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Abstract: Today, authorities responsible for the operation of highways aim to provide comfort
to road users as well as safety while driving. While driving, the most important component that
determines comfort for road users is the pavement. The relative effects of various surface distress
types in bituminous, hot mixed asphalt pavements on the International Roughness Index (IRI)
component—used to evaluate the present performance, and hence the comfort, of pavements—are
determined in this study. The presence of only one type of surface distress is very difficult to achieve
in practice, especially in regards to pavements where a high degree of deterioration is observed.
The presence of different types of surface distress in road pavements, due to similar problems in very
close positions and even in nested forms, makes it difficult to assess this issue. The relationships
between surface distress and IRI have been modelled to overcome this challenge. To this end,
the Multivariate Adaptive Regression Splines (MARS) modelling approach, which is very successful
in investigating the relationships between a large number of independent variables and dependent
variables, has been used. The sensitivities of the surface distress inputs are evaluated singularly by
means of a model with 29 input variables calibrated using the pavement distress data collected in
3295 highway pavement sections. As a result of this analysis, the sensitivity of surface distress inputs
collected, as an area, has been determined to have an effect on the increase in IRI. The results are
interpreted with the help of figures and tables.
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1. Introduction

Highway pavements are constantly deteriorating under the combined impacts of traffic loads
and climate. The concept of pavement performance, which is used to express the current situation
and amount of deterioration, is defined as the ability to explain the effects of deterioration on caused
by traffic and climate during the design life [1]. Pavement distress (cracks, permanent deformations,
water-induced distress, etc.) is a very important group of parameters for assessing existing service
levels. Regionally, knowledge of the relationship between surface distress and roughness seen in
pavements provides very useful information, both for the efficient operation of pavement management
systems (PMS), and in the accurate construction of required pavement design analyses.

In the literature, relationships between roughness (expressed as a value in the international
roughness index, IRI) and pavement deterioration parameters are investigated using statistic-based
modelling techniques, such as linear and nonlinear regression analyses, frequently. It is used to
evaluate distress in dozens of different types of pavements and the severity of the distress identification
guidelines used for the evaluation of pavements. Therefore, to express a dependent variable within a
large number of independent variables, this traditional method is not able to capture relationships
with the desired precision. Nowadays, there are also different modelling techniques that can provide
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meaningful results for the extreme values (high or low) of independent variables and provide complex
relationships between data stacks, which also provides practical convenience in modelling with a
large number of independent variables. Examples of these are the Artificial Neural Networks (ANN)
method, which does not require any assumption of functional distribution similarity of calibration
data, and the Multivariate Adaptive Regression Splines (MARS) method, which is similar to the partial
regression method.

The studies that model the relationship between surface distress and roughness are observed
when the literature is examined. Hozayen and Alrukaibi developed regression relationships based on
logical and statistical criteria based on the relationship between roughness, the pavement condition
ratio (PCR), cracks, rutting, and raveling [2]. Researchers have considered only three distress patterns
in response to the pavement performance indicators IRI and PCR. Al-Omari and Darter examined the
regression equations between IRI and the pavement serviceability ratio (PSR), which are performance
indicators in their studies [3]. Additionally, they investigated the relationships between IRI and rutting,
deformations, patches, and cracks (four types of distress) by their regression analysis. Therefore,
they determined that a linear relationship is formed between IRI and rutting by combining data
(making homogenized sections). Aguiar–Moya et al. [4] developed a mechanistic-empirical regression
model with IRI, longitudinal and transverse cracking, block cracking, fatigue cracking, and rutting,
as well as an independent variable for pavement age, precipitation rate, and the mix design parameters.
Five surface distress types were taken into consideration. Mactutis et al. [5] developed a linear
regression model between IRI and the mean rut depth and the crack percentage seen on an evaluated
surface. To determine the performance change in the model, the measured IRI values were used as input
variables. Sandra and Sarkar, in their study, created a linear regression model between IRI and five
types of distress, such as cracking, potholes, raveling, patching, and rutting [6]. Dependent variable
estimations were made in addition to a total of fifteen independent variables, which takes into
consideration the three different severities of the mentioned types of distress, low, medium, and high.
Therefore, it ensured that the model was able to evaluate with sensitivity, regarding the pavement
surface evaluation principles described in the distress identification manuals, while also considering
the severity levels of distress. The MARS technique, which can be used in combination with repetitive
partial fitting and curve fitting techniques from modelling techniques, is also used to investigate the
relationship between pavement performance data and surface distress data. Attoh–Okkine et al. [7],
to estimate the IRI dependent variable, developed a prediction model using six independent variables,
four of which being surface distress data, such as cracks, environmental factors, age, standard deviation
of mean rut depth, and patching.

Moreover, from recent studies, Chandrakasu and Rajiah [8] determined the relationship between
cracks and pothole distress, and IRI in roads with a low traffic volume. The linear regression technique
was used in the modelling studies and the calibration of the model, with a very high regression
coefficient (0.814), was completed. Chadra et al. developed models using regression and ANN
approaches between IRI and five types of surface distress, including rutting, cracks, potholes, patching,
and raveling [9]. Different severity levels of surface distress types are ignored. Through comparing the
estimation capabilities of the models created in the study, it was concluded that the most appropriate
method is ANN. Mahmood et al. [10] developed a model that can estimate the pavement condition
index (PCI) using long-term pavement performance data (LTPP). Cracking length, cracking area,
overlay thickness, age, and the equivalent single axle load (ESAL) data were used as independent
variables in the study. During the analysis, the relationships between dependent variables and
independent variables were investigated using deterministic and probabilistic modelling techniques.
Zhou et al., in their study [11], made evaluations using the analytic hierarchy processes (AHP) between
14 different types of surface distress and PCI. As a result of the study, three new evaluation indexes were
proposed, which can be used in practice, including the Transverse Cracking Evaluation Index (TCEI),
the Pavement Patching Condition Index (PPCI), and the Pavement Surface Distress Condition Index.
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Studies using the approach of ANN in the investigation of the relationship between surface
distress and performance are also striking. Lin et al. developed a model, using the ANN technique,
capable of IRI estimation with fourteen surface distress inputs, including the road level, left rutting,
right rutting, alligator cracking, cracking, digging/patching, potholes (mild and severe), patching,
bleeding, corrugation, stripping, and man-holes (mild and severe) [12]. The study is one of the rare
studies that used a large amount of data as input. Additionally, researchers have examined the
sensitivity of changes between IRI and each surface distress.

