuCl4·4H2O electrodeposition solution. After the electrochemical
deposited at 0 V for 5 min using a current time profile (i-t), during this period, the Au nanoparticles
was reduced to the electrode surface, then the electrode was rinsed with water and dried to get
a Au/TiO2NTs composite electrode.

2.1.3. Fabrication of Au/AchE/TiO2NTs Modified Electrode

The Au/TiO2NTs composite electrode was immersed in 5% chitosan solution overnight, then dried
at room temperature and immersed in 5% glutaraldehyde solution overnight. After drying at room
temperature, 10 µL of AchE (500 U/mL) was added dropwise to the electrode surface and placed in a
refrigerator (4 ◦C).

2.2. Procedure for Electrochemical Biosensor

The schematic diagram of the biosensor is shown in Scheme 1. TiO2NTs form an oxidation-reduction
system of electron-hole pairs under the irradiation of ultraviolet light. Acetylcholinesterase catalyzes
the formation of mercapto-containing cholinechloride by ATCl. The mercapto groups are easily
oxidized and the photocurrent response increases as a result of the effect of electron-hole pairs system.
AFB1 has a strong inhibitory effect on acetylcholinesterase and irreversibly noncompetitive inhibition
by altering the site of action of acetylcholinesterase [18–22]. The reaction formula is as follows:
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CH3COSCH2CH2N + (CH3)3
AchE/H2O→ HSCH2CH2N+(CH3)3 + CH3COO− + H+ (1)

2HSCH2CH2N+(CH3)3
TiO2,−2e−→ (CH3)3N+CH2CH2S− SCH2CH2N+(CH3)3 + 2H+ (2)

1 

 

 

Scheme 1. The schematic diagram of the biosensor photoelectrochemical process.

The schematic diagram of the biosensors assembly procedure is shown in Scheme 2. Experiments
were performed by placing 100 µL of different concentrations AFB1 on top of the biosensor
(i.e., Au/AchE/TiO2NTs) and allowed to stand still for 5 min. The surface of the electrode was
gently washed with water and then placed in 0.1 M PBS (c (ATCl) = 0.1 mM, pH = 7.4). Then,
the time-current (i-t) curve was used to obtain the peak current value of different concentrations of
AFB1 standard solution.
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3. Results and Discussion

3.1. Characterizationn

The morphology of TiO2 nanotube array was also useful for separating and directing electrons to
the collecting electrode surface, making it an ideal candidate for photocurrent response [23]. However,
the large band gap of TiO2 nanotube array (3.2 eV) determined its inherent low photoelectric conversion
efficiency in the visible region, limiting its further applications [24]. Hence, Au/TiO2NTs could
be employed as the photoelectric transducer in this work, because doping Au has been proved
to narrow the band gap and greatly sensitize to the visible light photoresponse [25–27]. Figure 1
shows X-ray diffraction (XRD) patterns of the samples. When comparing with pure TiO2NTs
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as-prepared (blue), characteristic peaks of anatase are appearing at 2θ 25.3◦ and 47.0◦ after annealing
(green), deposited with AuNPs (black) and immobilized AchE (red), respectively. In addition,
Au characteristic peaks could be observed at 2θ 38.20◦ (111), 44.40◦ (200), 64.50◦ (220), and 77.50◦ (311)
after electrochemical deposition.
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Figure 1. X-ray Diffraction (XRD) patterns of samples including anodized TiO2 nanotube arrays
(TiO2NTs), TiO2NTs annealed under 500 ◦C, deposited AuNPs and immobilized with AchE.

Figure 2 shows SEM images of samples. TiO2NTs after annealed are highly self-ordered porous
tubular structure, and the nozzle is more regular smooth. The average pore diameter is approximately
100 nm and the average pore spacing is approximately 150 nm (Figure 2a,b). After constant potential
deposition, a mass of AuNPs is observed on the surface of TiO2NTs (Figure 2c,d).
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Figure 2. Scanning Electron Microscopy (SEM) micrographs of samples. Top surface view of anodized
TiO2NTs ((a) ×50,000; (b) ×100,000). Top surface view of anodized TiO2NTs deposited with AuNPs
((c) ×50,000; (d) ×100,000).
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3.2. Effect of AuNPs on Photocatalytic Effect of TiO2NTs

Constant potential deposition was conducted by placing the electrode (i.e., TiO2NTs) in 0.1 mM
HAuCl4·4H2O (initial potential 0 V). When the energy of light is greater than the band gap of TiO2,
the photoexcited electrons transit to the conduction band to form conduction band electrons, while
holes leaving in the valence band. The PEC detection system is exposed to visible light. As the
electrode, TiO2NTs/Auabsorbs the energy of its band gap, resulting in Au valence band photoelectrons
to its conduction band excitation to form electron-hole pairs. The holes in the valence band are
transferred to the surface of the Au and are captured by the electron donor. At the same time,
the electron enters into the TiO2 and transfers to the external circuit through the conductive Ti foil
to produce the photoelectric current. For improving the biosensors performance, electrochemical
deposition time was investigated at first. Figure 3a is photocurrent responses of TiO2NTs/AuNPs
after a different deposition time (0, 1, 2, 3, 4, 5, 6, 7 8, 9 min). Figure 3b presents temporal evolution
of peak photocurrents of the electrode (i.e., TiO2NTs). The photocurrent increases first as deposition
time increases, and then decreases slightly, and a maximum value of the photocurrent as deposited
appears after 5 min. The main results are summarized as follows. First, the dopant Au is introduced
into the intermediate energy level for the TiO2NTs, and its larger electronegativity leads to a lower
position of its conduction band, resulting in narrowing the band gap of the TiO2NTs. Thus, it is easier
for the generation and transition process of photo-generated electrons. Meanwhile, it can be associated
with trapping wells of photocatalytic carriers generated by the intrinsic excitation of TiO2. The shallow
trapping facilitates the diffusion process of the excited carriers in the TiO2NTs, prolongs the life of the
excited carriers, greatly reduces the surface recombination of the electron hole pairs, and enhances
the photocatalytic activity of the photocatalysts. However, the photocurrent increases first and then
decreases with the increasing of deposition time, because that excess doping AuNPs inhibit the light
absorption of TiO2 and reduce the photocatalytic activity of TiO2 [28].
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3.3. Effect of Acetylcholine Concentration on Photocurrent Response of Enzyme Biosensor

