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Abstract: Ta–Al multilayer coatings were fabricated through cyclical gradient concentration deposition
by direct current magnetron co-sputtering. The as-deposited coatings presented a multilayer structure
in the growth direction. The oxidation behavior of the Ta–Al multilayer coatings was explored.
The results specified that Ta-rich Ta–Al multilayer coatings demonstrated a restricted oxidation depth
after annealing at 600 ◦C in 1% O2–99% Ar for up to 100 h. This was attributed to the preferential
oxidation of Al, the formation of amorphous Al-oxide sublayers, and the maintenance of a multilayer
structure. By contrast, Ta2O5 formed after exhausting Al in the oxidation process in an ambient
atmosphere at 600 ◦C which exhibited a crystalline Ta2O5-amorphous Al-oxide multilayer structure.

Keywords: cyclical gradient concentration; internal oxidation; multilayer coating; oxidation

1. Introduction

Al-based inter-metallics have been used for high-temperature applications because of their
high melting points, strength, and oxidation resistance [1–14]. For example, Ru–Al alloys have
been applied for jet engine components, bond coats for thermal barrier coatings, corrosion- and
oxidation-protective coatings, and electrodes [1,2], whereas Ta–Al alloys have been applied for
sulfidation and oxidation-protective coatings [3–5], heater materials [12–14], and electromagnetic
shielding [15]. A previous paper [16] evaluated the oxidation behavior of Ru–Al multilayer coatings
in 1% O2–99% Ar at 400–800 ◦C. In our co-sputtering system [16–21], the plasma sources focused
on a circular track but not the center of the substrate-holder; thus, a multilayer coating with cyclical
gradient concentration formed, as the substrate-holder was rotated in a low speed of 1–7 rpm. Such
multilayer coatings were constructed by alloy sublayers with continuous variation in compositions,
but not monolithic sublayers of distinct elements. Additionally, the inward diffusion of oxygen during
annealing resulted in the coating forming an internally oxidized multilayer structure comprising
alternating oxygen-rich and oxygen-deficient sublayers. The execution of internal or external oxidation
was affected by the annealing atmosphere and the diffusion of the active elements [17,22,23]. The internal
and external oxidation of the Ru–Al multilayer coatings exhibited restricted oxidation depths and
overcoats, respectively, which were attributed to the formation of continuous Al2O3 sublayers and
scales [16]. The multilayer structure with O-saturated Al2O3 oxide sublayers benefited to inhibit
further oxidation. Moreover, the Ru–Al multilayer films subjected to an ambient atmosphere at
800 ◦C exhibited a limited oxidation depth [24]. Considering the merits of oxidation resistance and
cost reduction, the feasibility of Ta–Al to replace the Ru–Al multilayer coatings in high-temperature
applications was evaluated. The oxidation behavior of the Ta–Al multilayer coatings with cyclical
gradient concentrations prepared using direct current (DC) magnetron co-sputtering was investigated
at 400–600 ◦C.
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2. Materials and Methods

The Ta–Al coatings with a Ti interlayer were fabricated onto silicon wafers by DC magnetron
co-sputtering. A previous study [18] illustrated the co-sputtering equipment and the experimental
details such as the base pressure, working pressure, and Ar flow. The substrate holder was heated to
400 ◦C and rotated at 1 rpm. The Ti interlayer was deposited with a DC power of 200 W for 7 min.
Then, Ta and Al were co-sputtered onto the Ti interlayer using various sputter powers for 35 min.
The deposition rates of Ta and Al at a DC power of 200 W were 9.1 and 21.3 nm/min, respectively.
The powers applied on Ta and Al targets were denoted as PTa and PAl, respectively. The total powers
of PTa and PAl were fixed at 300 W. The annealing experiments were performed in 1% O2–99% Ar at
400–600 ◦C for 0.5–100 h, or in air at 600 ◦C for 1–100 h.

A chemical composition analysis of the samples was conducted using a field-emission electron
probe microanalyzer (FE-EPMA; JXA-8500F, JEOL, Akishima, Japan). The thickness evaluation of the
coatings was performed using a field emission scanning electron microscope (FE-SEM; S4800, Hitachi,
Tokyo, Japan). A conventional X-ray diffractometer (XRD; X’Pert PRO MPD, PANalytical, Almelo,
The Netherlands) was adopted to identify the phases using the grazing incidence technique with an
incidence angle of 1◦. The nanostructure was examined using a transmission electron microscope (TEM;
JEM-2010F, JEOL, Tokyo, Japan). The TEM samples with Pt protective layers were prepared by applying
a focused ion beam system (FEI Nova 200, Hillsboro, OR, USA) which was transferred to Cu grids.
An energy-dispersive spectrometry (EDS; Inca x-sight, Oxford Instruments, Tokyo, Japan) equipped
with TEM was used to determine the local chemical compositions. The chemical composition depth
profiles were evaluated using an Auger electron spectroscopy (AES; PHI700, ULVAC-PHI, Kanagawa,
Japan). The sputter depths in the AES results were correlated with the thicknesses determined by the
cross-sectional SEM images.

