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Abstract: Modern optical fiber required a double-layer resin coating on the glass fiber to provide
protection from signal attenuation and mechanical damage. The most important plastics resin
used in coating of fiber optics are plasticized polyvinyle (PVC), low/high density polyethylene
(LDPE/HDPE), nylon, and polysulfone. Polymer flow during optical fiber coating in a pressure
type coating die has been simulated under non-isothermal conditions. The flow dependent on
the wire or fiber velocity, geometry of the die, and the viscosity of the polymer. The wet-on-wet
coating process is an efficient process for two-layer coating on the fiber optics. In the present
study, the constitutive equation of polymer flow satisfies viscoelastic Phan-Thien-Tanner (PTT) fluid,
is used to characterize rheology of the polymer melt. Based on the assumption of the fully developed
incompressible and laminar flow, the viscoelastic fluid model of two-immiscible resins-layers modeled
for simplified-geometry of capillary-annulus where the glass fiber drawing inside the die at high
speed. The equation describing the flow of the polymer melt inside the die was solved, analytically
and numerically, by the Runge-Kutta method. The effect of physical characteristics in the problem
has been discussed in detail through graphs by assigning numerical values for several parameters
of interest. It is observed that velocity increases with increasing values of εD2

1, εD2
2, X1, and X2.

The volume flow rate increases with an increasing Deborah number. The thickness of coated fiber
optic increases with increasing εD2

1 , εD2
2 , and δ. Increase in Brinkman number and Deborah number

enhances the rate of heat transfer. It is our first attempt to model PTT fluid as a coating material for
double-layer optical fiber coating using the wet-on-wet coating process. At the end, the present study
is also compared with the published work as a particular case, and good agreement is found.

Keywords: optical fiber coating; double-layer coating; viscoelastic PTT fluid; analytic and
numerical simulations

1. Introduction

The analysis of non-Newtonian fluid is often encountered in many industrial disciplines [1,2].
The applications of such non-Newtonian fluids include wire and fiber coating, extrusion process,
performance of lubricants, food processing, design of various heat exchangers, ink-jet printing, polymer
preparation, colloidal and additive suspension, animal blood, chemical processing equipment, paper
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production, transpiration cooling, gaseous diffusion, drilling muds, heat pipes, etc. The non-Newtonian
fluids [3,4] are described by a nonlinear relationship between the sear stress and the rate of deformation
tensors. For this reason, several models have been proposed. There are several subclasses of
non-Newtonian fluids. Phan-Thien-Tanner fluid is one of the important fluids in this category and are
mostly used for the coating of wires and optical fiber. Therefore, in this problem, we used the PTT
fluid as a coating material for double-layer optical fiber coating.

In 1960, the modern concept of optical fiber was introduced, which gained significant importance
in the manufacturing industry. It consists of high purity silica glass fiber in which the information
travels in and forms light wave signals and the polymer coatings to protect the fiber from mechanical
damage. First, the fiber is dragged through to perform in the draw furnace, and then enters
in the cooling system. After going through the cooling system, the fiber is passed through
the double-layer coating of the polymer. The manufacturing process comes to an end as the
coating is cured by an ultraviolet lamp. Recently, two-layer coatings are used on optical fiber, i.e.,
primary (inner coating) and secondary coatings (outer coating). The inner-coating is made of a soft
coating-material to minimize the signal-attenuation due to micro bending. The secondary-coating
is made of hard coating-material that protects the primary-coating from mechanical damage.
The widespread-industrial success of optical-fibers as a practical-alternative to copper-cabling could
be attributed to these ultraviolet-curable coatings.

Two-types of coating processes were performed for two-layer coatings on bare glass fiber. These
are called wet-on-dry (WOD) and wet-on-wet (WOW) coating processes. In the WOD coating process,
fiber enters the primary coating die, followed by an ultraviolet lamp. Then, this cured fiber coating
enters the secondary coating die, again followed by an ultraviolet lamp. While in the wet-on-wet
process, the bare glass fiber passes through primary and secondary coating die and then cured by an
ultraviolet lamp. Recently, the WOW process gained significant importance in the production industry.
Herein, the WOW process is applied for the optical fiber coating.