Moreover, regarding the development of prediction models, there are studies that take into
consideration many different parameters other than the surface distress affecting the performance of
pavement. During these studies, it was observed that artificial intelligence techniques are frequently
preferred due to the large number of independent variables and the fact that some variables cannot
be expressed with numerical values. It was seen that the ANN [13–16] and the fuzzy logic [17–19]
approaches, which are quite good for the convenient evaluation of numerical and verbal data, and the
Adaptive Neuro Fuzzy Inference System (ANFIS) [20] approach, which uses both methods together
with fuzzy logic and ANN approaches, are very frequently preferred by researchers.

While the surface condition of the pavement gives a lot of information about its current level of
performance, obtaining the data requires rather difficult field studies. Innovative approaches applied
to simplify field studies are also noteworthy in the literature. Kırbaş and Karaşahin [21] developed
prediction models that can determine the pavement condition index (PCI), which is a performance
indicator calculated with the help of the pavement surface distress data, through the vibrations that
occur in the vehicle. Lantier et al. [22] developed a method that can measure the longitudinal and
transverse direction slope, evenness, and the depth of water on the pavement surface, with a mobile
laser scanning technique. Suanpaga and Yoshikazu [23] designed a method, with the help of Phase
Array type L-band Synthetic Aperture Radar (PALSAR) images, to help determine the IRI values of
pavements. It is emphasized that field studies can be completed entirely with the development of this
method. Conversely, there are methods developed to determine the types, quantities, and locations of
pavement distress by means of vibration meters, laser scanners, and road surface display devices that
can be placed on vehicles [24–27]. Dondi et al., in their study [28], proposed a semi-automatic method
which can evaluate the surface data obtained by laser scanning and video imaging methods together.

As can be found in studies related to the subject, many different mathematical modelling methods
are used in the modelling of the relationship between IRI and surface distress, and a significant
mathematical relationship can be obtained between them. However, studies that can expose the
sensitivity of the effects of surface distress on the IRI and their changes are very limited.

Mathematical relations between pavement surface distress types and surface roughness are
investigated, in the current study, by using the MARS approach in bituminous, hot mixed asphalt
(HMA) pavement. Regarding the model developed, ten surface distress types, including alligator
cracking, bleeding, block cracking, corrugation, depression, longitudinal and transverse cracking,
patching, potholes, rutting, and raveling, as well as a total of twenty-nine individual variables, with
differing severity levels of distress, are taken into consideration. Pavement distress and IRI data
collected in 3295 highway sections used as rural principal intercity arterial routes are used. As a result
of the study, the impacts of the various types of surface distress and the different severities, which are
the inputs of the developed model, are evaluated through synthetic input values. Consequently,
the increases in sensitivity levels on the IRI according to the distress type, evaluated by area (unit of
measure), are determined.

2. Materials and Methods

Surface distress and International Roughness Index (IRI) measurement data of 3295 evaluation
sections (totaling about a 330 km length of pavement section) for ten different highways, in the
class of rural principal intercity arterial function, with bituminous hot mixture coating, were used.
The 2009 model profile instrument, belonging to the Turkish Republic of General Directorate of
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Highways (KGM), which is responsible for the operation of the roads, was used in the measurements.
Using the profilometer in the measurements, IRI, ride number (RN), rut depth, macro surface texture
and road geometry (IMS), and global position (DGPS), data according to the ASTM E 950 standard
was collected [29]. However, since the relationship between pavement surface distress and IRI was
examined in the study, the other data recorded by the profilometer was not taken into consideration.

2.1. International Roughness Index (IRI)

The unevenness of a pavement surface is generally referred to as “roughness”, and is defined
as the variation of the distances of the reference points on the surface from an ideal reference
plane [30]. Roughness can be measured using different methods, such as, with portable slope
meters, response-type road roughness meters, and various other profile measuring instruments. Today,
the profile measurement method is widely used by means of remote sensors (laser or ultrasonic
sensors). Using this method, the distance between the road surface and the measuring bar, and
the relative displacements of an inertia reference system are measured by means of bar-mounted
accelerometers and are evaluated [31,32]. All these measurements can be made with sensors mounted
on a platform with a vehicle traveling at a relatively high speed. Generally, the vertical profile of the
pavement is measured along two lines per lane, corresponding to each wheel trace of a vehicle [32].
The International Roughness Index (IRI) was established by the World Bank in 1986, and was developed
to evaluate the roughness of the pavement and therefore its driving comfort [20]. The IRI value is
determined by appropriately measuring the profile of the pavement, followed by the processing of
roughness inputs through an algorithm that simulates the sum of the displacements of a reference
vehicles suspension [33]. The response characteristics of the suspension of the reference vehicle are
simulated using a simple dynamic model known as a quarter-car model and is characterized by five
constants. Taken from these constants, Cs represents the suspension damping rate, Ks the suspension
spring rate, Kt the tire spring rate, Ms the sprung mass, and Mu the un-sprung mass [34]. Figure 1
shows the graphical representation and model constants of the quarter-car model.

