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Abstract: The accurate real-time monitoring of surface or internal temperatures of thermal barrier
coatings (TBCs) in hostile environments presents significant benefits to the efficient and safe operation
of gas turbines. A new method for fabricating high-temperature K-type thermocouple sensors on
gas turbine engines using coaxial laser cladding technology has been developed. The deposition of
the thermocouple sensors was optimized to provide minimal intrusive features to the TBC, which is
beneficial for the operational reliability of the protective coatings. Notably, this avoids a melt pool
on the TBC surface. Sensors were deposited onto standard yttria-stabilized zirconia (7–8 wt % YSZ)
coated substrates; subsequently, they were embedded with second YSZ layers by the Atmospheric
Plasma Spray (APS) process. Morphology of cladded thermocouples before and after embedding
was optimized in terms of topography and internal homogeneity, respectively. The dimensions of
the cladded thermocouple were in the order of 200 microns in thickness and width. The thermal
and electrical response of the cladded thermocouple was tested before and after embedding in
temperatures ranging from ambient to approximately 450 ◦C in a furnace. Seebeck coefficients of
bared and embedded thermocouples were also calculated correspondingly, and the results were
compared to that of a commercial standard K-type thermocouple, which demonstrates that laser
cladding is a prospective technology for manufacturing microsensors on the surface of or even
embedded into functional coatings.

Keywords: laser cladding; thermocouple sensor; laser cladded sensors; Seebeck coefficient; minimal
heat affected zone (HAZ); thermal barrier coatings (TBCs)

1. Introduction

An increase in the combustion temperatures in gas turbine engines can satisfy demands for higher
efficiency. As a result, thermal barrier coatings (TBCs) are widely used in gas turbine engines as well
as in diesel engines for power generation to protect the superalloy substrate from high temperatures,
corrosion, and oxidation [1–3]. However, exploiting the full range of allowable engine operating
temperatures while avoiding any risk of overheating its components requires accurate knowledge of
the turbine blade temperature. Therefore, effective monitoring and diagnosis in such harsh operating
conditions is of critical importance. If critical operating conditions could be continuously monitored
in real-time, problems could be detected and solved during the processing cycle. So-called “smart”
coatings generally are intended to add functionalities beyond their main purpose or to be able to
adopt to certain stimuli [4]. In the context of gas turbines, “smart” coatings were proposed for in situ
monitoring during the operation of turbine blades to better control the surrounding environment as
well as enable the design of coatings with appropriate structures [5].
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To date, several technologies have been proposed for the manufacture of smart coatings.
Fasching et al. [5] produced thermocouples using a mask-based wire arc deposition process that
yielded Seebeck coefficients reasonably close to those of commercial devices; these thermocouples were
tested up to 200 ◦C, the feature sizes of which were in the order of 200 µm. The fabrication of thin-film
thermocouple sensors or strain gauge sensors was demonstrated by applying stenciled shadow masks
or a photolithography technique combined with chemical etching during a sputter-deposition process
in a class 1000 clean room [6,7]. Both Theophilou et al. [8] and Longtin et al. [9] suggested the
manufacture of sensors using a traditional thermal spray process which employed masks to pattern
the device or by subsequent laser micromachining. Recently, thermal spray techniques, in conjunction
with a novel multistage aperture-collimator system, made it possible to deposit sensors with tracks
at dimensions of 200 µm directly onto the surface and to be embedded into TBCs, which could
survive in harsh environments [10,11]. However, all of the above-mentioned technologies have
noticeable disadvantages; all are time-consuming because of either the application of masks or the
vacuum-deposition conditions or have an extreme low efficiency of deposition.

In the current study, laser cladding is introduced as an alternative process for the manufacture of
smart coatings in gas turbine application; however, this process requires several changes to typical
conditions. In general, laser cladding is a well-established industrial technology, which utilizes a
focused or defocused laser beam as a heat source to join two similar or different materials [12]. A small
volume at the surface level of the substrate is molten and materials are added to the melt in the
form of powders or wires to create a new layer of fused material. Laser cladding is used for a large
variety of applications and materials, comprising polymers as well as alloys and ceramics for use at
high temperature. Current trends of laser cladding with respect to turbine application include the
manufacture of multifunctional protective coatings for the modification of surface properties, such as
wear and corrosion resistance, abrasion and thermal resistance, or the repair of critical components
with a laser beam [13–16]. Given high-speed cladding and the characteristics of rapid solidification
processes, structures homogeneous in terms of low porosity and the absence of cracks may be obtained
on the surface of work pieces [17,18].