Wire-coating (an extrusion procedure) is generally utilized as part of the polymer industry
for insulation and it protects the wire from mechanical damage. In this procedure, an exposed
preheated fiber or wire is dipped and dragged through the melted polymer. This procedure can also be
accomplished by extruding the melted polymer over a moving wire. Typical wire coating equipment
is composed of five distinct units: Pay-off tool, wire pre-heating tool, an extruder, and a cooling and
takeoff tool, as shown in Figure 1. The most common dies used for coatings are: Tubing-type dies and
pressure type dies. The later one is normally used for wire-coating and seems like annulus. That is
why flows through such die are similar to the flows through the annular area formed by a couple of
coaxial cylinders. One of the two cylinders (inner cylinder) moves in the direction of the axial, while
the second (external cylinder) is fixed. Preliminary efforts done by several researchers [5–10] used
power-law and Newtonian models to reveal the rheology of the polymer melt flow.Coatings 2018, 8, x FOR PEER REVIEW  3 of 15 
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melts in the elastic constitutive model was analyzed by Binding in Reference [11]. It also discussed
the shortcomings of the realistic modeling approach. Mutlu et al., in Reference [12], provided the
wire-coating analysis based on the tube-tooling die. Kasajima and Ito, in Reference [13], meanwhile
analyzed the wire-coating process and examined the post-treatment of the polymer extruded. They also
discussed the impacts of heat transfer on the cooling coating. Afterward, Winter, in References [14,15],
investigated the thermal effect on die, both from inside and outside perspectives. Recently, wire-coating
in view of linear variations of temperature in the post-treatment analysis was investigated by Baag
and Mishra in Reference [16].

The two-layer coatings process was also studied by many researchers. Kim et al. [17] used the
WOW process for optical fiber coating. Zeeshan et al. [18,19] used pressure coating die for the two-layer
coating in optical fiber analysis using the PTT fluid model. The same author discussed viscoelastic
fluid for the two-layer coating in the fiber coating [20]. The Sisko fluid model was used for fiber coating
by adopting the WOW process [21] in the presence of pressure type coating die.

In the present study, two-layer analysis is performed using viscoelastic fluid for optical fiber
coating phenomenon in the presence of pressure type coating die. Moreover, the computation of heat
transfer in fiber coating has significant effects on the operating variables in coating analysis. The heat
transfer also provides information to the die designers about the thermal variables that are important in
obtaining better product quality and achieving optimum operating conditions [22–25]. The closed form
solution for velocity field, thickness of the coated fiber optics, and temperature distribution has been
obtained in the first case. In the second case, the numerical solution has been obtained. The results of
both cases are compared and explained in detail. Finally, the recent result are also compared with the
published work reported by Kim et al. [17], as a particular case and good agreement is found.

2. Analysis

The WOW-type coating process is illustrated in Figure 2. The glass fiber is pulled with constant
velocity U through the primary coating die, which is filled with a primary coating resin. Afterwards,
the uncured coated fiber optics enters the secondary coating die, which is filled with a secondary resin.
After the secondary die the fiber leaves the system with two-coated layers, as displayed in Figure 2.
At the end these coated-layers, they are cured by ultraviolet lamps. Where Rw, R, and Rd are the radius
of the fiber optics, interface radius location, and radius of the die, L is the length of the die. The present
study is investigated under the assumption that the flow is incompressible, laminar, length of the die
is sufficient large, the fiber optics moves along the centerline with constant speed, negligible small
radial flow, as compared to the axial flow, because of high viscosity of the polymer-melt, the viscous
impacts are dominant, as compared to the inertial effects, axial heat conduction is negligible, and the
thermal conductivity, specific heat, melt density do not depend on the temperature and neglect the
gravitational effect. To analyze the flow, the cylindrical coordinate system (r, θ, z) is used in which r is
the radial coordinate and z is the axial coordinate of the wire means centerline of the die.
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The basic equations governing the flow of incompressible fluids are:

∇.u = 0 (1)

ρ
du
dt

= ∇.T (2)

ρcp
dΘ
dt

= k∇2Θ + Φ (3)

f (trS)S + λṠ = ηA (4)

where ρ is the density of the fluid, T is the shear stress tensor, cp is the the specific heat, D/Dt denotes
the material derivative, k is the thermal conductivity, Θ is the fluid temperature, Φ is the dissipation
function, trS is the trace of extra stress tensor, Ṡ is the upper contra-variant convicted tensor, µ is the
viscosity of the fluid, and A is the deformation rate tensor.

The shear stress tensor is given in Equation (2) and the deformation rate tensor is given in
Equation (4), defined as:

T = −pI + S (5)

A = LT + L (6)

where I is the identity tensor and the superscript, T stands for the transpose of a matrix, and L = ∇u.
The upper contra-variant convicted tensor Ṡ in Equation (4) is given by

Ṡ =
dS
dt
−
[
(∇u)TS + S(∇u)

]
(7)

The function f (trS) is given by Tanner [19–21],

f (trS) = 1 +
ελ

η
(trS) (8)

In Equation (8), f (trS) is the stress function in which ε is related to the elongation behavior of the
fluid. For ε = 0, the model reduces to the well-known Maxwell model and for λ = 0, the model reduces
to a Newtonian one.

With the above frame of reference and assumptions the fluid velocity, extra stress tensor and
temperature filed are considered as

u = (0, 0, w(r)), S = S(r), Θ = Θ(r) (9)

Using assumptions and Equation (9), the continuity Equation (1) satisfied identically and from
Equations (2–8), we arrive at:

∂p
∂r

= 0 (10)

∂p
∂θ

= 0 (11)

∂p
∂z

=
1
r

d
dr

(rSrz) (12)

k

(
d2

dr2 +
1
r

d
dr

)
Θ + Srz

dw
dr

= 0 (13)

f (trS)Szz = 2λSrz
dw
dr

(14)

f (trS)Srz = η
dw
dr

(15)
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Φ = Srz
dw
dr

(16)

From Equations (10) and (11), it is concluded that p is a function of z only. Assuming that the
pressure gradient along the axial direction is constant. Thus, we have dp/dz = Ω.

Integrating Equation (12) with respect to r, we get

Srz =
Ω
2

r +
C
r

(17)

where C is an arbitrary constant of integration.
By substituting Equation (17) in Equation (15), we have

f (trS) =
ηdw

dr(
Ω
2 r + C

r

) (18)

Combining Equations (14), (15) and (17), we obtain the explicit expression for a normal stress
component Szz as:

Szz = 2
λ

η

(
Ω
2

r +
C
r

)2
(19)

From Equations (8) and (18), we have

η
dw
dr

=

(
1 + ε

λ

η
Szz

)(
Ω
2

r +
C
r

)
(20)

Inserting Equation (19) in Equation (20), we obtain an analytical expression for axial velocity as:

dw(j)

dr
=

1
η(j)

(
Ω
2

r +
C(j)

r

)
+ 2ε

λ2

η3
(j)

(
Ω
2

r +
C(j)

r

)3

(21)

Additionally, the temperature distribution is

k(j)

(
d2

dr2 +
1
r

d
dr

)
θ(j) + Srz(j)

dw(j)

dr
= 0 (22)

Here, j = 1, 2 represents the primary layer and secondary layer flow, respectively.
The boundary condition on θ(j) is θw at the fiber optics and θd at the die wall. For the problem

displayed in Figure 1, at the fluid interface, we utilize the assumptions that the velocity, the shear
stress, and the pressure gradient along the flow direction and the temperature and the heat flux are
continuous, which are given as follows.

