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Abstract: While p-type transparent conducting materials (TCMs) are crucial for many optoelectronic
applications, their performance is still not satisfactory. This has impeded the development of many
devices such as photovoltaics, sensors, and transparent electronics. Among the various p-type TCMs
proposed so far, Cu-based oxides and oxychalcogenides have demonstrated promising results in
terms of their optical and electrical properties. Hence, they are the focus of this current review. Their
basic material properties, including their crystal structures, conduction mechanisms, and electronic
structures will be covered, as well as their device applications. Also, the development of performance
enhancement strategies including doping/co-doping, annealing, and other innovative ways to
improve conductivity will be discussed in detail.
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1. Introduction

Transparent conducting oxides (TCOs) possess high electrical conductivity and good optical
transparency in the visible light range, and they have been intensively studied over the past
few decades due to their important roles in electronic industries including photovoltaic cells (PV
cells), touch screen displays, solid-state sensors, organic light-emitting diodes (OLEDs), and liquid
crystal displays [1–3]. Currently, in the electronics industry, many different materials, especially
impurity-doped materials, are used as TCOs for the applications. Three major materials are In2O3

doped with Sn (ITO), ZnO doped with Al (AZO), Fluor tin oxide or SnO2–F (FTO), and SnO2 doped
with Sb (ATO) [4,5], Among them, ITO, with its great electrical conductivity around 1000 S·cm−1 and
optical transparency greater than 80%, has a market share higher than 97% [6,7].

However, the aforementioned materials all belong to n-type TCOs, which show n-type
conductivity. The popularity of n-type TCOs arises from their preferable electronic properties [8].
For n-type TCOs, the electrons as charge carriers move in the conduction band minimum (CBM).
The CBM is largely formed by the spatially spread metal-s orbitals, resulting in a well-dispersed CBM
and high electron mobility. In addition, the low formation energy of native intrinsic defects induces a
high electron concentration and stable n-type electrical conductivity after impurity doping [9]. On the
contrary, the development of high-performance p-type TCOs is very challenging [10,11], and it remains
a grand challenge for researchers to solve. Indeed, it is very difficult to find p-type TCO with high
conductivity due to the inherent low mobility of holes in the oxides. As can be seen in Figure 1,
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the effective mass of a hole is relatively higher than that of an electron [12]. This is caused by the
valence band maximum (VBM) for hole transport being mainly formed by highly localized oxygen 2p
orbitals, leading to low hole mobility. Moreover, the low formation energy of intrinsic donor defect
and relatively high acceptor formation energy limit the number of hole carriers [11].
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Figure 1. Effective mass distribution of both electrons and holes in selected binary and ternary oxides.
Reproduced with permission from Ref. [12]. Copyright 2013 Springer Nature.

On the other hand, p-type TCOs are extremely important in many applications. For example,
a p-type TCO, with its larger work function than its n-type counterpart, is more suitable for OLED
devices [13,14]. However, with performance sacrifice, many of the current OLED applications use ITO
as the transparent electrode instead of a p-type anode material due to the lack of high-performance
p-type TCO [13,14]. In the perovskite solar cells, a hole transport layer (HTL) usually is made of
the popular semi-metallic organic material poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)
(PEDOT:PSS), and this has been shown to negatively affect the stability of the device, which is a serious
issue for perovskite solar cells [15–18]. Moreover, in the field of transparent electronics, wide gap
oxides are no longer passive components in the device. Instead, transparent oxides play an essential
role as active layers, similar to Si in current semiconductor industry. After achieving high-performance
p-type TCOs, transparent p–n junctions and a complementary metal oxide semiconductor (CMOS)
could be fabricated for various applications with many more advantages than its unipolar transistors
such as lower heat generation, higher circuit density, and lower energy consumption [19–21]. It is
also believed that transparent electronics will become one of the most promising technologies for
next-generation flat panel display [22], and the forecast shows that the transparent display would help
create a $87.2 billion market by 2025, as can be seen in Figure 2 [2].
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In order for p-type TCOs to achieve reasonable electrical properties, in 1997, Kawazoe et al.
introduced a concept called “Chemical Modulation of the Valence Band” (CMVB), as a way to deal
with the aforementioned problem [23,24]. The delafossite structured CuAlO2 was prepared and
discussed in that work. In delafossites, Cu+ has a closed shell of 3d10 orbitals which would hybridize
with O 2p orbitals and modify the VBM and make the hole more delocalized so that it increases the hole
mobility [25]. This hybridization is possible because the energy level of Cu 3d10 is close to that of O 2p.
Subsequently, several other types of delafossites with the structure CuMO2 (M = Al [26–28], Cr [29–31],
Ga [32–34], In [35–37], Sc [38–40], Y [41–43], Fe [44–46], and B [47–49]) and delafossite-related oxide
SrCu2O2 [50–52] have been investigated. In 2001, the delafossite with a rather high p-type conductivity
of 220 S·cm−1 was achieved by Mg-doped CuCrO2, but the transparency is not satisfying [30]. Many
of these delafossites have been used in the applications such as OLEDs as a hole injection layer
(HIL) or hole transport layer (HTL) due to their suitable work function, good stability, and preferable
electronic properties [53,54]. While a lot of attention has been paid to such p-type TCOs, it seems very
challenging for delafossites to attain the high conductivity and high transparency that would make
them comparable to current n-type TCOs [55]. The rather low conductivity is caused by their deep
acceptor level [56], and polaronic nature [43,57]. In some cases, the transparency of a delafossite is
limited by the interband transitions [58]. The band-engineering CMVB technique was later used on
other Cu+-based materials, especially materials with chalcogens such Cu2S, Cu2Se, and Cu2Te [59].
Even though chalcogen-based TCOs have greater hole mobility due to their stronger hybridization with
Cu 3d states by the chalcogens than oxygen [10], they suffer greatly from their narrow band gap, which
limits their visible light transparency [60]. Therefore, it appears that a high-performance TCO should
include oxygen for a large band gap and chalcogen for a high hole mobility. Subsequently, layered
oxychalcogenides have been developed to demonstrate a large band gap and high hole mobility due
to the hybridization of Cu and chalcogens. Layered oxychalcogenide has alternate layers of [LnO]+

(Ln = La, Y, Pr, etc.) and [CuCh]– (Ch = S, Se, Te, etc.), in which the [CuCh]– is essential for its p-type
conductivity and band gap [61,62]. It has been reported that the conduction band minimum (CBM)
and the valence band maximum (VBM) comprise a Cu–Ch hybridized band and Cu–Ch anti-bonding
band, respectively [13,63]. This forms a direct band gap that allows a direct transition of charge
carriers, which is more useful in applications than indirect band-gap materials [10,62,63]. While
oxychalcogenides have promising properties that enable them to be used as future transparent p-type
materials, their hole mobility is around 100 cm2·V−1·s−1 or less. For applications such as thin-film
transistors (TFTs), which require materials with high mobility, cuprous oxide (Cu2O), with its high hole
mobility greater than 2.0× 102 cm2·V−1·s−1, seems more suitable [64], even though it has a small band
gap (2.0–2.5 eV) that is only transparent for part of the visible light range [65–67]. The high mobility of
Cu2O originates from the rather delocalized VBM, which is formed mainly by Cu d states, and the VB
is formed by the hybridization of O 2p and Cu 3d orbitals [68,69]. In this review, we will focus on the
discussion of three types of materials, including delafossites, oxychalcogenides, and copper oxides.