Unlike the traditional cladding process, the deposition of metal tracks to form a sensor, e.g.,
a thermocouple on turbine components coated with atmospheric plasma-sprayed (APS) TBC, needs
to be as minimally intrusive to the substrate as possible. The heterogeneous microstructure of the
porous ceramic typically is optimized for low-thermal conductivity and high-strain tolerance to
achieve improved thermal protection capabilities and thermal shock resistance. Any densification
or cracking induced on melting and resolidification during the cladding process would result in a
reduced spallation lifetime of the coating under thermomechanical loads imposed in operation [19].
Therefore, the aim of the current study is to adapt process conditions in laser cladding in a way that,
during deposition of a small-scale metallic track, the microstructure of the porous YSZ (yttria-stabilized
zirconia) substrate does not deteriorate or partly melt; it also aims to demonstrate sensor functions of
such structures after they are embedded into the ceramic TBC. Several advantages are coupled with
this route of manufacture, as it requires neither vacuum processing nor the applications of masks.

Process parameters such as laser power, focus diameter, scan velocity, and powder feeding rate
were varied during micro cladding to reduce the heat load towards the ceramic substrate while ensuring
the melting of feedstock for the formation of continuous clads. In a preliminary set of experiments,
the feasibility of using a defocused laser beam and limited power densities was evaluated. In a second
step, optimized clads were achieved through the use of increased powder feeding rates. Feature sizes of
clads and the microstructure of the substrate were characterized by confocal laser scanning microscopy
and metallographic analysis. K-type thermocouple sensors, fabricated with optimized setup on a
thermally sprayed YSZ layer, were embedded into the TBC structure by subsequent deposition of an
additional ceramic layer. The resistance of the cladded thermocouple was measured and compared to
that of the commercial standard K-type thermocouples. The thermal and electrical performance of the
manufactured thermocouple sensor was also evaluated and characterized at high temperatures.
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2. Experimental

Metal sheets from Inconel 738 or aluminum with a 200 µm thick layer of atmospheric plasma
sprayed 7–8 wt % YSZ (yttria stabilized zirconia) were used as substrates for laser cladding,
the dimensions of which were approximately 50 × 50 × 3 mm3. The porosity of the TBC coatings
was approximately 18%, as determined by the mercury intrusion method. Substrates were cleaned in
ethanol and dried with compressed air before deposition of sensor structures.

Gas-atomized powders of alumel and chromel, suitable to form a K-type thermocouple, were used
as feedstock for laser cladding in this study (Sandvik Osprey, Neath, UK). The chemical compositions
are listed in Table 1. The particle diameter for the alumel powder was in the range of 2.6–20 µm with a
median particle size of 7.4 µm. The particle diameter of the chromel powder ranged from 3.5 to 35 µm,
with a median particle size of 12.1 µm. Before cladding, both powders were dried in an oven at 150 ◦C
for 24 h to prevent clogging of the powders.

Table 1. Elemental composition of powders (by weight, wt %).

Powder Ni Al Mn Si Cr

alumel Balance 1.9 2.3 1.3 –
chromel Balance – – – 9.8

The cladding experiments were carried out using a multi-axis computerized numerical-controlled
(CNC) system, TruLaser Cell 3008 (Trumpf, Ditzingen, Germany), equipped with a Nd:YAG fiber laser
TruFiber 400 (400 W, λ = 1.064 µm). A modified powder feeder (Oerlikon Metco, Wohlen, Switzerland)
was utilized for powder supply, with argon as the carrier gas. The cladding powders, delivered at a
given mass flow rate, were injected into the laser spot onto the ceramic substrate through a coaxial
jet-nozzle Coax 8 (ILT, Aachen, Germany), as shown in Figure 1. Additionally, the inner zone of the
nozzle had been purged by argon as a shielding gas. The working distance of the powder nozzle was
fixed at 7 mm to the substrate surface to utilize the minimum spot size of the powder feed of about
200 µm.
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Figure 1. Schematic of laser cladding process.