The relevant boundary and interface conditions [17–22] on the velocity are

w1 = U at r = Rw and w2 = 0 at r = Rd (23)

w1 = w2 and Srz1 = Srz2 at r = R (24)

The relevant boundary and interface conditions [17–22] on the temperature are

θ1 = θw at r = Rw and θ2 = θd at r = Rd (25)

θ1 = θ2 and k1
dθ1

dr
= k2

dθ2

dr
at r = R (26)
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We introduce the non-dimensional flow variables as

r∗ = r
Rw

, w∗(j) =
w(j)
U , θ∗(j) =

θ(j)−θd
θd−θw

, C∗(j) =
2C(j)

R2
wΩ

, Br(j) =
η(j)U

2

k(j)(θd−θw)
, εD2

(j) =
λUc
Rw

, X(j) =
Uc
U ,

Γ∗ = R
Rw

, Rd
Rw

= δ > 1, K = k2
k1

, j = 1, 2.
(27)

dw(j)
dr = −4rX(j) − 4C(j)X(j)

1
r − 128X(j)εD2

(j)r
3 − 384X(j)εD2

(j)C(j)r− 384X(j)C2
(j)εD2

(j)
1
r−

128C3
(j)X(j)εD2

(j)
1
r3

(28)

d
dr

(
r

dθ(j)

dr

)
− 4Br(j)X(j)

(
r2 + C(j)

)dw(j)

dr
= 0 (29)

w1(1) = 1, w2(δ) = 0 (30)

w1(Γ) = w2(Γ), Srz1(Γ) = Srz2(Γ) (31)

θ1(1) = 0, θ2(δ) = 1, θ1(Γ) = θ2(Γ),
dθ1(Γ)

dr
= K

dθ2(Γ)
dr

. (32)

where Uc = − R2
wΓ/8η(j) is the characteristic velocity scale, and εD2

(j) is the characteristic Deborah
number based on velocity scale Uc, X(j) has physical meaning of a non-dimensional pressure gradient
and Br(j) is the Brinkman number. Here, Γ is the dimensionless parameter that is the ratio of the
radius of the liquid-liquid interface to the radius of the optical fiber and j = 1, 2 stands for primary and
secondary coating layer flows, respectively.

3. Analytical Solution (Exact Solution)

Analytical solution is given in the Appendix A.

4. Numerical Solution

We shall solve the above equations numerically. For this purpose, the Runge–Kutta–Fehlberg
method is employed. The computations are carried out for δ = 2. Before proceeding to the results
and their discussion, we first validate our results of numerical solution for comparing them with the
corresponding results based on exact solution (given in Appendix A). To this end, Figure 3 is prepared,
which shows the velocity curve obtained through both numerical and exact solutions. This figure
clearly demonstrates an excellent correlation between both the solutions. This establishes the
confidence on both exact and numerical solutions and also on the results predicted by these solutions.
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5. Results of Analysis and Discussion

This section shows the impact of different emerging parameters of interest including the Deborah
numbers (viscoelastic parameter) εD2

1 and εD2
2 ,pressure gradient parameters X1 and X2, Brinkman

numbers Br1 and Br2 and the radii ration δ on the velocity and temperature profiles, volume flow
rate, thickness of the coated fiber optics, shear stress, and force required to pulling the fiber optics
(later referred as force only). This purpose is achieved graphically in 4–11. Figure 4 shows the effect
of dimensionless pressure gradient X1 and X2 on the velocity profile when εD2

1 = 0.5, εD2
2 = 1, δ = 2.

This figure shows that, as the pressure gradient parameter increases, the velocity profile increases.
The effect of Deborah number εD2

1 on velocity profile is shown in Figure 5. Since Deborah number is
the measure of the ratio of the rate of the pressure drop in the flow to the viscosity, i.e., εD2

(j) =
λUc
Rw

where Uc = − R2
wΩ/8η(j) is the characteristic velocity and Ω is constant pressure gradient in the axial

direction. That is why the velocity follows as an increasing trend with increasing Deborah number.
From Figures 4 and 5, it is clear that nonlinear behavior is occurred in the velocity profiles. Since
the velocity of fluid first increase up to a certain value and then decreases, which shows the shear
thickening effect. For low elasticity means for low Deborah number, the velocity disparity diverges a
little from the Newtonian one, however, when the Deborah number is increased, these profiles turn into
a more flattened one, showing the shear-thinning effect. It can be seen that, as ε is reduced, the profiles
turn to the Newtonian one and the result is therefore independent of D2