For bioinhibitory sensors, substrate concentration is one of the important influence parameters.
AuNPs/AChE/TiO2NTs electrode was placed in different concentrations of ATCl (40 µM, 80 µM,
100 µM) with 0.1 mM, pH = 7.4 phosphate buffered saline (PBS) in order to investigate the effects on
the response of the sensor. Embedded AchE biological activity will be affected by the solution pH.
According to the literature, the optimal pH of acetylcholinesterase is closed to 7 [29,30]. As shown
in Figure 4, the photocatalyses of the enzyme biosensor are found to become more obvious as the
concentration of ATCl solution increased. This experimental phenomenon is ascribed to the catalytic
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reaction of AchE to ATCl. The mercapto that is generated by the catalytic reaction is easily oxidized by
the electron-hole pair system that is produced by TiO2NTs, so that the photocurrent response increases.
However, when concentration of ATCl is increased more than 80 µM, the change of photocurrent
response is very slight, indicating that the catalytic reaction is approached to equilibration. Therefore,
the later experiments were performed with ATCl concentrations of 0.1 mM.Coatings 2018, 8, x 
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3.4. Performance of the Biosensor

As mixed, AFB1 can inhibit AChE enzyme activity by blocking access of the substrate to the
active site or by inducing a defective conformational change in the enzyme through non-covalent
bonding interacting with the AChE peripheral binding site. When AFB1 is added, the activity of
AchE is inhibited, thereby inhibiting the hydrolysis of ATCl and reducing the generated electroactive
substance choline and acetic acid, reducing the oxidation current [31]. When comparing the change
of the photocurrent of the enzymatic reaction, the concentration of AFB1 could be obtained via the
inhibitory rate of AFB1 to AchE. The responses of the biosensor to AFB1 were recorded with the
current-time curve as shown in Figure 5. The attenuation of the photocurrent response is dependent
on AFB1 concentration. The peak current is inversely proportional to the analyte concentration, which
demonstrates that AFB1 indeed inhibits the catalytic reaction of AchE by the two mechanisms described
previously. The response time of the sensor is about 5 s. The time for the calculation curve is selected
as the current approached steady state. For example, it is about 55, 75, or 95 s. The linear response
range of the biosensor is from 1–6 nM with detection limitation of 0.33 nM, the linear equation is I
(µA) = −0.13C (nM) + 9.98 (µA) with a correlation coefficient of 0.988. The results show that TiO2

nanotubes/Au nanoparticles/enzyme photoelectrochemical biosensor has a certain feasibility.
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The comparison of aflatoxin B1 detection methods by several different biosensors is displayed
in Table 1. The detection line of TiO2 nanotubes/Au nanoparticles/enzyme photoelectrochemical
biosensor is second only to the optical biosensor based on gold nanorods (GNRs) [32–46]. However,
TiO2 nanotubes/Au nanoparticles/enzyme photoelectrochemical biosensor do not require the purchase
of expensive antibodies, so that the detection steps are simpler and less costly [43,44].

Table 1. Several Biosensors for aflatoxin B1 detection.

Methods Detection Limit or IC50 Ref.

Au/AchE/TiO2NTs 0.33 nM This experiment
AFO/MWCNTS/Pt 1.6 nM [32–34]

Amperometric, screen printed electrode modified with CoPc 302 µM [35–37]
AchE-based Conductometric Biosensor 0.05 µg/mL [38–41]
Amperometric, screen printed electrode IC50 = 100 ppb [42]

Aflatoxin B1 based on aggregation of gold nanorods 0.04 ppb [43,44]
Detection of aflatoxin B1 in corn and nut products using the

array biosensor 0.3 ng/mL [45,46]

4. Conclusions

A new photoelectrochemical biosensor is developed via chemical bonding of AchE with Au
NPs-modified TiO2NTs from the present work. Two steps were used to synthesize the Au/AchE/TiO2

electrode. In Step 1, immobilizing the nanogold to CS-GAD mixed film that was applied to chemical
deposition using nano-gold constant potential deposition. In Step 2, AchE was modified to the electrode
surface of CS-GAD mixed membrane by chemical cross-linking. It was shown that TiO2NTs electrode
deposited Au nanoparticles obtained more obvious photocurrent response signal. AFB1 can inhibit the
enzyme activity of AchE, leading to a decrease in photocurrent. Through the electrochemical detection,
the linear response range of the biosensor is from 1–6 nM with detection limitation of 0.33 nM, which is
significantly more sensitive than other methods, the linear equation is I (µA) =−0.13C (nM) + 9.98 (µA)
with a correlation coefficient of 0.988. This photoelectrochemical biosensor could be applied to detect
aflatoxins B1 in foods.
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