Two sets of experiments were performed for the identification of suitable process parameters in
laser deposition. In a first set of experiments, laser cladding of alumel feedstock was carried out by
varying the laser power (PL) from 50 to 110 W while keeping the spot size (diameter dS), the scanning
speed (vS), the powder feeding rate (f F), the carrier gas rate (f C), and the protective gas rate (f P)
constant, which were dS = 984 µm, vS = 400 mm/min, f F = 1.7 g/min, f C = 10 L/min, and f P = 10 L/min,
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respectively. In a second set of experiments, laser cladding of both alumel and chromel feedstock was
carried out by varying the powder feeding rate (f F) in the range of 6.6–13.2 g/min while keeping the
spot size, the scanning speed, the laser power, the carrier gas rate, and the protective gas rate constant,
which were dS = 156 µm, vS = 1000 mm/min, PL = 15 W, f C = 10 L/min, and f P = 10 L/min, respectively.

The macroscopic morphology of the clads was examined under a stereo microscope (Olympus,
Tokyo, Japan). The microstructure of tracks was characterized under a confocal laser microscope
(Keyence, Osaka, Japan), after metallographic cross sectioning. The dimensions of cladded tracks
were determined by means of a Cyberscan topographer (CyberTECHNOLOGIES GmbH, Dietersheim,
Germany) and estimated from cross sections. The resistivity for cladded tracks was estimated by a
self-assembled, direct-current, four probe tester prior to any occasional sectioning.

K-type thermocouples were fabricated in the shape of a cross under optimized parameters
onto a 30 × 40 × 3.5 mm3 aluminum substrate that had been previously coated with 200 µm of
APS-sprayed TBC (8YSZ). Subsequently, the crossed thermolegs were covered by a second thermally
sprayed YSZ layer. Easily accessible electrical junctions were conserved by masking the bared tips
with a metallic steel sheet while spraying. For the evaluation of the thermo-electric coefficient of
the cladded thermocouple before and after embedding with a second ceramic layer, the thermal
and electrical response was measured at elevated temperatures. Figure 2 shows a photo of the
specimen, with a sketch of the external set-up for the measurement. To realize the electrical contact,
the negative leg of alumel and positive leg of chromel were mechanically attached to NiAl and
NiCr compensation wires, respectively. Fixation was induced by metallic clips for pressure and a
piece of glass for insulation. The entire setup was placed inside a furnace while the other sides of
the compensation wires were externally connected to a data acquisition device accompanied by a
transducer. A commercial K-type thermocouple was also mounted on top of the cladded thermocouple
junction area for comparison to monitor the true sample temperature during the oven test; it was
also connected to the data collection device. The sample was placed inside the furnace with 5 K/min
heating rate under an argon protective gas atmosphere. The voltage and temperatures across the
junction were recorded over a temperature range from ambient to 450 ◦C. Temperature was limited to
prevent damage to the aluminium substrate or the materials used for contacting the thermocouple.
In future application scenarios, the electrical contact could presumably be achieved at cold positions
of the components, e.g., the fir-tree section of a turbine blade.
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3. Results and Discussion

3.1. Deterioration of Porous YSZ Substrate on Cladding with Defocused Laser Beam and Limited
Power Densities

In the first set of experiments conducted with the alumel feedstock, a defocused laser beam was
applied to increase the time of flight of the particles within the laser beam and thereby to increase the
energy absorbed by the metal particles. At the same time, the spreading of the melt formed on the
surface to reduce the height of tracks was fostered as a larger area was heated.