2. Preparation and Properties of Materials

2.1. Delafossite (CuMO2)

Before the realization of CuAlO2 delafossite (band gap > 3 eV) as a transparent p-type oxide [24],
p-type conductivity in oxides with large band gaps was too low to be used in any industrial applications.
As briefly mentioned above in the introduction, the low electrical conductivity is the result of the
general electronic structure in the metal oxides. This is because oxygen 2p orbitals are generally at
a much lower energy level than that of the metallic atoms in ionic metal oxides, leading to a highly
localized and deep valence band that is formed by oxygen 2p orbitals. Holes generated in the oxides
would be attracted and localized by oxygen ions, leading to very low hole mobility [8,23]. To tackle
the problem of low hole mobility, the highly localized VB or VBM need to be modified to be more
dispersed. To achieve such band modification, a design strategy named “Chemical Modulation of
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the Valence Band” (CMVB) was proposed in 1997 [23,24]. The cation selected by this strategy should
possess the electronic configuration such that its highest shell electrons should be situated at similar
energy levels as that of oxygen 2p orbitals. As shown in Figure 3a, this would introduce chemical
bonds and make the newly formed VB or VBM more spatially dispersed. In addition, the selected
cation should also have a closed shell valence state to prevent coloration in the transparent oxides
caused by d–d transitions. After carefully selecting the right cations, it was found that both Cu+ and
Ag+ possess suitable electronic configuration of d10s0, and they are at a similar energy level as that of
oxygen 2p orbitals [23]. When Cu+ or Ag+ cations are brought to oxygen ions, chemical bonds with a
certain degree of covalency would be formed, and the VBM would be formed by the anti-bonding
levels of the resulting band formation (as can be observed in Figure 3a). Besides the overlap of the
orbitals to create dispersed VBs or VBMs, the crystal structure is also important for the transparent
oxide performance for two reasons. Firstly, the tetrahedral coordination of oxygen would ensure all
eight of its electrons were involved in the four sigma bonds, as can be seen in Figure 3b [70]. As the
non-bonded electrons that are normally present in oxides would result in the generated holes having
low mobility, the absence of non-bonded electrons of oxygen would lead to a higher hole mobility.
Secondly, the crystal structure of the delafossite is also advantageous to its optical properties. For the
prototypical delafossite CuAlO2, it has a layered structure with two alternating arrays comprising of
Cu and the edge-sharing distorted MO6 octahedral unit along the vertical axis, and the two layers are
connected by the O–Cu–O bonds [43]. This reduces the cross-linking between Cu+ as compared to
that in Cu2O, which would decrease the interaction between the d10 electrons of Cu+ ions. Since it has
been reported that such d10 electrons interaction between neighboring atoms would decrease the band
gap such as the case in Cu2O where interaction among three-dimensional 3d10 electrons is present,
the layered delafossite would improve the optical transparency [11,24]. Therefore, the delafossite
based on Cu+ has been predicted to be a potential high performance candidate for p-type TCOs
in terms of its electrical and optical properties. In addition, the doping of divalent atoms at the
site of trivalent metal M is believed to greatly enhance the p-type conductivity of delafossites [11],
even though the effect of size of the trivalent metal atom on the conductivity trend still remains
under intense debate [30,71]. It should be noted that even though both Cu+ and Ag+ have a suitable
electronic configuration of d10s0, Cu+-based delafossites are usually preferred due to the following two
reasons [49]. Firstly, Ag-based delafossites are difficult to be synthesized partially due to the low free
energy of forming Ag2O, and decomposition will occur at 300 ◦C into O and Ag [72]. Secondly, it was
shown experimentally that Ag-based delafossites exhibit lower conductivity compared to Cu-based
delafossites due to unfavorable mixing between the Ag 4d and O 2p states [71,73–75].

Delafossites with the formula CuMO2 have two polytypes, namely a rhombohedral 3R and
hexagonal 2H type, depending on the stacking sequence of the Cu and double layer MO2. For the
rhombohedral 3R type, the alternative Cu layer has the same orientation between each MO2 layer
within three layers, and each unit cell has three layers with the space group R3m (No. 166) (Figure 3b).
For the hexagonal 2H type, each unit cell contains two layers with MO2 and Cu layers with 1800 offset
for each alternating Cu layer with the space group P63/mmc (No. 194) (Figure 3c). It has been reported
that certain delafossites such as CuAlO2, CuGaO2, and CuInO2 generally prefer the rhombohedral 3R
type, while other delafossites such as CuScO2, CuYO2, and CuLaO2 normally adopt a hexagonal 2H
form [76]. In addition, the former type of delafossite has an indirect band gap, and the many latter ones
possess a direct band gap [43,77,78]. It should be noted that the relative energy difference between the
two polytypes is generally rather small [79,80], so the relative phase stability for each delafossite is
still under debate [81]. Different synthesis routes and preparation conditions might result in different
symmetries, and it is not uncommon to find the prepared delafossite with a mixture of both 3R and 2H
polymorphs [82–84]. So far, most of the delafossites that have been used for p-type TCO applications
are reported to possess rhombohedral 3R structures [49,81,85–87].
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As mentioned above, CuAlO2 is the first material in the delafossite family to be prepared as a
p-type transparent oxide back in 1997 [24], even though CuAlO2 was already illustrated to possess
p-type conductivity in 1984 [88]. Since its first introduction as a promising p-type TCO, a lot of
research effort has been put on the development of delafossites with good electrical and optical
properties. Since 1997, many thin film fabrication methods have been used to prepare transparent
p-type CuMO2 films, including vacuum-based routes such as radio-frequency magnetron sputtering
(RFMS) [89,90], pulsed laser deposition (PLD) [32,91], chemical vapor deposition (CVD) [26,29], atomic
layer deposition (ALD) [92,93] and non-vacuum based routes such as the hydrothermal/solvothermal
method [94,95], sol-gel process [27,96], the spin-coating method [97,98], and the spray-coating
method [99,100]. Each thin film fabrication method has its own advantages. For example, RFMS
is relatively cost-efficient among all the vacuum-based methods, and is compatible with industrial
applications for large scalability [101,102]; PLD is better at conserving the stoichiometry ratio in the
target and producing high-quality epitaxy thin films [103–105]; and ALD has good control of both
elemental composition and thin film morphology [106,107]. While many high-performance delafossites
have been prepared via these state-of-art vacuum-based approaches, the chemical solution-based
method has attracted more and more research attention recently, as it allows for low-cost fabrication,
roll-to-roll capability, low-temperature synthesis, high throughput, and the possibility for special
nanostructures [108–110]. Today, the above-mentioned thin film approaches are used in various
research groups to prepare CuMO2, as discussed briefly below. The electrical and optical properties of
the selected high-performance delafossites are tabulated in Table 1.