Figure 1. Quarter-car model graphic display and constants. Adapted with permission from [34].
Copyright 2010 ASCE.

The dynamic characteristics of suspensions were determined by the standard of the quarter-car
model, which is widely used for IRI interpretation. Hence, associating a real vehicle with the suspension
reactions does not give the correct results. The principles of measuring the profile used to calculate
the IRI expressed in a slope unit are described in the ASTM E950 standard [29]. Furthermore,
the calculation of the IRI value can be performed with the aid of a simplified algorithm proposed in
ASTM E1926-98 [35]. PROVAL package software was used in the evaluation of the measurements in
the study.

2.2. Field Studies

Simultaneous surface distress data was obtained with International Roughness Index (IRI) data
by analyzing the surface image data of the pavements with three high-resolution (HD) cameras
installed in the vehicle. The information received by the three cameras installed in the vehicle was
recorded simultaneously by the data processing systems. One of the two cameras (13× convergence,
F1.6 (f = 4.2 mm–55 mm)), which was placed on the vehicle's front window, was a detail video camera
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optimized to ensure that all surface distress seen on the pavement surface could be viewed with
a 2 mm crack width sensitivity. Road surface images (photos) were recorded at intervals of 20 m,
in consideration of the optimum camera vision range in order to obtain 2 mm crack width sensitivity.
The second camera was the landscape camera and was set to display the road’s environment interaction
information in real-time and at a wider viewing angle. The third camera was at a lower resolution
than the other two and was used to record the instantaneous state of the profilometer vehicle and the
short information of the operators during the measurement. The determination of surface distress
was achieved by the technical personnel of KGM by using image processing software of 20 m detail
images recorded by cameras and by measuring the markings of distress on the computer environment.
The cameras used and the measurement method is shown in Figure 2.

Figure 2. The cameras used in the study and the measurement method.

During the evaluation of pavement surface distress data, the surface evaluation criteria prescribed
by the PAVER system were taken into consideration [36]. Surface distress and IRI measurements
were made in the right traffic lane, which was considered to represent the overall traffic lanes on the
platform, by accepting a 3 m lane width. Regarding this assumption, 100 m long road sections with a
width of 3 m were considered to be sample areas and 300 m2 surface areas were formed as the sample
unit of the PAVER system. Approximately 330 km of Hot Mixed Asphalt (HMA) coated highway
section were evaluated, in other words, pavement surface distress evaluations and IRI measurements
were carried out in 330 different pavement sections (3295 different sample units) defined according to
the PAVER system. The geometries of road sections, which were evaluated as pavements within the
scope of this study, are shown in Figure 3.

Table 1 shows the highest annual average daily traffic (AADT) data, the heavy vehicle percentage
in traffic, and the highest and lowest temperature data observed in order to explain the climate in
which the evaluated road sections were located during the years when the measurements were made.
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Figure 3. Evaluated road sections in this study.

Table 1. Traffic and climate information of the evaluated sections.

Road No. Annual Average
Daily Traffic

Percentage of
Heavy Vehicle

(%)

Max. Temp.
(◦C)

Min. Temp.
(◦C)

Measurement
Date (M.Y)

200-10 11,549 31% 40.8 –21.5 12.2009
200-11 11,549 31% 40.8 –21.5 12.2009
200-12 16,586 26% 40.8 –21.5 12.2009
100-26 2566 51% 39.2 –32.6 10.2010
100-27 3907 49% 27.6 –15.5 10.2010
100-28 8544 22% 27.6 –15.5 10.2010
100-32 2388 41% 30.0 –16.2 10.2010
100-33 2301 42% 38.6 –25.0 10.2010
260-21 2822 45% 27.6 –15.5 10.2010

2.3. Evaluation of Pavement Distress

The PAVER distress identification system, which is considered as a criterion for evaluating
pavement distress, is based on the principle of evaluating surface distress data collected in the area of
225 ± 90 m2 (sample unit) on the pavement surface—as defined in the ASTM D 6433-11 coded standard
(for hot mixed asphalt coated pavements) [36]. Using the distress identification guidelines adopted
by the system, 20 different types of distress, each expressed by a different code value, are categorized
at low (L), medium (M), and high (H) severity levels for HMA pavements [37]. The distress types
described by the standard ASTM D 6433-11 are shown in Table 2.

Table 2 shows that the formation of surface distress in the PAVER system can be reduced to
three basic reasons: Load, climate, and other reasons. It is known that load-induced distress is
caused by dynamic loads transmitted from vehicle wheels, while climate-induced distress is caused
by environmental effects such as rainfall, frost, and temperature fluctuations during certain periods
of time. Construction errors that occur during the construction of pavements and not noticed during
inspections, design errors that cannot be detected during the design of pavement, damage by solvents
and equipment used in anti-icing techniques, the effect of assets from environmental organic origin
(tree leaves, sap, etc.), and damage caused by vehicle operation (fire, leaks, etc.) can be regarded as
other causes of distress [37]. When the types of distress summarized in Table 2 were examined in detail,
it was seen that 18 types of distress were evaluated at three different severity levels (L, M, and H),
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one type of distress at two different severity levels (M and H), and one type of distress at one severity
level. Added to this, 14 types of distress were collected as area data, five types of distress as length
data, and one type of distress as number data.