Based on Equation (1):

P × t = F × t × [cp × (Tm − TRT) + Hfusion] (1)

where P is the necessary power, t is the cladding time, F is the powder feeding rate, cp is the specific
heat capacity, Tm is the melting temperature, TRT is the room temperature, and Hfusion is the latent
heat of fusion, i.e., the energy necessary to achieve complete melting can be estimated to about 1 kJ/g
(cp = 0.53 J/g·K, Hfusion = 300 J/g, Tm = 1399 ◦C). Considering some fraction of laser light reflected
and scattered by the metal particles, the lowest power of the laser was chosen at 50 W to achieve
full melting of the supplied feedstock, which had been fed at the minimum stable rate (1.7 g/min).
At the same time, melting of the substrate was not expected owing to the much higher energy necessary
to melt YSZ (roughly 2 kJ/g) and the much smaller coefficient of absorption at the laser wavelength,
which was found in the order of only 0.1 cm−1 for plasma-sprayed TBCs [20].

The morphology of the tracks manufactured with the defocused laser is shown in Figures 3 and 4.
From the top view in Figure 3, it can be seen that beads significantly larger than the original particles
were observed, with powers at 50–100 W. This indicates that a larger fraction of feedstock particles
were heated well above the melting temperature, which allowed them to fuse together. The size of the
bead heads had a tendency to become smaller when the laser power increased; additionally, the clad
surface became quite smooth and continuous when the power was increased to 110 W. This may
be correlated to a further increase of the steadily molten volume, which allowed for spreading and
coalescence of the beads. The latter hypothesis is also supported by the behavior of the apparent track
width as a function of the laser power, as illustrated in Figure 5. The track width displayed a strong
dependence on the laser power and increased from 1.0 to 1.7 mm because of increased energy input
per unit length when the laser power was increased. Notably, the track width at increased laser power
exceeded the width of the laser spot, which also supports the conclusion of the spreading of melt.
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The resistivity of cladded alumel tracks was roughly estimated from the outer dimensions of
clads and their measured resistance. Results showed that only the thermoleg produced with 50 W
was conductive, despite a wavy surface morphology. The resistivity of this track in Figure 3a was
approximately 1.8 µΩ·m. This much larger than the reported value 0.294 µΩ·m [21], which indicates
that the track was either inhomogeneous in terms of cross-sectional areas or defects and impurities at
the grain boundaries of the bulk material may have reduced conductivity.

To identify the mechanisms which lead to either a conductive or non-conductive state, cross sections
of the above deposited tracks along the cladding directions were prepared and investigated by a laser
microscope. Corresponding micrographs are given in Figure 4, which clearly indicate gaps between the
beads, causing the inhibition of electrical currents. Additionally, the increase of the laser power not only
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increased the width of the tracks but also elongated the beads in the direction of cladding and the length of
intercepting gaps. Reasons for the conductivity of the first track may be the slight contact of the big beads
and small-sized, non-coalesced particles. The beads in Figure 4b,c were discontinuous, causing these two
tracks to be non-conductive. The track in Figure 4c even began to be buried by the YSZ coating. The last
track in Figure 4d was totally buried and discontinuous, which made this track non-conductive.

Figure 4 also clearly demonstrates that, with an increase of laser power, the influence to the
substrate increased correspondingly. The tracks began to penetrate the insulating YSZ coatings and
were even buried within them. The higher the laser power was, the deeper the tracks penetrated,
and, accordingly, more cracks emerged within the YSZ layers. Even horizontal cracks and partial
delaminations were observed. Clearly, the upper part of YSZ coatings became dense (Figure 4b–d),
which implied that the melting and re-solidification of YSZ layers took place as a result of excessive
energy input per unit length. As the melting temperature of YSZ is very close to the boiling temperature
of the metal feedstock (boiling point of pure nickel is 2730 ◦C), it seems unreasonable that conductive
heat transfer from the metal clad, which requires a considerable thermal gradient and thermal
conductivity, would cause the observed extent of the heat-affected zone (HAZ).

On the one hand, YSZ in a dense or nanocrystalline morphology is known to have a low coefficient
of absorption at the wavelength of the used laser source [22]. This was also observed in the current
study for the layer on top of the buried track in Figure 4d. On the other hand, this cannot be considered
equivalent to transparency in general. In studies of the optical properties of plasma-sprayed YSZ in
the near infrared (NIR) and long wave infrared (LWIR) range, which are also important for radiative
heat transfer in turbine application, it has been shown that, depending on the fraction and morphology
of pores, the reflectivity of the TBCs reaches values close to 1 [20,23,24]. Accordingly, laser radiation is
not able to dissipate in the depth of the porous substrate but is reflected back to the powder stream.
This might result in a multiple forward and backward scattering effect, which effectively causes
increased absorption of energy both in the powder and surface near volumes of the porous coating.

