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Abstract: The coating of polymeric substrate polyetheretherketone (PEEK) with silver nanoparticles
(AgNPs) was carried out by a wet chemical route at room temperature. The coating process was
developed from the Tollens reagent and D-glucose as reducing agent. The resulting composite
exhibited antimicrobial activity. The PEEK films were coated with a single layer and two layers
of silver nanoparticles in various concentrations. The crystallographic properties of the polymer
and the silver nanoparticles were analyzed by X-ray diffraction (XRD). Fourier transform infrared
spectra (FTIR) show the interaction between the silver nanoparticles with the polymeric substrate.
Transmission electron microscope (TEM) images confirmed the obtaining of metallic nanoparticles
with average sizes of 25 nm. It was possible to estimate the amount of silver deposited on PEEK
with the help of thermogravimetric analysis. The morphology and shape of the AgNPs uniformly
deposited on the PEEK films was ascertained by the techniques of scanning electron microscopy (SEM)
and atomic force microscopy (AFM), evidencing the increase in the amount of silver by increasing
the concentration of the metal precursor. Finally, the antibacterial activity of the films coated with
Ag in Escherichia coli, Serratia marcescens and Bacillus licheniformis was evaluated, evidencing that the
concentration of silver is crucial in the cellular replication of the bacteria.
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1. Introduction

Currently, bacterial growth is the main problem of air purification systems such as heaters,
air-conditioning and ventilators that are used indoors [1,2]. Some microorganisms are adhered to and
absorbed by the parts of the air purifying systems which return to the environment under operational
conditions, spreading pathogenic bacteria not only to humans but also to plants and animals [3].
Among the bacteria that are found in the environment and are scattered by air purifying equipment are
Escherichia coli, Bacillus subtilis, Staphylococcus aureus and others such as Serratia marcescens that cause
diseases such as gastroenteritis, urinary tract infections, meningitis and brain abscesses, in addition
to pathogenic bacteria that also affect plants and cause cell death such as Bacillus licheniformis [4,5].
The alternative to this problem for a long time, has been the combination of air-purifying equipment
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filters with nanocoatings that inhibit bacterial growth, using various polymeric materials such as
polyimide, polyurethane, polyacrylonitrile and polysulfone, which has generated contamination
and low resistance to exposure of the various environmental effects [6,7]. For this reason, one of
the polymers that promises to be efficient as a multifunctional material in the design of filters
of air purification equipments is polyetheretherketone (PEEK). This semicrystalline thermoplastic
polymer formed by an aromatic chain, combines ketone and ether functional groups between the aryl
rings with a mechanical strength stable at high temperatures and resistance to most inorganic and
organic substances in comparison with other polymers derived from the polyaryletherketone family
(PAEK) [8–10]. These characteristics make PEEK an ideal material for various applications such as
components in filters for air decontamination and as complements in decontaminating systems, using
effective coatings based on silver nanoparticles with high activity in low concentrations [11–14]. In this
sense, several methods have been used to functionalize the PEEK surface, among the most common
being the sputtering and plasma deposition techniques [9,15,16]; however, deposition by means
chemical routes have attracted great interest due to its simplicity and low cost [17]. Among chemical
methods, the deposition of silver nanoparticles using the Tollens reagent has been studied for its
simplicity, fast deposition and control of nanoparticle size, the use of non-toxic reagents being one
of the most clear benefit of this procedure [18]. This green method allows a silver surface formed
by homogeneously distributed nanoparticles in the substrate to be obtained, where the reduction of
the ammoniacal silver complex takes place when a monosaccharide as glucose is used as a reducing
agent. This results in high antibacterial effectiveness due to the development of small silver (Ag)
particle sizes [19,20].

Under the above considerations, the present study aims to obtain polyetheretherketone films
coated with various concentrations of silver by a simple chemical reduction method, which contributes
to the development of deposition methodologies of silver nanoparticles in polymeric substrates,
without the need to use expensive equipment and avoiding the use of polluting reagents. In the same
way, the synthesis method using diamonical complexes of silver and glucose as a green reducing agent
has the advantage of controlling the size and distribution of the AgNPs coated in the PEEK polymer,
favoring antibacterial activity against E. coli, S. marcescens and Bacillus licheniformis for potential
biomedical applications.

2. Materials and Methods

2.1. Synthesis of Silver Nanoparticles and Coating of Polyetheretherketone (PEEK) Films

Polyetheretherketone (PEEK) films were coated with 1 and 2 layers of silver nanoparticles
(AgNP), reducing ammoniacal silver complexes with glucose in aqueous medium at room temperature.
AgNO3 (99.9%) was purchased from Sigma-Aldrich (Saint Louis, MO, USA), NaOH (99%), Ammonia
(25%) and D-Glucose (99%) was obtained from Merck (Darmstadt, Germany). The PEEK film used
was Sigma-Aldrich with a thickness of 0.006 mm. The PEEK film was washed with sulfochromic
solution (concentrated sulfuric acid with potassium dichromate 90%/10%), for 5 min to remove
contaminants in the polymer and to facilitate the coating with silver nanoparticles. For the synthesis
of silver nanoparticles, Tollens reagent was used [21,22]. Stoichiometric amounts of silver nitrate
in different concentrations were available in a glass reactor previously washed with sulfochromic
solution. Subsequently a NaOH dissolution (0.5 mol/L) was added to the above solutions producing
silver monoxide, as shown in Equation (1) [23,24].