3. Results and Discussion

3.1. As-Deposited Ta–Al Coatings

Table 1 lists the sputtering parameters, chemical compositions, and thicknesses of the as-deposited
Ta–Al coatings. These samples are denoted as Ta0.33Al0.67, Ta0.61Al0.39, and Ta0.81Al0.19 coatings.
Figure 1 depicts these coatings exhibiting evident multilayer structures. The sputtering time was set
at 35 min, and the total powers of PTa and PAl were fixed at 300 W; therefore, the deposition rate
increased with an increase in the power ratio of the Al target. Figure 2 exhibits the XRD patterns of
the as-deposited and 1% O2–99% Ar-annealed Ta–Al coatings. The as-deposited Ta0.33Al0.67 coatings
exhibited a tetragonal TaAl3 (ICDD 03–065–2665) phase and a cubic Al (ICDD 00–004–0787) phase,
whereas the Ta0.61Al0.39 and Ta0.81Al0.19 coatings were composed of TaAl3 and tetragonal β-Ta (ICDD
00–025–1280) phases. The β-Ta phase is metastable and is observed for the sputtered coatings [25–27].
The TaAl3 has been reported to be the preferred aluminide phase in the Ta–Al system [14,28,29] with a
formation enthalpy of −36 kJ/mol in the temperature interval of 1050–1350 K [29]. The Ta-rich and
Al-rich Ta–Al films prepared at room temperature by Chung et al. [14] had TaAl3–Ta and TaAl3–Al
phases, respectively, which exhibited polycrystalline structures. The Ta-rich films showed a remarkable
thermal stability after having been annealed in a vacuum at 450–650 ◦C, whereas the Al-rich films
exhibited a phase transformation at 450 ◦C [14]. Because the Ta–Al coatings in this study were prepared
at 400 ◦C, no amorphous parts were observed in the as-deposited films.
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Table 1. Sputtering parameters, chemical compositions, and thicknesses of the Ta–Al coatings.

Sample Power Chemical Composition (at.%) Thickness
(nm)PTa (W) PAl (W) Ta Al O

Ta0.33Al0.67 100 200 31.7 ± 0.4 64.5 ± 0.2 3.8 ± 0.2 1110
Ta0.61Al0.39 150 150 58.3 ± 0.4 37.3 ± 0.2 4.4 ± 0.4 884
Ta0.81Al0.19 200 100 76.8 ± 0.3 18.2 ± 0.1 5.0 ± 0.2 820
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reflection, whereas the coatings annealed at 400 °C exhibited a strong TaAl3(112) reflection, and no 
Al phase was shown by the coatings annealed at 500 °C (Figure 2a). Moreover, the Ta0.33Al0.67 
coatings annealed at 600 °C exhibited reflections of TaAl3, TaAl2 (ICDD 00–050–1279), and Al2O3 
phases, accompanied with a granular structure, as shown in a cross-sectional SEM image (Figure 3). 
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3.2. Oxidation of Ta–Al Coatings in 1% O2–99% Ar

The as-deposited Ta0.33Al0.67 coatings comprised Al and TaAl3 phases with a strong Al(220)
reflection, whereas the coatings annealed at 400 ◦C exhibited a strong TaAl3(112) reflection, and
no Al phase was shown by the coatings annealed at 500 ◦C (Figure 2a). Moreover, the Ta0.33Al0.67

coatings annealed at 600 ◦C exhibited reflections of TaAl3, TaAl2 (ICDD 00–050–1279), and Al2O3

phases, accompanied with a granular structure, as shown in a cross-sectional SEM image (Figure 3).
Because the standard Gibbs free energy levels for the formation of the metal oxides Al2O3 and Ta2O5