CuAlO2 was firstly prepared as a transparent p-type oxide in 1997 by using PLD at a substrate
temperature of 700 ◦C [24]. The deposited thin film of 500 nm belongs to the rhombohedral 3R type,
and it has a p-type conductivity of around 1 S·cm−1 and an optical band gap of 3.5 eV with a poor
transmittance around 30% [24]. After this, the same group investigated the electronic properties
of CuAlO2 in more detail, and they obtained thin film with conductivity around 0.3 S·cm−1 and
transparency of 70% via the PLD approach [111]. It should be noted that the delafossite CuMO2 phase
is not trivial to achieve due to the unstable oxidation state of Cu+ and the complex phase diagram of Cu,
M, and O [112]. Later studies has been carried out to achieve phase-pure CuAlO2, in order to eliminate
common impurities such as CuAl2O4 and CuO [91]. In 2000, Gong et al. developed a Cu–Al–O-based
semiconductor thin film via the CVD method that is industrial compatible, and the p-type conductivity
is as high as 2 S·cm−1 [26]. As an attempt to further improve the electrical conductivity of intrinsic
CuAlO2, high-quality nanocrystalline oxide particles were prepared via the hydrothermal method,
and the deposited thin film possesses a conductivity of 2.4 S·cm−1 with a transparency at the 550-nm
wavelength around 55% [94]. Similar to other semiconducting oxides, doping is usually an effective
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way to increase electrical conductivity. Various theoretical studies has been carried out on delafossite
CuAlO2 to study its doping possibility, and Group II (alkaline earth) elements were suggested as
suitable dopants [113,114]. Detailed experimental evidence was shown by Dong et al., where 2%
Mg improves the CuAlO2 by three orders, although the final conductivity is only 0.083 S·cm−1 [115].
Besides the hard work to improve the optoelectronic properties, the conducting mechanism and
material physics were examined by both experiments and theoretical studies [87,116]. It has been
shown that the close-packed Cu+ alternative layers act as the hole transport path [117]. Due to its
anisotropic structural properties, the ab-planes have a hole mobility that is 25 times lower than the
c-axis, where the mobility along the c-axis is around 3.0 cm2·V−1·s−1 [118]. The p-type conductivity of
CuAlO2 was proven to be originated from the Cu vacancies and Cu on Al antisites in the oxides, which
have a rather small formation energy, and Cu vacancy is a shallow-level defect with an ionization
energy of 0.7 eV [87,89,118]. In contrast, O interstitials were found to be not responsible for the
p-type conductivity, as they are deep-level defects and relatively unstable [87,119]. In addition, it was
generally believed that the conduction mechanism for CuAlO2 and other delafossites is via an activated
small polaronic hopping mechanism, in which distorted lattice and trapped holes interact and move
between Cu sites, leading to relatively low hole mobility [43,57,87,116]. In order to achieve a higher
hole mobility of p-type conductivity, Yao et al. recently used an innovative way to enhance the hole
mobility of CuAlO2 with an ultra-high Hall mobility of 39.5 cm2·V−1·s−1 [120]. Polycrystalline CuAlO2

deposited on the Si substrate via RFMS was incorporated with different amount of non-isovalent
CuO. The atomic ratio of Cu2+/Cu+ is varied, from 4.2% and 9.3%, to 22.8%, and the optical band
gaps were changed from 3.79 eV and 3.72 eV to 3.46 eV, respectively. The high mobility achieved is
found to be caused by the hybridization of Cu–O dimers in the CuAlO2 lattice. The Cu–O dimers
have a VBM of 0.6 eV, which is higher than that of CuAlO2, so it would raise the VBM of the alloyed
CuAlO2/CuO. Moreover, the more diverse VBM of CuO, which was formed mainly by Cu2+ 3d9

bands, would modulate the VBM of CuAlO2/CuO and make it more delocalized, leading to a high
hole mobility. Indeed, the top gate TFT made by this alloyed CuAlO2/CuO achieved good device
performance with a high field effect mobility of 0.97 cm2·V−1·s−1, and the schematic drawing of the
TFT device with its detailed device performance is shown in Figure 4 [120].

Table 1. Summary of selected delafossites with their material properties including thickness (d),
conductivity (σ), transmittance (T), and optical band gap (Eg). ALD: atomic layer deposition, CVD:
chemical vapor deposition; PLD: pulsed laser deposition; RFMS: radio-frequency magnetron sputtering.

Delafossites Fabrication d (nm) σ (S·cm−1) T (%) Eg (eV) Ref.

CuAlO2 PLD 230 0.3 70 3.50 [111]
CuAlO2 Hydrothermal 420 2.4 55 3.75 [94]
CuAlO2 RFMS – 2.7 × 10−2 – 3.79 [120]
CuScO2 RFMS 110 30 40 3.30 [38]

CuCrO2:Mg RFMS 250 220 30 3.10 [30]
CuCrO2:Mg ALD 120 217 70 3.00 [93]
CuCrO2:Mg Spray coating 155 1 80 3.08 [121]
CuCrO2:Zn Sol-gel 205 0.47 55 3.05 [122]
CuCrO2:N RFMS 290 17 55 3.19 [123]

CuCrO2:Mg/N RFMS 150 278 69 3.52 [124]
CuCrO2 CVD 140 17 50 3.20 [125]

Cu0.66Cr1.33O2 CVD 200 102 35 3.22 [126]
CuCrO2 Spray coating 90 12 55 – [127]
CuBO2 PLD 200 1.65 85 4.50 [47]