Each type and severity level of distress is explained with brief technical information, such as
crack widths, depression depths, and bump heights, in the standard. Additionally, comparative verbal
expressions and photographic descriptions to help identify the differences between the distresses are
shown separately for each type and severity level. To illustrate this, the photographs used in defining
the alligator cracking for each severity level are shown in Figure 4. Emphasis is placed on how to
measure the degree and type of impairment.

Pavement surface distress measurements were completed using the measurement units defined
by the standard. Independent variables were standardized to increase the estimation ability of the
model since there were three different measurement units, namely, the recommended area, length,
and number in the standard, as well as relatively large differences in the measured values. As foreseen
by the system, the standardized quantity of distress (SQD) values were obtained by dividing a surface
distress data by the size of the sample unit and enlarging the result by 100 times. This notion is
expressed as Equation (1):

SQD =
Distress Quantity

Sample Unit
× 100 (1)

Table 2. Distress classifications for asphalt concrete pavement in ASTM D 6433-11 [36].

Distress Code Distress Name Unit of Measure Defined Severity Levels Cause

1 Alligator cracking m2 Yes Load
2 Bleeding m2 Yes Other
3 Block cracking m2 Yes Climate
4 Bumps and sags m Yes Other
5 Corrugation m2 Yes Other
6 Depression m2 Yes Other
7 Edge cracking m Yes Load
8 Joint reflection cracking m Yes Climate
9 Lane/shoulder drop-off m Yes Other

10 Long. and trans. cracking m Yes Climate
11 Patching m2 Yes Other
12 Polished aggregate m2 No Other
13 Potholes Number Yes Load
14 Railroad crossings m2 Yes Other
15 Rutting m2 Yes Load
16 Shoving m2 Yes Other
17 Slippage cracking m2 Yes Other
18 Swell m2 Yes Other
19 Raveling m2 Yes Climate
20 Weathering m2 Yes Climate

Figure 4. Distress images used in the description of alligator cracking in ASTM D 6433-11 Standard:
(a) low, (b) medium, and (c) high severity levels. Reproduced with permission from [36]. Copyright
2011 ASTM.
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During the surface evaluations, ten different pavement surface distress type data, including
alligator cracking, bleeding, block cracking, corrugation, depression, longitudinal and transverse
cracking, patching, potholes, rutting, and raveling, as defined by the standard, were found in the
evaluated highway sections. During the study, when the severity levels of distress were taken into
consideration, data from a total of 29 different surface distresses were collected in the surveyed
road sections. The differences between each independent variable and the dependent variable were
examined statistically before the modelling analysis, since many variables were used. The t-test was
used to compare the mean of two groups and to determine whether the difference was statistically
significant or incidental. Table 3 shows the significant differences between surface distress and
IRI values.

Considering the 95% confidence level, all evaluated distress data had a statistically significant
relationship with IRI.

Table 3. Relations between surface distress types and International Roughness Index (IRI).

IRI and 1L IRI and 1M IRI and 1H IRI and 2L IRI and 2M IRI and 2H

Correlation 0.434 0.348 0.088 0.092 0.062 0.141
Significance 0.000 0.000 0.000 0.000 0.000 0.000

IRI and 3L IRI and 3M IRI and 3H IRI and 5L IRI and 5M IRI and 5H

Correlation 0.092 0.224 0.073 0.155 0.230 0.225
Significance 0.000 0.000 0.000 0.000 0.000 0.000

IRI and 6L IRI and 6M IRI and 6H IRI and 10L IRI and 10M IRI and 10H

Correlation 0.227 0.157 0.084 0.096 0.163 0.090
Significance 0.000 0.000 0.000 0.000 0.000 0.000

IRI and 11L IRI and 11M IRI and 11H IRI and 13L IRI and 13M IRI and 13H

Correlation 0.349 0.267 0.146 0.148 0.069 0.142
Significance 0.000 0.000 0.000 0.000 0.000 0.000

IRI and 15L IRI and 15M IRI and 15H IRI and 19M IRI and 19H

Correlation 0.431 0.231 0.130 0.193 0.068
Significance 0.000 0.000 0.000 0.000 0.000

2.4. Multivariate Adaptive Regression Splines (MARS) Approach

The Multivariate Adaptive Regression Splines (MARS) technique is a modified method that
can take advantage of the positive aspects of both repetitive fractional regression and curve fitting
methods. This technique allows for the development of robust predictive models by reducing the
negative features of both methods. This purpose is achieved by a certain trade-off between the two
methods [38]. The MARS technique has been successfully applied in many different fields in recent
years. The MARS algorithm is based on the principle of truncated linear partial function expansion.
This situation is summarized in Equation (2):

[+(x − τ)]+, [−(x − τ)]+ = [q]+, [q]+ (2)

where, [q]+ represents the expression “max (0, q)” and τ represents a single variable knot [39].
The MARS algorithm explores interactions between all variables and knot (node) locations for all
possible partial linear representations. The approach is very similar to curve fitting algorithms.
The general form of the MARS method can be seen in Equation (3):

y = β0 +
P

∑
j=1

B

∑
b=1

 βjb(+) Max
(

0, xj −Hbj

)
+βjb(−) Max

(
0, Hbj−xj

)  (3)
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where P is the independent variable and B is the basic function. The basic functions max (0, x − H)
and the max (0, H − x) are expressed by these two univariate equations and, if the β coefficients
are 0, only one equality is sufficient. The H values are called “knot” or “node” [40]. This method,
which separates the data stacks by regions via knots, can deactivate the independent variables in
required cases and at certain limits—as opposed to the regression analysis. As a consequence of this,
if the independent variables that have extreme values are used as the model inputs, it is possible to
prevent the occurrence of meaningless result (estimation) values. This is considered to be one of the
major advantages of the MARS method.