1 and D2
2. As X(j) =

Uc
U is the

pressure gradient in which Uc = − R2
wΩ/8η(j) is the characteristic velocity where U is the optical fiber

velocity. That is why the velocity inside the die exceeds from the fiber optics velocity due to large
values of the pressure gradient parameter.
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Figure 6 reveals that the volume flow rate increases with the increasing values of Deborah number
along with increasing radii ratio δ. The dimensionless temperature profile inside the die for various
values of emerging parameters is shown in Figures 7–9. Figure 7 depicts the effect of Brinkman number
on temperature profile. A rise in temperature is observed with increasing the Brinkman number.
Additionally, the temperature increases with an increasing Deborah number and pressure gradient
parameters, as shown in Figures 8 and 9, respectively.Coatings 2018, 8, x FOR PEER REVIEW  9 of 15 
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The thickness of the coated fiber optics or coating thickness (hc) is shown in Figures 10 and 11.
It is observed that the thickness of the coated fiber optics increases with the increasing values of
Deborah number and radii ratio δ, as shown in Figures 10 and 11, respectively. For the sake of validity,
the present work is also compared with the published work in Reference [17] and good agreement is
found by taking the non-Newtonian parameter, which tends to zero, i.e., λ→ 0 .
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6. Conclusions

To provide protection from signal attenuation and mechanical damage, optical fibers required
a double-layer resin coating on the glass fiber. Wet-on-wet coating processes are considered for
double-layer coating in optical fiber manufacturing. Expressions are presented for the radial variation
of axial velocity and temperature distribution analytically and numerically. Analytical expressions
of velocity, volume flow rate, final radius of the coated fiber optics and force required the full fiber
optics, which are reported. The effect of physical parameters such as Deborah number, dimensionless
parameter, radii ratio δ and Brinkman number has been obtained numerically. It was found that
velocity increases with increasing values of these parameters. The volume flow rate increases with
increasing Deborah number. The thickness of coated fiber optic increase with an increase in εD2

1 , εD2
2 ,

and δ. The temperature depends upon Br1, Br2, εD2
1 , εD2

1 , X1, and X2, and it increases with increasing
these parameters. For ε = 0 and λ = 0, our results respectively, reduce to Maxwell and linear viscous
model. According to the best of our knowledge, there is no previous literature about the discussed
problem, which is our first attempt to handle this problem with two-layer coating flows.

Author Contributions: Z.K. modelled the physical problem. H.U.R. solved it. I.K. and S.O.A. computed the
results. T.A. and D.L.C.C. wrote the physical discussion of the results and conclusion. All the authors equally
contributed in writing manuscript.

Acknowledgments: Authors would like to thanks YUTP 015LC0-078 for the financial support. and Deanship of
Scientific Research, Majmaah University for supporting this work.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Analytical solution
Solutions of Equations (28) and (29) corresponding to the boundary conditions

Equations (30–32) become:

w1 = −2r2X1 − 4C1X1 ln r− 32εDe2
1r4 − 192X1C1εDe2

1r2 − 384X1C1
2εDe2

1 ln r+
64C1

3X1εDe2
1

1
r2 + C3

(A1)

w2 = −2r2X2 − 4C2X2 ln r− 32X2εDe2
2r4 − 192X2C2cεDe2

2r2 − 384X2C2
2εDe2

2 ln r+
64C2

3X2εDe2
2

1
r2 + C4

(A2)

Volume flow rates are

Q1 = X1

( (
C1 + 96C1

2εDe2
1 +

1
r C3

)(
Γ2 − 1

)
−
(

1
2 + 48C1εDe2

1

)(
Γ4 − 1

)
− 16

3 εDe2
1
(
Γ6 − 1

)
+ 64C1

3εDe2
1 ln Γ

−2
(
Ka + 96C1

2εDe2
1
)
Γ2 ln Γ

)
(A3)
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Q2 = C4

(
δ2 − Γ2

)
− 1

2 X2
(
1 + 96C2εDe2

2
)(
δ4 − Γ4

)
− 16

3 X2εDe2
2

(
δ6 − Γ6

)
− 2C2X2

(
1 + 192εDe2

2
)
×(

δ2 ln δ
−Γ2 ln Γ

)
+ 64C2

2εDe2
2(ln δ− ln Γ)