3.2. Sensor Structures Manufactured with Increased Powder Feeding Rates

Following the hypothesis derived from the first set of experiments, a different approach to limit
the heat load to the substrate was chosen in the second set. By increasing the powder feed rate,
the fraction of laser intensity reaching the substrate level was reduced due to absorption and reflection
from the increased number of feedstock particles [25,26]. Additionally, the focus position of the laser
beam was changed to achieve a reduced spot size of 156 µm in diameter because the minimal bead
width was determined by the spot size on the substrate, and clads with reduced dimensions were
desired. Finally, the laser power was set to its minimum level of 15 W, and the scanning speed was
increased to 1000 mm/min to partly compensate for the reduced irradiated surface area.

Photographs of clads deposited with substrate shadowing resulting from high powder feed rates
of chromel and alumel, respectively, are shown in Figure 6. Although an avoidance of the formation
of a melt pool on the substrate level was desired and the laser power was no longer sufficient to
melt the complete amount of feedstock, continuous clads were formed. The latter clearly indicates
that the energy absorption was confined to the central overlap of powder, and laser focus and the
dissipation of energy as a result of scattering was limited. When the chromel powder feeding rate was
higher than 6.9 g/min, detached tracks could be recognized by shadows observed in Figure 6(1–4).
Similarly, detachment of the alumel clads was observed at powder feeding rates higher than 8.9 g/min
(Figure 6(5–7)). This indicates that the formation of a melt pool at the level of the zirconia surface was
completely avoided. To prevent bonding problems, the powder feeding rates of 6.9 and 8.9 g/min
for chromel and alumel, respectively, were chosen as optimized parameters for the manufacture of
thermocouple sensors.
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Figure 6. Stereo micrograph of cladded tracks: (1–4) chromel feedstock; (5–7) alumel feedstock.
PL = 15 W, vS = 1000 mm/min, dS = 156 µm, f C = f P = 10 L/min. (1) f F = 8.1 g/min; (2) f F = 7.5 g/min;
(3) f F = 6.5 g/min; (4) f F = 6.9 g/min; (5) f F = 8.9 g/min; (6) f F = 11.9 g/min; (7) f F = 10.4 g/min.

Minimal interference of cladded thermocouple to thermal barrier coatings was desired to keep
the original performance of the coatings. Therefore, cross sections of the optimized chromel and
alumel tracks were analyzed under a laser microscope and are given in Figure 7. Clearly, no apparent
effect occurred at the interface between the YSZ substrate and cladded tracks following the laser
cladding process. The resistivity of optimized tracks was examined on the basis of averaged outer
dimensions of clads and resistance measured by Four Probe testing. The deduced values of specific
resistivity, given in Table 2, are in close agreement with reported bulk resistivity values [21]. Therefore,
a close-to-homogeneous track geometry with negligible waists can be stated. This is also supported by
the microstructural analysis of clads, showing incidental waists only in case of the alumel thermoleg
(Figure 7).

Coatings 2018, 8, x FOR PEER REVIEW  8 of 11 

 

 
Figure 6. Stereo micrograph of cladded tracks: (1–4) chromel feedstock; (5–7) alumel feedstock.  
PL = 15 W, vS = 1000 mm/min, dS = 156 μm, fC = fP = 10 L/min. (1) fF = 8.1 g/min; (2) fF = 7.5 g/min;  
(3) fF = 6.5 g/min; (4) fF = 6.9 g/min; (5) fF = 8.9 g/min; (6) fF = 11.9 g/min; (7) fF = 10.4 g/min. 