The MARS algorithm eliminates the basic functions that reduce the predictive accuracy of the
model by a stepwise regression process, while investigating the model constants for the basic functions
with a stepwise progression process in the determination of knots. Based on the generalized cross
validation criterion (GCV), the adjustment measure of the knots is determined. The GCV criterion is
determined by the multiplication of the mean residual error by a penalty adjusted for the variability
associated with the prediction of more parameters in the model [7]. It is similar to the learning stage
of a multi-layered Artificial Neural Network (ANN) [41], in terms of a training principle. However,
unlike ANN, it does not generalize the data, and protects itself against over-fitting during stepwise
regression, during which, new components entering the model are regulated [42].

2.5. Modelling of Relationships between Surface Distress and International Roughness Index

Mathematical relations were investigated between 29 types surface distresses, which had
statistically significant relationships, and the International Roughness Index (IRI) using the Multivariate
Adaptive Regression Splines (MARS) modelling approach. A prediction model was established
between pavement surface distress data and IRI. The mathematical model is in Equation (4). The basic
functions (BF), represented by the variables in the model, are shown in Table 4.

IRI = [7.01026 + 0.05347 × BF1 − 0.09816 × BF2 + 0.04358 × BF3 − 0.03436 × BF4 + 0.00292
×BF5 − 0.09711 × BF6 + 0.03393 × BF7 − 0.39481 × BF8 + 0.03040
×BF9 − 0.03872 × BF10 + 0.04599 × BF11 − 0.11288 × BF12 − 0.00181
×BF13 − 0.07110 × BF14 + 0.03748 × BF15 − 0.16884 × BF16 − 0.07737
×BF17 + 0.04359 × BF18 + 0.04680 × BF19 − 0.10346 × BF20 + 0.05365
×BF21 − 0.03911 × BF22 − 0.04941 × BF23 − 0.01322 × BF24 + 0.11209
×BF25 − 0.00279 × BF26 − 0.02138 × BF27 − 0.00818 × BF28 + 0.00760
×BF29 + 0.26970 × BF30 + 0.06168 × BF31 − 0.16334 × BF32 + 0.01884
×BF33 + 0.03605 × BF34 + 0.04401 × BF35 − 0.11574 × BF36 + 0.02658
×BF37 − 0.00898 × BF38 + 0.04721 × BF39 + 0.11238 × BF40 + 0.29028
×BF41 + 0.20098 × BF42 + 0.11394 × BF43 − 0.05121 × BF44 + 0.01618
×BF45 + 0.03548 × BF46 − 0.02737 × BF47 + 0.12168 × BF48 − 0.07063
×BF49 − 0.13274 × BF50 + 0.11679 × BF51 + 0.03271 × BF52 − 0.01208
×BF53 − 0.06927 × BF54 − 0.05225 × BF55 + 0.05070 × BF56 + 0.05519
×BF57 + 0.04527 × BF58 − 0.01306 × BF59 + 0.02062 × BF60 − 0.05430
×BF61 − 0.04452 × BF62 + 0.00744 × BF63 + 0.05891 × BF64 + 0.01415
×BF65 + 0.02613 × BF66 + 0.03516 × BF67]

(4)

The mathematical model is comprised of 67 basic functions, with 29 independent variables and
one dependent variable. An analysis of the model was completed with a 0.227875 GCV error using
a 0.0005 threshold value. The regression coefficient (R2) value of the model, which is assumed to
show the accuracy of estimation, was found to be 0.7446. It is clear that this mathematical modelling
technique, which optimizes the distribution of the data in a curve fitting form by determining knots
at the most appropriate points, can determine the IRI values. The regressions statistical values of the
developed model are shown in Table 5.
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When the coefficients of the mathematical model were examined, similar to the regression model,
it was observed that the relative 5L, 10L, and 15M distress types had a higher number of basic functions
than the others; in other words, these distress types were more impactful on the IRI. The analysis of
variance (ANOVA) decomposition of each independent variable for this prediction model is shown
in Table 6.

IRI values observed and predicted by model are comparatively shown in Figure 5.

Table 4. Basic functions used in Multivariate Adaptive Regression Splines model.

