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Abstract: Polyurethane binder systems based on hydroxyl-terminated polybutadiene (HTPB) possess
several superior properties such as superior adhesion, high solid-loading capacity, outstanding
mechanical performance, etc. They have been widely used in coatings and adhesives as well as
in medical and military industries. The cure reaction between hydroxyl-terminated polybutadiene
(HTPB) and diisocyanates plays a key role in the properties of final products as well as the adjustment
of process parameters. FT-IR spectroscopy is applied to investigate the kinetics of the curing reaction
of HTPB and isophorone diisocyanate (IPDI) in the presence of a low toxic and low viscosity catalyst,
stannous isooctoate (TECH). The concentrations of the isocyanate groups (NCO) characterized by
FT-IR during the cure reaction with respect to time were recorded at different temperatures and at
constant stoichiometric ratio Rn[NCO]/n[OH] = 1.0. The kinetic parameters, i.e., activation energy (Ea),
pre-exponential factor (A), activation enthalpy (∆H) and activation entropy (∆S) were determined.
In addition, the curing process and mechanism of the HTPB-IPDI reaction are discussed.
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1. Introduction

Hydroxyl-terminated polybutadiene (HTPB) is a form of liquid telechelic rubber with different
molecular weight (approximately 1500–10,000 g·mol−1) and a high level of reactive functionality [1].
The liquid rubber possesses a unique combination of properties including a low glass transition
temperature, low temperature flexibility, high solid-loading capacity, and excellent flow ability.
They have been widely used in adhesives, coatings, sealants, medicine, as well as energetic
materials [2–6]. As a result of the dimensional stability and structural integrity inherent from the
cured polyurethane (PU) network, a HTPB-based binder system has found extensive applications in
polymer-bonded explosives (PBXs), underwater weapons, composite solid propellants, and missile
and launch vehicle technology [7–9]. The curing reaction of the polyurethane binder system which is
based on HTPB and various diisocyanates (TDI Toluene diisocyanate, IPDI Isophorone diisocyanate,
HDI Hexamethylene diisocyanate, etc.) to form a PU network (as shown in Figure 1), plays an
important role in the manufacturing process as well as the properties of final products [9–13].
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The kinetic reaction and mechanism of the cure reaction determine the physicochemical properties
and mechanical performance of the cured product [14]. Therefore, knowledge of the kinetics of
the polyurethane-curing reaction is of utmost importance for the design and preparation of specific
products possessing suitable properties [15–17].

In recent years, several publications have reported on the research of the kinetics of PU formation
through the use of viscosity buildup, ultrasonic waves, microcalorimetry, differential scanning
calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), and nuclear magnetic resonance
(NMR) measurements [18–25]. Although there are several ways to study curing kinetics, FT-IR is
known as a very rapid and reliable method well suited for monitoring the curing process of the
PU formation. Such a test can reveal the extent of functional groups (such as the NCO group)
consumption and during the cure reaction [21–25]. In this work, FT-IR measurement is applied to
study the cure reaction of HTPB and IPDI with stannous isooctoate (TECH) as a catalyst. Through the
study of the PU formation kinetics, an insight into the curing reaction may be obtained. In addition,
the kinetic parameters, i.e., the pre-exponential factor (A), rate constant (k), activation energy (Ea),
activation enthalpy (∆H), and activation entropy (∆S) for the cure reaction are calculated.
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Figure 1. Schematic diagram of polyurethane network formation from HTPB and IPDI.

2. Materials and Methods

2.1. Materials

Hydroxyl-terminated polybutadiene (HTPB, number-average molecular weight = 2700, hydroxyl
value = 45.2 mg KOH/g) was obtained from Liming Research Institute of Chemical Industry (Luoyang,
China). Curing agent, isophorone diisocyanate (IPDI) was supplied by Bayer (Leverkusen, Germany).
Catalyst, stannous isooctoate (TECH) was purchased from Sinopharm Chemical Reagent (Shanghai,
China). Potassium bromide (KBr) was delivered by Merck (Darmstadt, Germany).