Minimal interference of cladded thermocouple to thermal barrier coatings was desired to keep 
the original performance of the coatings. Therefore, cross sections of the optimized chromel and 
alumel tracks were analyzed under a laser microscope and are given in Figure 7. Clearly, no 
apparent effect occurred at the interface between the YSZ substrate and cladded tracks following the 
laser cladding process. The resistivity of optimized tracks was examined on the basis of averaged 
outer dimensions of clads and resistance measured by Four Probe testing. The deduced values of 
specific resistivity, given in Table 2, are in close agreement with reported bulk resistivity values [21]. 
Therefore, a close-to-homogeneous track geometry with negligible waists can be stated. This is also 
supported by the microstructural analysis of clads, showing incidental waists only in case of the 
alumel thermoleg (Figure 7). 

 

 
Figure 7. Cross sectional micrographs for optimized tracks: (a) chromel; (b) alumel. 

Table 2. Experimental and nominal resistivity of type K thermocouple.  

Source 
Resistivity (µ·m) 
Alumel Chromel 

Experiment 0.64 0.776 
Reported [21] 0.29–0.33 0.706 
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Table 2. Experimental and nominal resistivity of K-type thermocouple.

Source
Resistivity (µΩ·m)

Alumel Chromel

Experiment 0.64 0.776
Reported [21] 0.29–0.33 0.706
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Figure 2 shows a photo of an embedded thermocouple and a schematic of the set-up used for
collecting temperature signals. The topographies of the cladded thermolegs were analyzed by a
Cyberscan topographer before and after embedding with the additional TBC layer. Figure 8 gives a top
view of the bare laser-cladded thermocouple (a) as well as the thermocouple which had been covered
with a layer of YSZ of 50 µm thickness to demonstrate the ability to embed such sensors underneath
functional coatings (b). The area scanned with the topographer was restricted to the area where tracks
were deposited. The area which had been covered by a second layer of TBC is marked by a blue
dashed box. The scales on the right side reveal the height information of the layers. The dimensions
were measured giving 184 ± 5 µm in height and 305 ± 2 µm in width for alumel and 211 ± 3 µm in
height and 191 ± 5 µm in width for chromel, respectively. The average roughness was also measured
to 10 ± 2 µm for alumel and 9 ± 2 µm for chromel, respectively.
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Figure 8. Topography of the cladded K-type thermocouple (a) before and (b) after embedding.

The thermocouple voltage versus temperature data before and after embedding was analyzed as
shown in Figure 9. It was determined that the cladded thermocouple had a nearly linear relationship
between the thermoelectric output voltage and the temperature within the experimental temperature
range (Figure 9a). The Seebeck coefficient of the cladded thermocouple before embedding was estimated
as 41.2 µV/K, with a regression factor of 0.9999 by a linear fit. Similarly, the Seebeck coefficient of this
thermocouple after embedding was about 40.9 µV/K within the measurement error, with a regression
factor of 0.99 by a linear fit. There was a delayed response of the embedded thermocouple at the beginning
in Figure 9b. This was likely caused by the much lower thermal conductivity of the YSZ layer which
caused a delayed temperature increase on the experimental non-steady state conditions. In both cases,
the laser-cladded thermocouple yielded a response comparable to the commercial K-type thermocouple
and similar to the results reported in Marshall et al. [27]. In conclusion, the fabricated thermocouple
possessed high reproducibility during operation before and after embedding.
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Figure 9. Voltage response of cladded K-type thermocouple from ambient temperature to 450 ◦C
(a) before and (b) after embedding.
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4. Summary and Conclusions

Laser cladding technology has been successfully adopted to produce K-type thermocouple sensors
without either vacuum processing or mask application and, simultaneously, with minimal influence
to the substrate and small feature sizes (100–200 µm). Excellent performance of a cladded K-type
thermocouple was confirmed when compared to a commercial K-type thermocouple at temperatures
up to 450 ◦C. Thus, sensors can be directly deposited onto the surface of or even embedded within
functional coatings to create a sensor system that can survive in certain thermal environments.
The embedded nature of cladded thermocouples also allows temperature measurement at various
depths in the TBC material system; this reveals a new field of application for laser cladding technology.
Accordingly, laser cladding is a promising process to deposit in situ thermocouples or other sensors,
e.g., strain gauges, to realize the real-time temperature or stress monitoring in operation environments.
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