Basic Functions Basic Functions

BF1 = max(0; 1L − 9.4) BF35 = max(0; 6M − 1.3333)
BF2 = max(0; 9.4 − 1L) BF36 = max(0; 1.3333 − 6M)
BF3 = max(0; 15L − 4.3333) BF37 = max(0; 10L − 30.0667)
BF4 = max(0; 4.3333 − 15L) BF38 = max(0; 30.0667 − 10L)
BF5 = max(0; 11L − 5.9) BF39 = max(0; 2H)
BF6 = max(0; 5.9 − 11L) BF40 = max(0; 6H)
BF7 = max(0; 5H − 2) BF41 = max(0; 13M)
BF8 = max(0; 2 − 5H) BF42 = max(0; 15M − 20.3333)
BF9 = max(0; 3M − 16) BF43 = max(0; 13H)
BF10 = max(0; 16 − 3M) BF44 = max(0; 1L − 4.6667)
BF11 = max(0; 11M − 5) BF45 = max(0; 19H)
BF12 = max(0; 5 − 11M) BF46 = max(0; 19M − 20)
BF13 = max(0; 15M − 7.9) BF47 = max(0; 2L − 18.8333)
BF14 = max(0; 7.9 − 15M) BF48 = max(0; 5L − 1.5)
BF15 = max(0; 1M − 2.6667) BF49 = max(0; 5L − 5.8333)
BF16 = max(0; 2.6667 − 1M) BF50 = max(0; 15M − 24.8333)
BF17 = max(0; 5L − 19.3333) BF51 = max(0; 1H)
BF18 = max(0; 19.3333 − 5L) BF52 = max(0; 10H)
BF19 = max(0; 6L − 7.3333) BF53 = max(0; 10L − 8.1000)
BF20 = max(0; 7.3333 − 6L) BF54 = max(0; 10L − 46)
BF21 = max(0; 5M − 4.1) BF55 = max(0; 11L − 31.3333)
BF22 = max(0; 4.1 − 5M) BF56 = max(0; 11L − 20.6667)
BF23 = max(0; 19M − 35.3333) BF57 = max(0; 3H)
BF24 = max(0; 35.3333 − 19M) BF58 = max(0; 10L − 38.3333)
BF25 = max(0; 11H) BF59 = max(0; 15L − 21.7333)
BF26 = max(0; 2M − 29) BF60 = max(0; 3L − 7)
BF27 = max(0; 29 − 2M) BF61 = max(0; 15M − 12.1)
BF28 = max(0; 3L − 32.3333) BF62 = max(0; 10M − 11.6)
BF29 = max(0; 32.3333 − 3L) BF63 = max(0; 11.6 − 10M)
BF30 = max(0; 13L) BF64 = max(0; 6L − 4.5)
BF31 = max(0; 15H − 1) BF65 = max(0; 2L − 29.6667)
BF32 = max(0; 1 − 15H) BF66 = max(0; 5L − 10.4)
BF33 = max(0; 2L − 4.6667) BF67 = max(0; 10M − 5)
BF34 = max(0; 4.6667 − 2L)

Table 5. IRI prediction model regression statistical values.

Statistical Component IRI

Mean (observed) 1.855523
Standard deviation (observed) 0.905978

Mean (predicted) 1.855523
Standard deviation (predicted) 0.781759

Mean (residual) 0.000000
Standard deviation (residual) 0.457873

R-square 0.744579
R-square adjusted 0.739196
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Table 6. IRI prediction model ANOVA decomposition.

Function Mean Standard Deviation Number of Basic Function Independent Variable

1 1.506778 3.613975 3 1L
2 0.204866 1.427734 2 1M
3 0.007132 0.193302 1 1H
4 3.249570 8.611857 4 2L
5 0.619575 4.944756 2 2M
6 0.048002 0.991252 1 2H
7 1.154942 6.085346 3 3L
8 0.407284 3.433640 2 3M
9 0.009813 0.317481 1 3H

10 2.403955 5.109487 5 5L
11 0.276196 2.159583 2 5M
12 0.156546 1.524540 2 5H
13 0.477147 1.922288 3 6L
14 0.086636 1.009642 2 6M
15 0.005362 0.133473 1 6H
16 7.88986 12.27248 5 10L
17 0.567759 2.820660 3 10M
18 0.028275 0.544379 1 10H
19 1.611209 6.957987 4 11L
20 0.215023 1.824592 2 11M
21 0.028154 0.518288 1 11H
22 0.029944 0.253386 1 13L
23 0.012038 0.157478 1 13M
24 0.019269 0.244752 1 13H
25 5.970056 7.472103 3 15L
26 1.309388 4.257650 5 15M
27 0.085635 0.836833 2 15H
28 0.874375 5.929459 3 19M
29 0.066029 1.260636 1 19H

Figure 5. Multivariate Adaptive Regression Splines (MARS) model prediction accuracy.

3. Results

The introduction section of the study emphasized that there are various mathematical approaches
to modelling the relationships between the International Roughness Index (IRI) and surface distress.
Found in similar studies, IRI prediction models were developed with various quantities of pavement
distress being used as input components, and the studies were terminated. Adding to similar studies,
in this study, the sensitivity of pavement distress inputs to changes in IRI values were determined with
the help of the model developed using the Multivariate Adaptive Regression Splines (MARS) method.
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The increased rates of IRI value in the current study were determined by changing only one input
variable (surface distress data) and keeping the others constant in the model developed. The results
were visualized and interpreted using graphics. The surface distress data was collected according
to the distress identification procedure of the PAVER system. Distress input data were standardized
using a standardized quantity of distress (SQD) to eliminate the different sample unit size parameters
examined according to this system. Hence, in the system, pavement distress types were collected in
three different dimensions, including the area, length, and number. It is clear that it would not be
right to compare the effects of the types of distress collected in different dimensions (such as length
versus area) to the IRI increase, since all distress inputs were standardized by the same mathematical
expression. Therefore, pavement distress with only area measurement units, such as: (1) alligator
cracking; (2) bleeding; (3) block cracking; (5) corrugation; (6) depression; (11) patching; (15) rutting;
and, (19) raveling, were evaluated.

The co-occurrence of different types of distress, severities, and quantities is actually quite common.
This is particularly noticeable in sections where the quantity of distress is excessive. It is not expected
to encounter the same type and severity of distress in the entire sample unit of an examined pavement.
Therefore, the likelihood that the distress evaluated in the eight different types of area measurement
units mentioned would occur between a ratio of 5% and 50% on the surface of the pavement—this was
taken into consideration. Concerning each of the different severity measures of the distress examined,
the effect on the IRI increase versus the various occurrence rates of distress on the pavement surface is
shown in Figure 6.