HTPB was dried under vacuum at 105 ◦C for 2 h then put under a nitrogen atmosphere before
use. Other materials were used as received.
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2.2. Sample Preparation

HTPB and IPDI were precisely weighed with a stoichiometric ratio Rn[NCO]/n[OH] = 1.0 then
mixed for 2 min at high-speed stirring (2500 rpm) by a mechanical stirrer. At the beginning of the
blending process, the corresponding amount of catalyst TECH was added to the system. The materials
were mixed at room temperature and the concentration of the catalyst used in the binder system was
0.1 wt %. Having thoroughly blended all reactants, samples were prepared for immediate kinetic
measurement. The polymerization reaction was performed not in anhydrous conditions and not under
nitrogen atmosphere.

2.3. Fourier-Transform Infrared (FT-IR) Spectroscopy Analysis

The curing reaction between HTPB and IPDI was investigated by measuring the changes of the
characteristic peaks of isocyanate groups (~2260 cm−1) in the FT-IR spectroscopy. The infrared spectra
of the samples were analyzed by a Perkin Elmer 100 Spectrometer (Waltham, MA, USA). Measurements
were carried out by the transmittance mode in the range of 4000–400 cm−1. Approximately 60 mg of
crystalline KBr was pressed into a wafer with a diameter of 1.3 cm by exerting a pressure of 25 MPa
for 1 min. A tiny drop of the binder mixture was coated between two KBr windows right after the
sample was prepared. The samples measured in the FT-IR test were kept in a vacuum oven. The preset
temperature was in the range of 35–75 ◦C with an accuracy of ±0.1 ◦C. The oven was located close to
the FTIR Spectrometer to minimize thermal transients during the handling of the FT-IR wafer. The cure
reaction was monitored by testing the infrared spectra of the sample at appropriate time intervals with
respect to the reaction temperature.

3. Results and Discussion

3.1. Determination of the Reaction Rate Constants

The FT-IR spectra versus the time of the HTPB-IPDI curing reaction at 75 ◦C in the presence of
TECH (0.1 wt %) as catalyst is shown in Figure 2.
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Figure 2. FT-IR spectra versus time of HTPB-IPDI reaction at 75 ◦C with TECH (0.1 wt %) as catalyst.

From the spectra, one can find that, as the reaction proceeded, the intensity of the characteristic
peaks around 2260 cm−1 (NCO stretching) decreased and ultimately disappeared once the reaction was
totally completed while the C=C stretching bands around 1640 cm−1 remained practically unaltered.
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A new characteristic absorption peak in the unique range of 1710–1760 cm−1 was attributed to the
C=O stretching vibration, which confirmed the formation of the polyurethane group during the cure
reaction [25]. To ensure that the quantitative results were independent of the thickness of the sample
between two KBr wafers, the change in the intensity of the NCO stretching band of IPDI at 2260 cm−1

was monitored and divided by the intensity of the reference band at 1640 cm−1 for the C=C stretching
in HTPB [21]. According to the Lambert-Beer law, a given peak area is directly proportional to the
reagent concentration. Thus, the conversion of NCO can be derived from the FT-IR spectra recorded as
a function of time, which can be calculated from the FT-IR data as [25]:

PNCO =

(
C2260
C1640

)
T=0

−
(

C2260
C1640

)
T= t(

C2260
C1640

)
T=0

(1)

where PNCO represents the conversion of isocyanate groups, C represents the absorbance values at
2260 cm−1/1640 cm−1 in the FT-IR spectra, and the subscripts of 0 and t denote reaction times.

The rate constant for the PU formation between HTPB and IPDI was obtained from the slope of
the straight line by plotting the P/(1 − P) versus time according to the following equation [26]:

PNCO

1 − PNCO
= k t (2)

where PNCO is the conversion of NCO group, k is the rate constant, t is the curing time.
Five different temperatures (from 35 ◦C to 75 ◦C) were conducted to calculate the kinetic

parameters of the curing reaction, as shown in Figure 3.
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Figure 3. The plot of P/(1 − P) versus time at various curing temperatures for the HTPB-IPDI
binder system.

Clearly, the profile of the cure reaction of the HTPB-IPDI binder system showed a discontinuity at
each temperature. Two steps were featured, which included a faster initial step (i.e., Step 1 with a rate
constant k1) and a slower consecutive step (i.e., Step 2 with a rate constant k2). The corresponding data
for both steps are listed in Table 1.
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Table 1. Rate constants for the polymerization of HTPB-IPDI system at different isothermal curing
temperatures in the presence of TECH (0.1 wt %) as catalyst.