CuGaO2 PLD 500 6.3 × 10−2 80 3.60 [32]
CuInO2:Ca PLD 170 2.8 × 10−3 70 3.90 [35]
SrCu2O2:K PLD 120 4.8 × 10−2 70 3.30 [50]
SrCu2O2 PLD 220 4.5 × 10−2 80 3.30 [128]
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Compared to the prototypical delafossite CuAlO2, CuCrO2 has been found to possess a higher
p-type conductivity, especially after divalent atom doping such as Mg. Moreover, it differs from other
delafossites by having better hybridization between M 3d states and O 2p states, and possessing better
dupability [129–131]. However, it has a poorer optical transparency due to the d-d transitions in
Cr [58]. On the other hand, the intrinsic or stoichiometric CuCrO2 has rather low p-type conductivity
of 10−4 S·cm−1, while the divalent atom doped or Cu-deficient CuCrO2 possesses a high hole
conductivity [126]. Until 2018, the CuCrO2 doped with Mg that was prepared by Nagarajan et al.
in 2001 held the p-type conductivity record for delafossites of 220 S·cm−1, but it also had a poor optical
transparency of 30% [30]. An attempt to improve the transparency for such a film decreased the
conductivity to around 1 S·cm−1. After the report of the high conductivity by that work, no following
publications could be found for this system with a high conductivity. Many other dopants, including
Fe, Ca, Ni, Sr, Ba, and Zn have since been incorporated into the CuCrO2, but their p-type conductivity
is much lower than 220 S·cm−1 [122,132–135]. Besides the substitution at the trivalent M sites, the N
atom has been used as a substitute for the O atom in CuCrO2. It was found that the p-type conductivity
increased by more than three orders to 17 S·cm−1 compared to the intrinsic state [123]. By combining
both cation and anion substitution, a new record for p-type conductivity in delafossites has been
reported to be 278 S·cm−1 in 2018 [124]. In this study, Mg and N dopants were introduced into the
CuCrO2 thin film, which served to substitute Cr and O, respectively. With the doping concentration
of 2.5% Mg and a 40% N2/(N2+Ar) ratio during sputtering, the CuCrO2 film had the record-high
conductivity of 278 S·cm−1 and optical transparency of 69%. A theoretical study using first-principle
calculation on Mg and N co-doping has also supported the effectiveness of such an approach to
improve p-type conductivity [136]. Possibly because this paper was published just recently, no other
reports on such a high conductivity for this system can be found. Besides the Mg–N doping, other
co-doping strategies have also been studied, including Mg–Fe [133], Mg–S [137], and Ag–Mg [138],
but the electrical and optical properties are not comparable to the study on Mg–N doping [124].

Recently, Cu-deficient CuCrO2 has been reported to possess a relatively high p-type conductivity,
and their optical and electrical properties are tabulated in Table 1 [109,125–127,139]. In 2017, Popa et al.
prepared highly Cu-deficient Cu0.66Cr1.33O2 with a conductivity higher than 100 S·cm−1 without
any intentional extrinsic doping, and this appears to be the highest conductivity value out of all
the delafossites without extrinsic doping [126]. However, no other papers for a similarly high
conductivity for this system have been reported since then. The origin of this high conductivity
was proposed to be the high Cu deficiency, and the missing of part of a Cu plane was observed for the
as-deposited Cu0.66Cr1.33O2 film. After high-temperature annealing at 900 ◦C, the CuCrO2 film restored
its stoichiometric ratio with Cr2O3 precipitates. The electrical conductivity dropped significantly as
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the Cu defect was healed, which suggests that the Cu deficiency defect is metastable [126]. Besides the
quest for only high-performance CuCrO2, more cost-efficient polymer substrates that are compatible
with low-temperature chemical solution methods have been developed recently, and all of the CuCrO2

films that were fabricated depicted a Cu deficiency with a high p-type conductivity [109,127,139].
It is known that high-temperature processing for these p-type oxides makes them unsuitable for
flexible applications using polymer substrates [140]. In 2018, Wang et al. investigated a low-process
temperature at 180 ◦C to prepare CuCrO2 delafossites, and p-n diode and organic photovoltaic devices
have been prepared successfully [139]. Also, several solution-based CuCrO2 thin films have been
fabricated and investigated for their applications, including p-n junctions, thermoelectric devices,
and organic solar cells [141–143]. Recently, Nie developed a solution-based CuCrO2 thin-film transistor
(TFT) device [109]. A high on/off ratio of around 105 and good field effect mobility of 0.59 cm2·V−1·s−1

was achieved.
The good performance of CuCrO2 encouraged research groups to study the effect of trivalent M

in CuMO2 delafossites in detail. It has been explained before that the presence of Cu–O–Cu linkage
in Cu2O gives a high hole mobility in Cu2O because of the hybridization of Cu and O states, but the
trivalent M is involved in the Cu–O–M–O–Cu linkage in delafossites. This would lead to a lower
mobility in delafossites. On the other hand, the higher conductivity of CuCrO2 might be caused
by the hybridization of Cr 3d states in the linkage [42]. It has also been theoretically shown that
Cr 3d states would hybridize with O 2p states to form more dispersed VBM, leading to lower hole
effective mass [131]. However, different conducting mechanisms of Mg-doped CuCrO2 have been
proposed over the years, including the p-type conduction through Cu2+/Cu+ [134] or Cr4+/Cr3+ [144].
Unfortunately, the exact role of trivalent M on the conductivity is still not fully understood yet. This
complexity is partially caused by the difficulty to locate the exact Cr 3d state energy position [134,145].
In 2013, Yokobori et al. performed resonant photoelectron spectroscopy (PES) on CuCrO2:Mg, and the
Cu–Cr 3d–3p resonant PES spectra showed that VBM was primarily composed of Cr 3d states [146].
This work suggested that the holes generated in the oxides would also be delocalized to Cr sites,
leading to a larger hole mobility. However, this report also showed that holes would be localized
onto Cu sites according to X-ray absorption spectroscopy (XAS). Nevertheless, it is generally believed
that the VBM is mainly formed by Cu 3d states, and this is consistent with the X-ray photoelectron
spectroscopy (XPS) studies [129]. Another theoretical study by Scanlon et al. suggested that the high
p-type conductivity of CuCrO2 originates from the well hybridization of Cr 3d states with O 2p states,
which would improve hole conductivity [56]. Indeed, more experimental and theoretical studies
should be carried out to investigate the mechanism of conductivity enhancement for CuCrO2 and
compare it to other delafossites. Another controversial issue for CuCrO2 is whether it is a direct or
indirect band-gap oxide [29,147,148]. It has been often reported to have an indirect band gap around
2.5–2.8 eV and a direct band gap around 3.0–3.3 eV [29], although it was also shown to possess only
a fundamental band gap of 3.2 eV [147]. A later detailed simulation study has proven that CuCrO2

indeed possesses an indirect band gap [56].
By building on the studies of trivalent M effects, CuBO2 was later proposed as a potential p-type