Figure 6 shows the vertical axes of figures that were adjusted to show the same values in order
to compare the effects of pavement distress on IRI increases in terms of different types of distress.
It is seen, from all the types of distress examined, that the highest increase in IRI was caused by high
severity, followed by medium, and then low severe distress types. It is noteworthy that, for all types of
distress, if there was a small quantity of distress in the surface area evaluated (including at different
levels of severity), the IRI increases were very low and similar to each other. Nevertheless, in the
evaluated surface area, the highest-severity alligator cracking, depression, and patching-type distress
were seen to cause an increase in the IRI. It is noted that this increase was up to 500% in the IRI,
since the distress occurred in about half of the evaluated area. The assessments for each type of distress
are listed below:

• (Figure 6a) The alligator cracking caused a 50% increase in IRI in all severities of distress, if the
distress occurred at 5% of the evaluated area. However, if the distress was seen in 50% of the area,
it caused an increase in value of about 70% in low severity, 200% in medium severity, and 500% in
high severity.

• (Figure 6b) During cases of bleeding-type distress, an increase in low severity by 1%, moderate
severity by 9%, and high severity by 21% occurred in IRI when 5% of the distress was seen in the
evaluated area. However, if it was observed in 50% of the evaluated area, low severity caused an
increase in IRI by 11%, moderate severity by 55%, and high severity by 209%. It is remarkable that
there was about 20 times the difference between low-severity distress and high-severity distress
in the IRI increase.

• (Figure 6c) IRI was relatively less affected by block cracking-type distress, which was the result of
combined states of longitudinal and transverse cracks. When observed at 5% of the evaluated
area, low severity caused an increase in IRI by 1%, moderate severity by 17%, and high severity
by 24%. Conversely, if it was seen in 50% of the surface area, it caused an increase in the IRI by
44% in low severity, 146% in medium severity, and 244% in high severity. Moderate and high
severity distress led to a much greater increase in the IRI than low severity distress.
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• (Figure 6d) It is known that the corrugation-type distress, such as a signal waves, result in a
disturbance in the transverse direction of the highway pavement. When the distress was observed
in 5% of the evaluated area, it was understood that there was an increase in IRI by 18% from low
severity, 18% from moderate severity, and 79% from high severity. It is noteworthy that high
severity distress resulted in a significant increase in IRI, while low and moderate distress caused a
very insignificant increase, according to the model's conclusions. When the distress was observed
in 50% of the evaluated area, an increase in IRI value was seen in low intensity by 53%, moderate
intensity by 232%, and high intensity by 214%. The difference in the IRI increase that occurred
when the distress was seen in the small area shrunk considerably in comparison to the large area.
Moreover, the increase in IRI was very close to each other for moderate and high severity distress.
The fact that the medium severity IRI increase rate was higher than the high severity IRI increase
rate was thought to be due to insufficient data for the calibration of this type of distress used to
create the model. This should be considered to be a problem in detecting the sensitivity of the
input parameters of the models created from a large number of inputs and it should be kept in
mind that the effects of high severity corrugation-type distress on the IRI increase in subsequent
studies needs to be verified.

• (Figure 6e) Surface distress of the depression-type affected the increase in IRI negatively in a
significant way. When the distress was observed in 5% of the evaluated area, it was understood
that it caused an increase in IRI by 7% in low severity, 28% in medium severity, and 49% in high
severity. However, if the distress was seen in 50% of the area, it led to an increase in the IRI by
50% in low severity, 203% in medium severity, and 491% in high severity.

• (Figure 6f) Considering the case of 5% of the evaluated area, the patching-type distress caused
an increase in IRI by 43% in the low severity, and 50% in the medium and high severity.
When observed in 50% of the area, low severity caused an increase in IRI by 107%, moderate
severity by 233%, and high severity by 496%. The patching was a type of distress that provided a
significant increase in the IRI, especially in the case of a large quantity of evaluated area.

• (Figure 6g) It was seen that the increase in the IRI value of rutting-type distress in the same
quantity, low, medium, and high severities, did not make much difference compared to the other
types of distress. When the distress was observed in 5% of the evaluated area, it was observed
that it caused an increase in IRI by 16% in low severity, 31% in medium severity, and 36% in high
severity. If the distress was observed in 50% of the area, it caused an increase of 157% in low
severity, 193% in moderate severity, and 282% in high severity.

• (Figure 6h) Finally, raveling-type distress was evaluated in a similar way. As stated in the distress
identification standard, raveling-type distress was evaluated at two levels of severity, moderate
and high. It was understood that this type of distress led to an increase of IRI by 6%–7% if
observed in 5% of the evaluated area and 71%–72% if observed in 50% of the evaluated area for
two different severities of distress. Since the raveling-type distress did not change much of the
macro roughness seen on the pavement surface, it was determined that the increase in the IRI
value in the model was the least impactful type of distress.

Another assessment was made by comparing the effects of distress types on the IRI increase
according to each level of severity. When low-severity distress was examined, it was noteworthy that
many of the distress types contributed to the IRI increase in similar proportions (between 1% and 40%)
when the evaluated area had a small quantity of distress. However, in cases where the quantity of
distress was large, rutting and patching-type distress were more likely to cause an increase in IRI than
the other types of distress studied. Alligator cracking, depression, corrugation, and block cracking-type
distress were seen to have a mean effect on the IRI increase between 40% and 80%. Low severity
bleeding, however, seemed to have little or no effect on the increase of IRI. These evaluations are
shown graphically in Figure 7.



Coatings 2018, 8, 271 14 of 19

Figure 6. Proportional effects of the increase of international roughness index despite various quantity
ratios of distress at the pavement surface: Alligator cracking (a); bleeding (b); block cracking (c);
corrugation (d); depression (e); patching (f); rutting (g); and, raveling (h).
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Figure 7. Effects of low severity distress on international roughness index increase.