T (◦C) k1·103 (min−1) R-Square k2·103 (min−1) R-Square k1(T)/k1(35) k2(T)/k2(35) k1/k2

35 0.1503 0.9764 0.0519 0.9948 1.00 1.00 2.89
45 0.2871 0.9960 0.1356 0.9791 1.91 2.61 2.12
55 0.4850 0.9890 0.2338 0.9761 3.23 4.50 2.07
65 0.7177 0.9668 0.3578 0.9948 4.77 6.89 2.01
75 1.2300 0.9482 0.6618 0.9962 8.18 12.74 1.86

T = Curing Temperature; k1, k2 = rate constant for step 1 and step 2 from FT-IR measurement.

The differences in the rate constants in different steps indicate that the polymerization between
HTPB and IPDI obeyed second-order kinetics. Notably, both constants (k1, k2) increase with the
increase of curing temperature from 35 ◦C to 75 ◦C.

On the other hand, the ratio of k1/k2 showed a decreasing trend as the temperature increased,
from 2.89 (35 ◦C) decreased to 1.86 (75 ◦C). This result is similar to Lucio’s research [14], in the presence
of (ferrocenylbutyl) dimethylsilane, the ratio of k1/k2 for HTPB-IPDI system decreased from 2.39
(50 ◦C) to 1.60 (80 ◦C). From the ratio of k1(T)/k1(35) and k2(T)/k2(35), the catalytic effect in Step 2 was
pronounced than that of Step 1 with the an increase in curing temperature. For example, the value of
k1(75)/k1(35) was 8.18, whereas k2(75)/k2(35) was 12.74. The results indicate that k2 was more sensitive to
the curing reaction temperature in the presence of catalyst TECH. In other words, when the curing
temperature increased, k2 increased higher than k1. This behavior may have been attributable to
the catalytic activity of the organometallic compound (such as TECH) on the different NCO groups
(such as primary NCO and secondary NCO) which was not identical. The addition of this type of
catalyst may have expanded the disparity of the reactivity of the non-equivalence NCO groups in the
asymmetric diisocyanates (such as IPDI and TDI) and, consequently, the rate constants of the two steps
in the cure reaction were different. In the previous literature, similar behavior was also observed by
Burel, whose research involved an analogous system in the presence of dibutyltin dilaurate (DBTDL)
as catalyst [23].

3.2. Kinetic Studies by FT-IR Measurements

The thermodynamic parameters, such as pre-exponential factor (A), activation energy (Ea),
activation entropy (∆S), and activation enthalpy (∆H), were determined from the Arrhenius equation
and Eyring equation:

ln k = − Ea

RT
+ ln A (3)

ln
k
T

= −∆H
RT

+
∆S
R

+ ln
R

Nh
(4)

where k is the reaction constant, T is the curing temperature (K), R is the universal gas constant
(R = 8.314 J·mol−1·K−1), N is Avogadro constant (N = 6.022 × 1023 mol−1) and, h is Planck constant
(h = 6.626 × 10−34 J·s).

From the Arrhenius plot (Figure 4a), the activation energy (Ea) and pre-exponential factor (A) are
computed with a first-order liner fitting. A similar evaluation of the kinetic data in the Eyring plot
(Figure 4b) was adopted to obtain the value of activation entropy (∆S) and activation enthalpy (∆H).
The values of A, Ea, ∆S, and ∆H are computed and listed in Table 2.

Table 2. Thermodynamic parameters for the reaction of HTPB-IPDI system.

Ea1 Ea2 A1 A2 ∆H1 ∆H2 ∆S1 ∆S2

(kJ·mol−1) (L·mol−1·min−1) (kJ·mol−1) (J·mol−1·K−1)

45.80 54.23 8854 92,745 43.01 53.51 −178.44 −158.91
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Figure 4. Arrhenius and Eyring plots for the curing reaction between HTPB and IPDI.