TCO [47]. This is because the B in CuBO2 has the smallest ionic size in the delafossite family, which
will significantly increase the optical band gap according to the theoretical studies [77,149]. Snure et al.
prepared CuBO2 film by using PLD for the first time, and a decent p-type conductivity of 1.65 S·cm−1

with a high optical transparency higher than 85% at the 550-nm wavelength was achieved [47].
However, it was noted that an indirect band gap at 2.2 eV was observed, and transmittance dropped
greatly below the 550-nm wavelength. Later studies have been carried out to prepare nanocrystalline
or microstructure CuBO2 via chemical solution methods, although the performance in terms of the
electrical conductivity and optical transmittance is not comparable to the CuCrO2 films, as discussed
before [150–152]. Another popular delafossite under intense research investigation is CuGaO2, which
was firstly prepared by Yanagi et al. in 2000 [33]. Early studies showed that CuGaO2 has rather
good optical transparency (higher than 80%) with decent electrical conductivity [32]. Due to its good
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optical properties and ease of nanostructure synthesis, CuGaO2 has been studied for the applications
of p-type dye-sensitized or perovskite solar cells [54,153–156]. For example, CuGaO2 has been used as
a HTL in the perovskite solar cell CH3NH3PbI3−xClx with a high power conversion efficiency (PCE)
of 18.51% due to the good transparency, relatively high mobility, and proper low-lying VBM [54].
The structure of both the material CuGaO2 and the whole solar cell device with its band diagram is
shown in Figure 5. As can be seen from the schematic energy band diagram, holes in the organic
semiconducting perovskite layers can be transported to the CuGaO2 layer effectively due to their
well-matched energy levels. Another promising delafossite is CuInO2, as it had been found to be a
bipolar semiconductor. By either Ca or Sn doping, CuInO2 could be made into a p-type or n-type
TCO, respectively, and all of the oxide transparent p-n homojunctions could be fabricated [35–37,149].
The rather unique bipolar property could be explained by the theory of equilibrium doping and
the doping limit rule [149,157–160]. The VBM and CBM positions directly influence the extent of
self-compensation. A higher VBM could allow for easier p-type doping, while a lower CBM could also
induce easier n-type doping. In the case of CuInO2, it has a high VBM similar to other delafossites,
contributing to its p-type dopability. However, the CBM lies at a much lower energy level compared
to other delafossites (1.48 eV lower than CuAlO2) due to the low-lying In states, leading to its n-type
dupability [149]. It is also interesting to note that delafossites with larger ionic sizes of trivalent metal
M such as CuLaO2, CuYO2, and CuScO2 could accommodate additional oxygen atoms [161]. Unlike
other delafossites with smaller M sizes such as CuCrO2, oxygen interstitials start to contribute to the
p-type conductivity in those delafossites with larger M ionic sizes [38,162]. Treating thin films such
as CuScO2 at a high temperature (400–500 ◦C) in oxygen-rich atmosphere could incorporate a large
amount of oxygen (CuScO2.5) and enhance the conductivity [38].
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Apart from the CuMO2 delafossites discussed so far, SrCu2O2 is another important Cu-based
one that is used as a p-type transparent semiconductor. It was proposed on the same basis as the
selection rules of delafossites, and it has similar working principles for the VBM formation with
delafossites or Cu2O [50]. It has a tetragonal crystal structure with O–Cu–O dumbbell bonding
(as shown in Figure 6a), which is similar to delafossites or Cu2O. These dumbbell bonds form the
one-dimension chain in a zigzag manner, so the transparency could be improved [50]. From both the
first-principle calculations and experiments, SrCu2O2 was found to possess a direct band gap of 3.3 eV,
and the VBM is formed by Cu 3d–4sp orbitals and O 2p orbitals, leading to higher hole mobility [163].
Dopant K was found to be useful for the partial substitution at the Sr site to generate holes, and the
conductivity improved from 3.9 × 10−3 to 4.8 × 10−2 S·cm−1, while the transparency at a visible range
remained largely unchanged [50]. Due to its relatively low processing or deposition temperature,
which are as low as 300 ◦C, an all-oxide transparent p-n junction (shown in Figure 6b) was made
by ZnO/SrCu2O2 with a device transparency higher than 70% and an ideality factor of 1.62 [164],
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and several UV/near-UV emitting diodes were constructed [52,165,166]. Even though the direct band
gap SrCu2O2 has a relatively strong photoluminescence (PL) peak at around 500 nm, the light emitted
by heteroepitaxial grown ZnO/SrCu2O2 was shown to be originated from the ZnO layer with an
emission peak around 380 nm [166].
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2.2. Oxychalcogenides

As briefly discussed before, the delafossite has the limitation of relatively low mobility, and its
conduction mechanism is based on polaronic hopping. It had been proposed that oxychalcogenide,
with its prototypical form, LaCuOS, would achieve better electrical performance with higher
mobility [87]. As the VBM is mainly formed by the well hybridization between Cu 3d orbitals
and S 3p orbital states, this could achieve higher mobility compared to delafossites as more spatially
dispersed VBM is formed [167]. Since the introduction of the first oxychalcogenide (LaCuOS) as a
p-type transparent material in 2000 by Ueda et al., many forms of oxychalcogenides with the formula
LnCuOCh (Ln = La, Y, Pr, etc., and Ch = S, Se, Te, etc.) have been investigated [168]. It was later reported
that doping LaCuOS with Sr could increase its conductivity to 0.26 S·cm−1 [169]. The band gap would
decrease when La was replaced with other Ln elements (Ln = Pr and Nd) [170]. Similarly, the band gap
would decrease when sulfide (S) was replaced by other chalcogens such as Se and Te, and the p-type
conductivity would increase at the same time [171]. Among the various dopants that have been used
to date, Mg dopants delivered rather good results. It has been reported that LaCuOSe doped with Mg
exhibited a p-type conductivity of 910 S·cm−1 without an indication of transparency [63]. Another
interesting oxychalcogenide is [Cu2S2][Sr3Sc2O5], where [Sr3Sc2O5] replaced the [La2O2] group. This
undoped oxychalcogenide with a wide band gap of 3.14eV has a p-type conductivity of 2.8 S·cm−1,
which is even higher than the undoped CuBO2 [47] that has a high intrinsic p-type conductivity in
the delafossite family [172]. The source of this high undoped conductivity is its extremely high hole
mobility of 150 cm2·V−1·s−1, which is higher than any other p-type TCOs, and even higher than the
highest mobility of n-type TCOs [173]. Strangely, no follow-up experimental works have been reported
on this material since that work.