(A4)

Thickness of the coated fiber optics of both layers is [17–21]

R1 =


1− 2

15Γ 2


96εDe2

1
(
−Γ + Γ6 + 10(−1 + Γ)C1

(
Γ + Γ2 + Γ3 + 6C1 ln Γ− C1

2)X1
)
+

5Γ

 −3(−1 + Γ)C3

+6 ln
(
−1 + Γ2)

C1X1 + 2
(
−1 + Γ3)C1






1/2

(A5)

R2 =

1− 1
15Γ

2


15δΓ(−δ+ Γ)C4 + 6


5Γln δ(δ− Γ)(δ+ Γ)C3+

16εDe2
2

 δ6Γ− δΓ6 + 10(δ− Γ)C3(
δΓ
(
δ2 + δΓ + Γ2

)
+

6ΓKln δc − C3
2

) 
X2

+10δΓ
(
δ3 − Γ3

)
X2







1/2

(A6)

Temperature profiles for both layers are

θ1 = −4Br1 X2
1

(
− 1

4 r4 − 3Kar2 − 32
9 εDe2

1r6 − 24KaεDe2
1r4 − 96K2

aεDe2
1r2 − 128K3

a X1εDe2
1 ln r− 4K2

a ln r−
8εDe2

1r4 − 96K2
aεDe2

1r2 − 384K3
aεDe2

1 ln r + 32K3
aεDe2

1
1
r2

)
+D1 ln r + D2,

(A7)

θ2 = −4Br2 X2
2

(
− 1

4 r4 − 3C3r2 − 32
9 εDe2

2r6 − 24C3εDe2
2r4 − 96C3

2εDe2
2r2 − 128C3

3X2εDe2
2 ln r− 4C3

2 ln r−
8ε2De2

2r4 − 96C3
2εDe2

2r2 − 384C3
3εDe2

2 ln r + 32C3
3εDe2

2
1
r2

)
+D3 ln r + D4,

(A8)

where Ka, Kb, Kc, Kd, D1, D2, D3 and D4 are all constants given below:

C1 = −H1
3 −

2
1
3 (−H1

2+3H2)

3
(
−2H1

3+9H1 H2−27H3+3
√

3
√
−H1

2 H2
2+4H2

3+4H1
3 H3−18H1 H2 H3+27H3

2
) 1

3
+

(
−2H1

3+9H1 H2−27H3+3
√

3
√
−H1

2 H2
2+4H2

3+4H1
3 H3−18H1 H2 H3+27H3

2
) 1

3

32
1
3

,

C3 = 1 + 21 + 32εDe1
2 + 192C1εDe1

2 − 64C1
3X1εDe1

2, C2 = C3,

C4 = 2δ2X2 + 4C3X2 ln δ+ 32X2εD2
2δ4 + 192X2C3ε2De2

2δ2 + 384X2C3
2εD2

2 ln δ− 64C3
3X2εD2

2 1
δ2 ,

D1 = 4Br1 X2
1(K((ln Γ− ln δ) + Γ))