As seen in Table 2, the activation energy of Ea1 (45.80 kJ·mol−1) was lower than Ea2 (54.23 kJ·mol−1),
relating to its faster urethane reaction rate k1 which was much higher than k2. The pre-exponential factor
(also called frequency factor) for Step 1 was approximately A1 = 8854, and A2 = 92,745 for the Step 2.
One explanation may have been the kinetic control mechanism which caused the cure reaction between
IPDI and HTPB in the initial step (Step 1); concurrently in the subsequent step (Step 2), the reaction was
largely governed by a diffusion process [24].

As seen in Table 2, the activation enthalpy was found to be 43.01 kJ·mol−1(∆H1) and
51.51 kJ·mol−1(∆H2). The activation entropy for the Step 1 was about ∆S1= −178.44 J·mol−1·K−1,
and ∆S2 = −158.91 J·mol−1·K−1 for the Step 2. Clearly, activation enthalpy and entropy values are
useful to reveal the mechanism. In transition-state theory, activation entropy is usually considered as the
degree of disorder in the reaction system [27]. Large negative values of the activation entropy indicate
that energy must be partitioned into a lesser state at the transition-state, which illustrates an associative
mechanism [28]. In comparison to the activation entropy values of the two steps, a larger negative value
of ∆S1 was found, which was related to the easier formation of the transition state.

3.3. Analysis of Curing Mechanism of HTPB-IPDI Binder System

To understand the causes of the two-step phenomenon which occurred during the curing reaction
between HTPB and IPDI, two aspects need to be analyzed. Firstly, one must consider the chemical
structures of the HTPB and IPDI used in the experiment. Generally, a HTPB microstructure comprises
of approximately 60% trans-1,4-structure, 20% cis-1,4-structure and 20% vinyl-1,2-structure [1]. In theory,
the reactivity of OH groups in HTPB should be different. However, thanks to the relatively large
molecular weight, the reactivity of all OH groups in HTPB were largely similar and were not likely
to cause significant differences in reaction rates. The other reactant of the curing system was IPDI,
which possesses two asymmetric NCO groups, as shown in Figure 5a. The commercial IPDI usually
contains a ratio of 25%~30% trans-isomer and 70%~75% cis-isomer, thus, there are two non-equivalent
NCO groups were in four unequal positions [29], as shown in Figure 5b.

As a result, only the structure of IPDI, the eight different products, and eight rate constants
needed be considered. It is obviously that the PU formation of IPDI and HTPB was too complex to
analyze if no assumptions were made to simplify the reaction system [14]. Fortunately, according to
the study of Rochery, the main position of secondary NCO group was in the horizontal direction,
therefore, the major isomer of IPDI was cis-horizontal-NCOsec, as shown in Figure 5b with ellipses [29].
The relative reactivity of NCO groups in IPDI could be simplified and attention was focused on the
difference in activity between primary NCO and secondary NCO. As a result of the larger steric effect
of the cyclohexane ring and a-substituted methyl, the reactivity of primary NCO was much lower than
secondary NCO.
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On the other hand, it was important to interpret all the reactions including simultaneous and
competitive reactions which occurred during the two steps. From the experimental phenomenon and
the simplified assumptions of HTPB and IPDI, we proposed the reaction mechanism of HTPB-IPDI
binder system, as shown in Figure 6. There were two main steps in the curing process of HTPB-IPDI
binder system. In Step 1, two moles of secondary NCO groups in IPDI reacted with two OH groups
in one mole HTPB. At the beginning of the curing reaction, the rate constant k1 was relatively large,
mainly caused by kinetic control mechanism. In Step 2, the primary NCO groups in IPDI reacted with
OH groups in HTPB and formed a three-dimensional network structure polyurethane, given the rate
constant k2 in this step is relatively small.
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4. Conclusions

In this work, FT-IR was applied to monitor the cure reaction of HTPB and IPDI with TECH used as a
catalyst. The presence of two steps in the polyurethane formation was clearly observed, the rate constant
was different in the first and second steps in all curing temperatures. Since experimental results showed
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two broken lines, accordingly, all the other results are followed this trend. Other kinetic parameters,
such as activation energy (Ea), activation entropy (∆S), and activation enthalpy (∆H), were determined
from the Arrhenius formula and Eyring equation. All parameters had two values, with each standing for
different steps of the curing reaction. This phenomenon was largely attributable to the two asymmetric
isocyanate groups in IPDI, which was expected to lead to two different polymerization rates.
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