LnCuOCh belongs to the tetragonal system with the space group P4/nmm, and it has a layered
structure with alternating [Ln2O2]2+ and [Cu2S2]2− layers along the c-axis, as shown in Figure 7a.
In each layer, the structure of [Ln2O2]2+ has a PbO type, while that of the [Cu2S2]2− layer has an
anti-PbO type [172,174]. It has also been reported that the [Ln2O2]2+ layer is much more resistive to
hole carriers than the [Cu2S2]2− layer, and the [Cu2S2]2− layer is indeed the hole transporting path [62].
Moreover, the two-dimensional characteristics demonstrated by the layered LnCuOCh could suggest
its similarity to the artificial multiple quantum wells (MQWs). From the energy-band calculations,
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it should be regarded as a natural MQW due to its hole confinement effect between the insulating
[Ln2O2]2+ layers, which leads to many novel electronics applications [62]. This two-dimensional
quantum confinement effect leading to the relatively large exciton binding energy of around 50 meV
for LnCuOCh, resulting in good photoluminescence (PL) performance at room temperature, which
also indicates its direct band-gap characteristic [170,175].Coatings 2019, 9, x FOR PEER REVIEW 11 of 26 
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One of the advantages of oxychalcogenides compared to other oxides is the tunability of their
physical properties [14]. By changing the chalcogen elements from S through Se to Te, the conductivity,
band gap, and other physical properties can be tuned. Usually, oxides are more robust compared to
chalcogenides, resulting in a limited ability to be tuned. Moreover, as the quaternary layered structure,
oxychalcogenides have more degrees of freedom for exploring more possibilities. In the series of
LaCuOCh, the band gaps decrease from LaCuOS of 3.14 eV via LaCuOSe of 2.8 eV to LaCuOTe of
2.4 eV [176]. This is caused by the energy-level differences among the Ch p orbitals, as the VBM
is formed by the hybridization between the Cu 3d and Ch p orbitals (as shown in Figure 8) [177].
Therefore, LaCuOTe has the highest degree of hybridization for its VBM, leading to the highest hole
mobility among all LaCuOCh. However, it should be noted that LaCuOTe has an indirect band gap
and no room temperature PL signal, and both LaCuOS and LaCuOSe have direct band gaps with
intense PL signals [171]. On the other hand, for LnCuOS series, the band gaps decrease from LaCuOS
of 3.14 eV via PrCuOS of 3.03 eV to NdCuOS of 2.98 eV [174]. Unlike the case for Ch substitution, as
discussed before, the band gap does not correlate with the energy levels of Ln orbitals in the [Ln2O2]2+

layer directly [170]. Instead, the substitution of Ln from La via Pr to Nd decreases the a-axis parameter,
and this would reduce the Cu–Cu distance. The reduction in the distance would lead to higher Cu 4s
interaction, resulting in the Cu 4s related band broadening, and thus a lower band gap that is similar
to the case of YCuOSe (shown in Figure 8) [178].
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In 2000, Ueda et al. firstly introduced LaCuOS as a potential p-type oxychalcogenide in the form
of polycrystalline thin film [168]. The intrinsic LaCuOS after post-annealing is a partially transparent
semiconducting film with a conductivity of 1.2 × 10−2 S·cm−1 and transmittance higher than 70%.
After 5% Sr doping, the conductivity was improved more than one order to 2.6 × 10−1 S·cm−1. After
optimizing the Sr doping concentration to 3%, the conductivity was further increased to 20 S·cm−1 [179].
Similarly, the incorporation of a bivalent Sr atom was also found to be effective for polycrystalline
LaCuOSe and other LnCuOCh materials for conductivity enhancement [174,180]. However, Sr doping
was shown to be ineffective for epitaxial LaCuOCh film, and Mg was found to be able to improve
the conductivity in this case [181]. As mentioned before, the Mg-doped expitaxial film LaCuOSe
by reactive solid-phase epitaxy (R-SPE) is still holding the p-type conductivity record of 910 S·cm−1

among all the p-type TCOs [63]. The less than 1% Mg doping in the 40-nm thin film attained degenerate
conduction, which cannot be achieved by Ca or Sr doping [168,179]. Due to the high hole concentration
of higher than 1021 cm−3, free carrier absorption (FCA) was present in such film, and optical absorption
in the visible light and infrared region occurs [182]. From the Drude model, the effective mass of
the holes could be calculated from FCA [183]. Moreover, such a high hole concentration is only
present in such thin films with thicknesses of 40 nm, and is absent in thicker films of 150 nm, and hole
concentration is much higher than the Mg doping concentration [63,175]. As the Cu concentration
varies according to depth in thinner films (40-nm thickness), this suggested that the origin of hole
generation is related to Cu vacancies [63]. Another interesting and surprising feature of this high
conductivity film is that the mobility after doping only dropped a little, and this is because the
hole carriers are transferred to the [Cu2Se2] layer, so the holes are not scattered by the charged
impurities [184]. However, it suffers from poor transparency due to the lower band gap of 2.8 eV and
subgap optical absorption ranging from 2.0 to 2.8 eV [13]. On the other hand, Mg-doped LaCuOSe,
which is a p-type degenerate semiconductor, does not experience a Moss–Burstein (MB) shift, which
is a blue shift of the optical absorption [185]. Instead, subgap absorption is observed, and its origin
is not yet well understood [13]. This has been suggested by the observation that the acceptor defects
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in LaCuOSe keep the Fermi level above the VBM, leading to the absence of an MB shift effect [173].
Moreover, from the theoretical calculation and perspective of cation radius, Sr should be the optimal
dopant, followed by Ca for LaCuOCh, instead of Mg [173]. While the explanation for this phenomenon
is not clear yet, it could be related to the origin of the conduction mechanism in LnCuOCh. It has
been shown that the source of p-type conductivity in LnCuOCh is Cu deficiency, where Cu vacancies
are the acceptor defects [186]. The presence of Mg does not directly contribute a hole by substituting
Ln sites; instead, it serves to enhance the Cu vacancies, leading to higher hole concentrations [13].
The electrical and optical properties of selected oxychalcogenides are tabulated in Table 2. Besides
the improvement of the properties for LnCuOCh materials, several devices were also fabricated to
demonstrate their good optoelectronic performances [187,188]. Hiramatsu et al. prepared a LED in
the blue–ultraviolet region by using LaCuOSe as the p-type material and InGaZn5O8 as the n-type
material [187]. This p-n heterojunction has demonstrated a strong and sharp electroluminescence
at the 430-nm wavelength at room temperature. Later, Yanagi et al. used LaCuOSe doped with Mg
as the hole injection layer/electrode for OLEDs [188]. The LaCuOSe:Mg that was used in that work
offered advantages over the widely used ITO, including a lower hole injection barrier, higher current
drivability, and lower threshold voltage.