Whenever the distress of the medium severity level was examined, in the case where the quantity
of distress in the evaluated area was small, it was seen that the distress was close to each other
(in the range of 6%–50%). It was seen that there were significant differences in terms of the effects of
distress as the quantities of distress grew. It was noticed that a moderate severity level of patching,
corrugation, depression, alligator cracking, and rutting-type distress had the most detrimental effects
causing IRI increase. As the quantity of distress in the evaluated area increased, it was observed that
the effect of block cracking was slightly lower compared to the other types of distress, and raveling
and bleeding-type distress affected the IRI increase at the lowest level. These evaluations are shown
in Figure 8.

Figure 8. Effects of medium severity distress on international roughness index increase.
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Whenever the distress of the high severity level was examined, the effects on the increase
of IRI (in the range of 7%–79%) were relatively close to each other, as seen in the cases of other
severity levels. As the quantity of distress in the evaluated area increased, it was understood that
alligator cracking, patching, and depression-type distress were causing a significant increase in IRI.
Rutting, block cracking, corrugation, and bleeding-type distress caused relatively less IRI increase and
raveling-type distress caused the least increase in IRI between all the examined distresses. All these
evaluations are shown graphically in Figure 9.

Figure 9. Effects of high severity distress on international roughness index increase.

4. Discussion

The sensitivity and effects of the International Roughness Index (IRI) increase of eight different
types of distress were determined by means of the generated IRI prediction model. Studies evaluating
the effects of different types of distress on the IRI increase in the literature are quite limited. In fact,
there are almost no studies examining the types of distress that consider different severities. It is
thought that this is the strongest side of the study. It is obvious that the study will contribute to the
literature and give a new perspective to researchers who are engaged in similar studies. It also contains
practical conclusions about which types of distress should be prioritized for maintenance and repair
work by the agencies responsible for the operation of road pavements.

The Multivariate Adaptive Regression Splines (MARS) technique was used to model the
relationships between surface distress and IRI. Among other situations, this model has not been
used for obtaining effective results against some input values for models examining many independent
variables. This suggests that MARS is a method that should be preferred when the relationships
between surface distress and IRI are determined.

It is understood from the analysis that, as the quantity of impairment increases for each type of
distress, the IRI value increases. It is seen that increases in IRI are caused by alligator cracking,
depression, and patching-type distress most often. Additionally, it is also noteworthy that the
raveling-type distress least increases the IRI and the effects on IRI increases for both medium and high
severity levels are close to each other. However, at different levels of severity regarding rutting and
block cracking, as the quantity of distress seen in the evaluated section increases, the effect on the
increase in IRI seems to increase equally. As expected, the increase in IRI in low and moderate severities
of corrugation-type distress resembles that of alligator cracking, depression, and patching-type distress.
However, in the case of high severity distress, contrary to what is expected, there is not much effect on
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the increase of IRI. This is thought to be due to an insufficiency of data used in the model calibration as
well as the distress during the measurement, which might be seen in different regions from the direction
in which the IRI data was gathered. Assuming that this is a problem in detecting the sensitivity of
the input parameters of the models created by a large number of inputs (independent variables), it is
necessary to keep in mind that in subsequent studies high severity corrugation-type distress needs to
be verified to have an effect on IRI increase.

Although each study cannot be exactly the same as another, similar results were obtained in the
study conducted by Lin et al. [12] wherein the researchers tried to determine the improvement provided
to the IRI in case of repair to the distress with the help of a model developed by the Artificial Neural
Network (ANN) technique. It seems that the repair of cracking and superficial deformation-type
distress has contributed significantly to the improvement of IRI values in this study.

5. Conclusions

Regarding hot mixed asphalt (HMA) pavements, the pavement surface distress effects on the
International Roughness Index (IRI) were examined, and are considered to be performance indicators
of pavements. To evaluate the types of distress, the surface distress identifications proposed by the
PAVER system were used. Relations between IRI and ten different types of distress data (29 different
model inputs were formed which considered different levels of severity) was collected in field studies
and were digitized by means of the model created using the Multivariate Adaptive Regression
Splines (MARS) approach. Through this model, the impact of the changes of input parameters
(pavement surface distress) on IRI was determined. Eight different types of pavement distress,
including alligator cracking, bleeding, block cracking, corrugation, depression, patching, rutting,
and raveling, were collected in area measurement units to make the comparison between parameters
more realistic.

During the evaluations for all types of distress, it was observed that the quantity of surface distress
in the evaluated area increased as the IRI value increased. It was determined that alligator cracking,
depression, and patching-type distress caused the greatest increase in IRI, especially if the distress
severity was high, the increase in IRI value was up to 500%, and if it was moderate, the increase in IRI
value was up to 200%. The raveling-type distress had the least effect on the increase in IRI and, even
in different quantities, the effect of the distress seen in both severities were very close to each other.
The other type of distress that had the least effect on IRI increase was bleeding. However, high severity
bleeding-type deterioration led to a more than double increase in IRI, as compared to moderate and
low severity. However, it was observed that the rates of increase in the IRI regarding the different
severity levels of the rutting-type distress were very close to each other. The type of distress that was
observed to have the most homogenous change in IRI increase, with increasing quantity of distress
observed between different severities and evaluated area, was block cracking.

Since surface distress determinations of pavements made in the field showed that many distress
types are seen together, in this study, the effects of surface distress on IRI was investigated by
examining the sensitivities of the input parameters of the generated prediction model. During the later
stages of the study, it became very clear that using similar analyses with a large number of data sets
contributed to the literature and to the evaluation of different types of distress. Additionally, the use
of multiple techniques in modelling studies to conduct comparative assessments will ensure that the
most appropriate modelling technique to be used for this purpose is identified. Using the help of the
findings obtained from this and similar studies, it is thought that significant input can be provided to
help the agencies responsible for the upkeep of the pavement to plan maintenance and repair activities.
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