 1
4 Γ4 + 3C1Γ2 + 32

9 εDe1
2Γ6 + 24C1D1

2Γ4 + 96K2
aεDe2

1Γ2+

128C1
3εDe1

2 ln Γ + 4C1
2 ln Γ + 8εDe1

2Γ4 + 96C1
2εDe1

2Γ2+

384C1
3εDe1 ln Γ− 32C1

3D1
2 1

Γ2

+

4Br2X2
2

((
Γ−

(
1
Γ + 1

Γ2 ln Γ

))) 1
4 Γ4 + 3C3Γ2 + 32

9 εDe2
2Γ6 + 24C3εDe2

2Γ4 − 96C3
2εD2e1Γ2+

128C3
3
bεDe2

2 ln Γ + 4C3
2 ln Γ + 8εDe2

2Γ4 + 96C3
2εDe2

2Γ2+

384C3
3εD2e2 ln Γ− 32C3

3εDe2
2 1

Γ2

+

+4Br1X2
1

1
Γ2 lnδ

(
1
4 + 3C1 +

32
9 εDe1

2 + 32C1εDe1
2 + 192C1

2εDe1
2 − 32C3

1εDe1
2
)

,

D2 = 4Br1X2
1

1
Γ2 lnδ

(
1
4 + 3C1 +

32
9 εDe1

2 + 32C1εDe1
2 + 192C1

2εDe1
2 − 32C3

1εDe1
2
)

,

D3 = 4Br1X2
1(Γ(ln Γ− ln δ))

 Γ3 + 3C1Γ + 64
3 εDe1

2Γ5 + 96εDe1
2Γ3+

192C1
2εDe1

2Γ + 128C1
3εDe1

2 1
Γ + 4C1

2 1
Γ+

32εDe1
2Γ3 + 192C1

2εDe1
2Γ + 384C1

3εDe1
2 1

Γ + 64C1
2εDe1

2 1
Γ3


+4Br1X2

1
1

lnδ

(
1
4 + 3C1 +

32
9 εDe1

2 + 32C1εDe1
2 + 192C1

2εDe2
1 − 32C1

3εDe2
1

)
+ 4Br2X2

2

(
ΓK(ln Γ− ln δ)

+ 1
lnδ

)
+(

1
4 Γ4 + 3C3Γ2 + 32

9 εDe2
2Γ6 + 24C3εDe2

2Γ4 − 96C2
3εDe2

2Γ2 + 128C3
3εDe2

2 ln Γ + 4C2
3 ln Γ + 8εDe2

2Γ4

+96C2
3εDe2

2Γ2 + 384C3
3εDe2

2 ln Γ− 32C3
3εDe2

2 1
Γ2

)

D4 = 4Br2X2
2

(
1
4 Γ4 + 3C3Γ2 + 32

9 εDe2
2Γ6 + 24C3εDe2

2Γ4 − 96C2
3εDe2

2Γ2 + 128C3
3εDe2

2 ln Γ+
4C2

3 ln Γ + 8εDe2
2Γ4 + 96C2

3εDe2
2Γ2 + 384C3

3εDe2
2 ln Γ− 32C3

3εDe2
2 1

Γ2

)
− ΓD3,
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where

H1 = A2+B2
A3+B3

, H2 = A1+B1
A3+B3

, H3 = G
A3+B3

, A1 = −4X1 ln Γ− 192X2εDe2
2 − 192X1εDe2

1Γ,

A2 = −384X1εDe2
1 ln Γ, A3 = 64X1εDe2

1

(
1

Γ2 − 1
)

, B1 = 4X2 ln Γ + 192X2εDe2
2Γ2,

B2 = 384X2εDe2
2 ln δ+ 192X2εDe2

2Γ2B3 = −64X2εDe2
2Γ2
(

1
δ2 +

1
Γ2

)
,

A1 = −4X1 ln Γ− 192ε1De1
2Γ + 192εDe1

2 A2 = −384X1εDe1
2 ln Γ,

A3 = 64X1εDe1
2 1

Γ − 64X1εDe1
2, B1 = 4X2 ln Γ + 192X2εDe2

2Γ2 − 192X2εDe2
2δ2 − 4X2 ln δ,

B2 = −384X2 εDe2
2 ln Γ + 384X2εDe2

2 ln δ, B3 = −64X2εDe2
2 1

Γ2 − 64X2εDe2
2 1
δ2 ,

G = 1 + 2X1 + 32X1εD1
2 − 2X2δ

2 − 2X1Γ2 − 32X2εDe2
2δ4 − 32X1εDe1

2Γ4 − 2X2Γ3.
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