Table 2. Summary of selected oxychalcogenides with their material properties including thickness (d),
conductivity (σ), transmittance (T), and optical band gap (Eg).

Oxychalcogenides Fabrication d (nm) σ (S·cm−1) T (%) Eg (eV) Ref.

LaCuOS RFMS 200 1.2 × 10−2 70 3.1 [168]
LaCuOS:Sr RFMS 150 20 60 3.1 [179]
PrCuOS:Sr RFMS 150 1.8 – 3.03 [174]
NdCuOS:Sr RFMS 150 0.32 – 2.98 [174]

LaCuOSe:Mg PLD 40 910 30 2.8 [63]
LaCuOSe PLD 150 24 – 2.8 [175]

YCuOSe (Bulk) – – 0.14 – 2.58 [178]
[Cu2S2][Sr3Sc2O5] (Bulk) – – 2.8 – 3.1 [172]

NdCuOS:Mg Dip coating 200 52.1 54.3 2.91 [189]

YCuOSe was synthesized by Ueda et al. in 2007, and its optical and electrical properties were
studied, and this lead to a deeper understanding of the effects of Ln or Ch substitution [178]. However,
YCuOSe has a rather small band gap of 2.58 eV, originating from the short Cu–Cu distances. While
it has a much higher intrinsic conductivity than LaCuOSe, its small band gap limits its applications
for transparent electronics. However, a similar compound, YCuOS, which is expected to depict a
larger band gap, has not been successfully prepared yet, so more works should be devoted to achieve
such a phase. Other than YCuOSe, another very promising oxychalcogenide [Cu2S2][Sr3Sc2O5] was
proposed and synthesized by Liu et al. in polycrystalline bulk form via solid-state reaction in the same
year [172]. It has a similar crystal structure as LnCuOCh, with the [Ln2O2]2+ layer being replaced
with the [Sr3Sc2O5]2+ layer (shown in Figure 7b). The rather ionic perovskite [Sr3Sc2O5] layer serves
to preserve the large direct band gap of 3.1 eV. As discussed above for the case of Ln substitution,
ionic trivalent ions of a larger size such as La and bivalent ions such as Ba could replace Sr and Sc,
respectively, to increase the optical band gap [10]. With the band gap enhancement, the possibility
of S substitution by Se to further improve the p-type mobility could be realized without affecting
the transparency in visible light range. More importantly, there are two cation sites for doping, Sr2+

and Sc3+, to enhance the conductivity compared to the single cation site in other oxychalcogenides.
The high hole mobility in this layered oxychalcogenide originated from the large dispersion of VBM [10].
Unfortunately, no subsequent experimental work has been reported by any research group for this
promising [Cu2S2][Sr3Sc2O5] layered material. This might partly be due to the difficulty of achieving
such a phase via conventional methods, but it is worthwhile to re-investigate such a material and
unfold its full potential.
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So far, the most popular synthesis method to prepare LnCuOCh is solid-state reaction, which
involves the mixing of precursor oxides and sulfides such as Ln2O3, Ln, Cu2O, Cu2S, and La2S3, etc.,
and sintering at high temperature for a long time. While this is the most straightforward preparation
method, some of the starting materials such as Ln2O3 and Ln are either very sensitive to air or
expensive [190]. This led to the development of an alternative synthesis method. In 2008, Nakachi
and Ueda developed a flux method to prepare single-crystal LaCuOS in a relatively large size of
3.0 × 2.8 × 0.049 mm3 with a low conductivity of 7.1 × 10-4 S·cm−1 and transmittance around
60% [191]. However, this method has the drawbacks of complexity in the experimental set-up, and long
synthesis duration. Alternatively, chemical solution-based solvothermal and precipitation/reduction
methods were proposed in 2010 and 2016, respectively, to prepare bulk LaCuOS [192,193]. Single-phase
LaCuOS could be produced, and the solvothermal method could synthesize LaCuOS at a relatively
low temperature of 200 ◦C, making it compatible with a flexible substrate such as polyethylene
terephthalate (PET). Unfortunately, the important electrical properties of such a material were not
characterized in those two reports. Then, in 2017, Zhang et al. proposed a novel two-step synthesis
method by combining a solid-state reaction with a sulfurization method [194]. Relatively stable and
low-cost starting materials including Cu2O and La2O3 were used for the first step of the solid-state
reaction to prepare CuLaO2, and then, the oxide CuLaO2 was sulfurized with S instead of the usually
used compound H2S, which is highly toxic. Single-phase LaCuOS with a relatively high resistivity
of 0.25 MΩ was produced. Besides the bulk LnCuOCh synthesis, its thin film form was normally
prepared by a vacuum-based deposition method including RFMS, and PLD of the LnCuOCh target
prepared via a solid solution method [168,175,181,195]. Such a conventional thin-film fabrication
method has the drawback of time-consuming target preparation and the necessity of the use of H2S
during film deposition for both PLD and sputtering. Later, in 2018, Zhang et al. successfully prepared
a LaCuOS film via a hydrogen-free method without using H2S, and the schematic illustration of the
fabrication process is shown in Figure 9 [196]. More importantly, the hydrogen-containing gas H2S was
normally used in the thin film deposition process prior to that work. This might impede the p-type
performance of oxychalcogenides such as H, which is known to be an n-type dopant, and might be
accidentally incorporated in the deposited thin film. Therefore, the absence of H2S in that work not
only serves to be more environmental friendly, but also improves the p-type conductivity, and the
intrinsic conductivity in that work is as high as 0.3 S·cm−1 [196].