2AgNO3 (aq) + 2NaOH(aq) → Ag2O(s) + 2NaNO3(aq) + H2O(aq) (1)

The precipitated silver monoxide was completely dissolved with ammonia (2 mol/L), producing
the Tollens reagent (Equation (2)) [25].

Ag2O(s) + 4NH3(aq) + 2NaNO3 + H2O(aq) → 2Ag(NH3)2NO3(aq) + 2NaOH(aq) (2)
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The silver nanoparticles (Ag0) were obtained by chemical reduction of the silver diamine complex
with D-glucose (1 mol/L) as a reducing agent, forming gluconic acid [26]. Equation (3) summarizes the
previous reaction. At this stage, the PEEK films were immersed in the solution containing the AgNPs
in three different concentrations (0.04, 0.08 and 0.12 mol/L). The immersion was done for 5 min at
room temperature and under agitation at 250 rpm; this favored the random sequential adsorption
of the silver particles on the polymer surface, thus obtaining the PEEK/Ag0.04, PEEK/Ag0.08 and
PEEK/Ag0.12 systems with both single and two layers [27,28]. It must be clarified that the two-layer
systems were obtained by repeating the aforementioned procedure for a single-layer film.

2[Ag(NH3)2]
+
(aq) + RCHO(aq) + 2OH− → 2Ag(s) + RCOOH(aq) + 4NH3(aq) + H2O(aq) (3)

The PEEK films coated with one and two-layer silver nanoparticles were dried at 100 ◦C for
2 h to remove remaining water solvent. In this way, the synthesis route using the Tollens reagent
and reducing monosaccharides such as glucose contributes to the progress in the deposition of metal
nanostructures in polymeric films by chemical methods.

2.2. Characterization of PEEK Films Coated with AgNPs

X-ray diffraction (XRD) measurements of all the coated films were made on a PANalytical X’Pert
PRO MPD diffractometer (Bogotá, Colombia), equipped with an Ultra-Fast X´celerator detector and
a Bragg–Brentano configuration, using the Cu Kα radiation (λ = 1.5418 Å) between 20◦ and 90◦.
The measurements were developed with an acceleration voltage of 40 kV and a current of 20 mA.
The average size of the crystalline domains was determined with the Debye–Scherrer equation
using the highest intensity peak in the diffraction pattern of each sample [29]. The infrared (IR)
spectra were obtained in the Thermo Scientific Nicolet iS50 spectrometer, by the technique of total
attenuated reflection (ATR). The IR spectra were processed with a resolution of 4 cm−1 in the average
IR (4000–400 cm−1). The samples were placed directly on the cell and pressed to carry out the analysis.
The spectra were collected and manipulated with the OmnicR software (version 6.1).

Transmission electron microscopy (TEM) images were obtained from a Tecnai F20 Super Twin
TMP (Medellín, Colombia) of a Field Electron and Ion (FEI) microscope, equipped with a system
Ion Milling PIPS II Model 695 GATAN (Medellín, Colombia) and Ultramicrotome EM UC7 LEICA
(Medellín, Colombia). The thermal analysis was developed in a Seteram Thermobalance equipment.
For the analysis, 5 mg of each sample was weighed and placed in an alumina crucible. The sample was
subjected to a heating rate from 25 to 700 ◦C, under an atmosphere of N2 with a flow of 20 mL/min.

The morphology of the AgNPs on the PEEK films were analyzed by scanning electron microscopy
(SEM) without coating in a JSM-6490 JEOL microscope (Tokyo, Japan), with an acceleration voltage
of 15 KV, using secondary electron scattering under high vacuum conditions. Energy-dispersive
X-ray spectroscopy (EDS) microanalysis was performed on an Inca Energy 250 EDS System LK-IE250
from Oxford, England, UK, equipped with a silicon detector for light elements and resolution of
138 eV. The surface analysis of PEEK films coated with silver was performed in an atomic force
microscope (AFM) Asylum Research, model MFP-3D-BIO. The AFM images were analyzed with the
Gwyddion software (version 2.49).

2.3. Antibacterial Activity

The antibacterial activity of the films of PEEK with a coating of AgNPs was studied by the
disc diffusion method, for which 100 µL of bacterial suspensions in nutrient broth (this medium
contains, in g/L: meat extract, 1.0; yeast extract, 2.0; peptone, 5.0 and sodium chloride, 5.0) of
Escherichia coli, Serratia marcescens and Bacillus licheniformis with optical density of 0.01 (OD 600)
were spread homogeneously on the nutrient agar plate (meat extract B, 3.0 g/L; peptone, 5.0 g/L and
agar, 15.0 g/L) [30]. PEEK discs of 6 mm diameter and 0.006 mm thickness with a coating of AgNPs in
different concentrations were used. The samples were placed on the agar plate and were kept in the



Coatings 2019, 9, 91 4 of 17

incubator at 37 ◦C for 24 h [16]. Each antibacterial test was evaluated in triplicate. The ImageJ software
was employed to measure the diameter of the zone of inhibition of the AgNPs deposited on the PEEK
under bacterial activity.