at 600 ◦C are −934,815 and −663,572 J/(mol of O2) [30], respectively, Al2O3 is formed preferentially
when the Ta–Al coatings are oxidized. The XRD patterns of the Ta0.61Al0.39 and Ta0.81Al0.19 coatings
annealed in 1% O2–99% Ar at 400–600 ◦C for 30 min exhibited reflections similar to those of the
as-deposited coatings (Figure 2b,c). A cubic α-Ta (110) reflection (ICDD 00–004–0788) became clear for
the Ta0.61Al0.39 coating that had been annealed at 600 ◦C, whereas one extra broadened reflection, which
was attributed to surface oxidation, was observed for the Ta0.81Al0.19 coating that had been annealed
at 600 ◦C. The annealed Ta0.61Al0.39 and Ta0.81Al0.19 coatings maintained multilayered structures
(Figure 3); however, the two outermost stacking periods extended their widths. The thicknesses of the
Ti interlayers increased after annealing which was attributed to the interdiffusion of the Ti interlayer
and Si substrate [24].
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Figure 3. Cross-sectional SEM images of Ta–Al coatings annealed in 1% O2–99% Ar at 600 ◦C for
30 min.

The cross-sectional TEM image (Figure 4a) of the Ta0.61Al0.39 coating annealed at 600 ◦C for 30 min
exhibited a remaining multilayer structure. The EDS analysis verified that the inward diffusion of O
tended to accumulate in the outmost stacking periods. The black sublayers (labelled as 1a, 2a, and
3a in Figure 4a) were dominated by Ta, whereas the white sublayers were enriched with Al and O.
The selected area diffraction pattern (SADP) of the O-diffused region shows α-Ta and TaAl3 rings
without an evident oxide phase, suggesting that the Al oxide was amorphous. A high-resolution TEM
image (Figure 4b) illustrates that the black sublayers were the α-Ta phase, whereas the crystalline
TaAl3 domains were identified between the Ta-rich sublayers and the amorphous Al-oxide sublayers.
Figure 5 shows the AES results of the 600 ◦C and 4 h annealed Ta0.61Al0.39 coatings. The O diffusion
depth was restricted to two or three of the stacking periods. The deviation of the AES analyzed atomic
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concentration from that examined by EPMA could be attributed to the preferential sputtering effects
which were also reported for the Ru–Al system [31,32]. Moreover, the fluctuation of the profiles in
the deeper region seemed unclear, accompanied with a large sampling interval because of a sputter
etching rate of 6.76 nm/min. Figure 6 exhibits the XRD patterns of the Ta0.61Al0.39 coatings annealed
for 0.5–100 h. The XRD patterns of the Ta0.61Al0.39 coatings that were annealed for 30 min exhibited
coexisting α-Ta and β-Ta phases, whereas the α-Ta phase was dominant for the films with annealing
times exceeding 4 h; these results implied that the metastable β-Ta in the shallow depth region
transformed to the stable α-Ta, because the XRD patterns were recorded using the grazing incidence
technique. The XRD patterns of the 4, 12, and 24 h annealed Ta0.61Al0.39 coatings exhibited similar
results. By contrast, amorphous oxide signals at two theta angles less than 30◦ can be observed for the
Ta0.61Al0.39 coatings annealed for 50 and 100 h. Figure 7a shows the cross-sectional TEM image of a
Ta0.61Al0.39 coating annealed for 100 h; the O signals detected by EDS were observed at the outmost
nine stacking periods, accompanied with expanded period widths. The high-resolution TEM image
(Figure 7b) illustrates that the black sublayers were an α-Ta phase, whereas the crystalline TaAl3
domains were dispersed in the amorphous Al-oxide matrix, which formed the white sublayers. Because
Al and Ta are insoluble in equilibrium states [33,34], and the Ta–Al coatings were fabricated through a
cyclical gradient concentration deposition, the Ta-rich sublayers behaved as a diffusion barrier for Al at
600 ◦C. Thus, internal oxidation became the main oxidation mechanism, and the preferentially formed
Al-oxide sublayers restricted oxidation. Therefore, the Ta0.61Al0.39 coatings that had been annealed
up to 100 h exhibited thermal stability and oxidation resistance. By contrast, no Ta-rich sublayers
formed during the sublayer stacking of the Ta0.33Al0.67 coatings. Thus, granular Al2O3 formed during
annealing at 600 ◦C, and the multilayer structure was destroyed and partially detached.
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3.3. Oxidation of Ta–Al Coatings in Air