1 

 

 

Figure 9. Schematic illustration of the LaCuOS thin film deposition process via sputtering and
post-sulfurization. Reproduced with permission from Ref. [196]. Copyright 2018 Elsevier.
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Similar to the fabrication of delafossite thin films, the chemical solution method has the
advantages of low cost fabrication, roll-to-roll capability, high throughput, and the possibility for a
special nanostructure [108–110]. To explore the possibility of a solution-based fabrication approach,
in 2018, Zhang et al. developed the first solution-based method, which is a dip-coating process with a
post-sulfurization process to fabricate oxychalcogenide NdCuOS (shown in Figure 10) [189]. As no
H-containing compound such as H2S was used during sulfurization, the possibility of hydrogen
doping in the thin film was eliminated. Moreover, the NdCuOS prepared via such a solution method
was reported to contain a large Cu deficiency. The resulting intrinsic NdCuOS film demonstrated a
high p-type conductivity of 6.4 S·cm−1, and even a higher conductivity of 52.1 S·cm−1 was achieved
after Mg doping with an acceptable optical transparency higher than 50%. Moreover, a working p-n
junction was made by using this intrinsic NdCuOS as a p-type terminal, and ZnO doped with Al as an
n-type terminal. A low turn-on voltage of 1.1 V and a rather low leakage current of 9.12 µA at −3 V
was obtained for this transparent diode [189].
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2.3. Copper Oxides

Copper oxides have two forms: cupric oxide (CuO) and cuprous oxide (Cu2O). CuO has a
tenorite structure, and Cu2O has a cubic crystal structure (shown in Figure 11). The optical band
gap of CuO is between 1.9−2.1 eV, and that of Cu2O is between 2.1−2.6 eV, and the low band
gaps makes the film non-transparent for a range of the visible light, as the visible light energy
reaches 3.1 eV [197,198]. They are both reported to be p-type oxides, but the small band gap limits
their applications. Thin-film transistor (TFT) is an important application for copper oxide as an
active material. Compared with CuO, Cu2O can theoretically exhibit a hole mobility exceeding 100
cm2·V−1·s−1, and so it receives more attention [197]. It is recently accepted that the high p-type
mobility of Cu2O is the result of the band structure of VBM [197]. It has been shown that the p-type
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conductivity of Cu2O is from the Cu vacancies [197]. At the same time, it has also been reported that
the presence of oxygen interstitials could contribute to p-type conductivity [9,199]. Cu2O films can
be fabricated by various techniques, which are mainly vacuum-based, such as RFMS [64,200–202],
ALD [203–205], and PLD [206–208]. In 2008, Li et al. reported a high Hall mobility of 256 cm2·V−1·s−1

in their Cu2O thin film deposited by RFMS at a substrate temperature of 600 ◦C, which is the highest so
far for Cu2O films [64]. Zou et al. reported a pure phase polycrystalline Cu2O by PLD at 500 ◦C, with a
Hall mobility of 107 cm2·V−1·s−1 [209]. Jeong and Aydil reported a Cu2O film with a Hall mobility over
30 cm2·V−1·s−1 by metal–organic chemical vapor deposition (MOCVD) at 400 ◦C [210]. Kwon et al.
fabricated Cu2O films by atomic layer deposition with a Hall mobility of 37 cm2·V−1·s−1 [211]. There
are limited reports on the solution-fabricated cuprous oxide without vacuum, and its performance is
far from satisfactory. Sun et al., Kim et al., and Yu et al. reported sol–gel methods to fabricate Cu2O
thin films with a Hall mobility of 8, 18.9, and 31.7 cm2·V−1·s−1, respectively [212–214].
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In 2008, Matsuzaki et al. reported the first p-type Cu2O thin film and TFT device by PLD with
a Hall mobility of 90 cm2·V−1·s−1 and field-effect mobility of 0.26 cm2·V−1·s−1 [215]. Zou et al.
also fabricated a p-type Cu2O film by PLD and obtained a Hall mobility of 107 cm2·V-1·s-1, and the
according TFT shows a field-effect mobility of 4.3 cm2·V−1·s−1 and an on/off ratio of 106, which is
the best until now for the copper oxide-based TFTs [209]. Yao et al. reported p-type Cu2O TFTs by
sputtering, which showed a field-effect mobility of 2.4 cm2·V−1·s−1 [216]. In 2013, Kim et al. presented
the first solution processed p-type Cu2O TFTs with a field-effect mobility of 0.16 cm2·V−1·s−1 [213].
Anthopoulos et al. reported Cu2O films by solution-based spray pyrolysis and incorporated them
into p-type TFTs with a mobility of 0.01 cm2·V−1·s−1 and an on/off current ratio of 103 [217]. In 2016,
Shan et al. fabricated Cu-based oxide TFTs at low-temperature by a solution-processed method with
a mobility of 0.78 cm2·V−1·s−1 and an on/off current ratio of 105 [218]. In 2017, Liu et al. reported
low-temperature solution-processed p-type CuxO thin film-based TFTs with Al2O3 dielectrics, which
presented a hole mobility of 2.7 cm2·V−1·s−1 and an on/off ratio of 105 [219]. While the device
performance is encouraging, it should be noted that the rather low band gap or optical transparency
would make Cu2O have limited applications in transparent devices.

3. Summary and Perspectives

In this review, we have illustrated and discussed the material performance of Cu-based oxides
(delafossites and copper oxides) and oxychalcogenides (LnCuOCh) for p-type TCO applications.
All three types of materials make use of the special feature of Cu+ 3d orbitals, which are close to O 2p
orbitals and could hybridize with each other to form a more spatially dispersed VBM, leading to higher
hole mobility. Moreover, oxychalcogenides LnCuOS VBM is actually formed by the hybridization
of Cu 3d orbitals and S 3p orbital states, and this allows for even higher mobility. Over the years,
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many strategies had been developed to improve the hole mobility of the materials. For example,
non-isovalent CuO has been introduced into polycrystalline CuAlO2 film to achieve the hybridization
of Cu–O dimers in the CuAlO2 lattice, and resulting in a higher Hall mobility [120]. At the same time,
many approaches have been investigated to enhance the p-type conductivity by increasing the hole
concentration. Different strategies are suitable for different applications, as certain applications such
as TFT would prefer TCO with high mobility, while other applications such as HTL in photovoltaics
need TCO with high hole concentrations and conductivity.

While many promising results have been generated recently in terms of the p-type conductivity
of Cu-based oxides and oxychalcogenides, their mobility and conductivity are still far poorer than
their n-type counterparts. In order to further improve their performance, several important issues
could be tackled. Firstly, more high-throughput computational studies could be carried out to find
potential p-type TCOs with intrinsically higher hole mobility and the ease of p-type doping. Secondly,
both cation and anion doping should be investigated in detail, as only very limited studies have been
reported for anion doping for Cu-based oxides and oxychalcogenides. Thirdly, more research efforts
should be involved in the study of some reported Cu-based oxides and oxychalcogenides with high
potential. For instance, [Cu2S2][Sr3Sc2O5] has very high undoped p-type conductivity with two cation
sites for doping to further improve both transparency and conductivity, but only one experimental
work has been reported for this material. Last but not least, the investigation of bipolar semiconductors
should be given more research attention, so that the transparent electronics based on homojunction
could be realized. With these four non-exclusive avenues for future p-type TCOs research, we believe
that more promising results should be expected.
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