The Ta0.63Al0.37 coatings (60.8 at.% Al + 35.6 at.% Ta + 3.6 at.% O) were prepared using the same
sputter parameters for fabricating Ta0.61Al0.39 coatings mentioned in Section 3.2. The two coatings
belonged to two batches and exhibited a slight deviation in chemical compositions. Figure 8 shows
the XRD patterns of the Ta0.63Al0.37 coatings annealed in air at 600 ◦C for 1–100 h. The Ta0.63Al0.37

coatings annealed for 1 h exhibited an XRD pattern comprising TaAl3 and α-Ta phases, which was
similar to those of the Ta0.61Al0.39 coatings annealed in 1% O2–99% Ar at 600 ◦C for 4–24 h (Figure 6).
The Ta0.63Al0.37 coatings annealed in air for 4 h demonstrated an amorphous and an orthorhombic
Ta2O5 (ICDD 00–025–0922) phase. Moreover, the annealed Ta0.63Al0.37 coatings exhibited a Ta2O5

dominant structure after extending the annealing time to 12–100 h. The coating thickness increased
from 792 to 924, 1098, 1220, 1565, 1687, and 1725 nm, while increasing the annealing time from 0 to 1,
4, 12, 24, 50, and 100 h by examining the cross-sectional SEM images (Figure 9). The 100 h annealed
sample was well adhered on the substrate. Figure 10a,b displays the AES results of the Ta0.63Al0.37

coatings annealed in air at 600 ◦C for 1 and 12 h, respectively. The O diffused into a depth of 720 and
1220 nm (the entire annealed coating) for the 1 and 12 h annealed Ta0.63Al0.37 coatings, respectively.
The variation of the O profile was consistent with the variation of the Al profile for the 1 h-annealed
coatings, which indicated that the internal oxidation was conducted by the preferential formation of
Al-oxide. However, the AES results of a 12 h annealed Ta0.63Al0.37 coating were classified into two parts.
In the interior region, the variations of the O and Al profiles were consistent. By contrast, in the outer
region, including six stacking layers, the positions with local maximum O levels were accompanied
with high Ta contents, which implied that Ta-oxide formed after the inward diffusion of O, exceeding a
demanded stoichiometric level for Al2O3.
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Figure 11a shows the cross-sectional TEM image and SADPs of a Ta0.63Al0.37 coating after annealing
in air at 600 ◦C for 12 h. The SADP of the outer region exhibited spots of an orthorhombic Ta2O5

phase which implied that the outer region comprised crystalline Ta2O5 and amorphous Al-oxide
phases. By contrast, the SADP of the interior region exhibited a diffused ring of β-Ta phase. Figure 11b
shows the EDS analysis results, which exhibit a decrease trend along the depth direction for the O
content. The black sublayers exhibited high Ta and low Al compositions related to those of the white
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sublayers. Figure 11c displays a high-resolution TEM image in the outer region, indicated in Figure 11a,
which shows that the black sublayer is crystalline Ta2O5 and the white sublayers are amorphous.
Figure 11d illustrates a high-resolution TEM image in the deeper interior region, the sublayers 23 and
24, which shows that the black sublayers comprise lattice fringes of TaAl3 and β-Ta phases, and the
white sublayers are amorphous.
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Figure 11. (a) Cross-sectional TEM image and (a–1 and a–2) SADP, (b) EDS analysis results, (c) and (d)
high-resolution TEM images of the Ta0.63Al0.37 coating annealed in air at 600 ◦C for 12 h.

4. Conclusions

The Ta–Al multilayer coatings were prepared by direct current magnetron co-sputtering through
cyclical gradient concentration deposition which formed alternatively stacked Ta- and Al-rich sublayers.
The preferentially formed oxides were amorphous Al2O3, and then orthorhombic Ta2O5 at 600 ◦C.
The insolubility between Ta and Al resulted in the Ta-rich sublayers obstructing the diffusion of Al,
whereas the Al-rich sublayers formed amorphous Al-oxide sublayers after annealing in O2-containing
atmospheres which restricted further oxidation; these effects caused the Ta-rich Ta–Al multilayer
coatings to exhibit thermal stability and oxidation resistance when they were annealed up to 100 h
at 600 ◦C in a 1% O2–99% Ar atmosphere. Moreover, the multilayer structure of the Ta0.63Al0.37

coatings was maintained after annealing up to 100 h at 600 ◦C in air. The Ta–Al multilayer coatings
exhibited the potential to replace the Ru–Al coatings utilized under oxygen containing atmospheres
for high-temperature purposes such as bond coats in thermal barrier systems; therefore, the feature
study should focus on the bond coat characteristics of the Ta–Al multilayer coatings, including the
formation of a thermally grown oxide layer on the bond coats and the restricted oxidation behavior of
multilayer coatings during the deposition of thermal barrier coatings.
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