3. Results and Discussion

3.1. X-ray Diffraction (XRD)

Figure 1a shows the X-ray diffraction patterns of the PEEK/Ag0.04, PEEK/Ag0.08 and
PEEK/Ag0.12 samples with a coating layer. The semicrystalline structure of the PEEK polymer
is revealed with the 2θ = 16◦, 23◦ and 30◦ positions, which are assigned to the (110), (220) and (211)
facets, respectively [31–33]. The diffraction peaks found at 38◦, 44◦ and 64◦ corresponding to the
(111), (200) and (220) crystal planes of the face-centered cubic structure of the silver (FCC), which are
related with JCPDS (No. 89-3722), confirmed the successful reduction process of the Tollens reagent
with D-glucose to obtain the first coating layer of the silver nanoparticles in the polyetheretherketone
films [22,34,35]. Figure 1b shows the X-ray diffraction patterns of the samples coated with two layers
of silver. The crystallinity of the PEEK film is preserved with the deposition of the second layer of
silver on the surface of the polymer since there is no decrease in the intensity of the peaks. Similarly,
the intensity of the characteristic metallic silver signals is maintained and increased with the second
coating process without detriment to the metallic surface.
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Figure 1. X-ray diffraction (XRD) patterns of polyetheretherketone (PEEK)/Ag0.04, PEEK/Ag0.08 and
PEEK/Ag0.12 samples (a) with one coating layer and (b) with two coating layers.

The average sizes of the crystalline domains (L(111)) of the silver nanoparticles deposited on the
PEEK polymer surface were calculated with the Debye–Scherrer formula. The resulting values are
listed in Table 1.

L(111) =
kλ

βcosθ
, (4)

where k is the shape factor (0.9), λ is the X-ray wavelength, β is the full width at half maximum
(FWHM) in radian, and θ is the Bragg angle in radians corresponding to the most intense (111)
diffraction peak [36,37].

Table 1. Data derived from XRD and transmission electron microscopy (TEM) analyses.

Sample Average Crystal
Size by XRD (nm) FWHM d-Spacing

(nm)
Average Crystal

Size by TEM (nm)

PEEK/Ag0.04 23.40 0.3402 0.233 9.1
PEEK/Ag0.08 25.93 0.3066 0.234 9.7
PEEK/Ag0.12 26.48 0.3003 0.234 10.1

FWHM: Full width at half-maximum of the XRD peak.
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3.2. Fourier Transform Infrared (FTIR) Spectroscopy

The Figure 2 shows the infrared spectrum of PEEK uncoated and coated with all samples obtained.
Figure 2a shows the infrared spectra of PEEK polymer substrates with 1 coating layer. The Fourier
transform infrared (FTIR) spectrum of the original PEEK film shows a band at 1647 cm−1 of the
conjugated ketone stretch (C=O), the bands at 1587, 1480 and 1410 cm−1 corresponding to stretching
vibrations of the conjugated carbons on the chains’ aromatics. The signal located at 1305 cm−1 is
characteristic of the flexion between the ketone group and the adjacent carbons. In 1275 cm−1 the
stretching signal of the ether group is shown. The bands between 1215 and 1100 cm−1 are attributed
to the deformation flexion in the plane of the C–H bond. The signal at 1008 cm−1 can be attributed
to the stretched vibrations of the diphenylether bonds of the p-substituents on the aromatic ring
(Ar–O–Ar). From 950 to 765 cm−1 corresponds to the flexure of deformation outside the plane of the
C–H bond [38–40].
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Figure 2. Fourier transform infrared (FTIR) of PEEK/Ag0.04, PEEK/Ag0.08 and PEEK/Ag0.12 samples
(a) with one coating layer and (b) with two coating layers.

The main signals of the polyetheretherketone are present in all the samples obtained with a single
layer, because the silver deposited in the polymer is small and does not cover the entire film. The signal
in 3310 cm−1 corresponds to OH groups of NaOH remanent molecules, after the synthesis process
of the AgNPs. The OH groups are not water molecules, since the films formed were completely
dried. Likewise, in 3060 cm−1 the absorption band corresponding to the stretch of the C–H bond
of the aromatic ring carbon is evidenced, which loses intensity in the whole spectrum of the coated
films, this may be due to the interactions that are generated between the silver nanoparticles and the
PEEK [41]. On the other hand, there are no signs of nitro groups (N–O), so it can be said that there are
no residual nitrates after the process of synthesis and drying of the formed films.

The FTIR spectra of PEEK films with two layers of coating are shown in Figure 2b. The absorption
bands below 3000 cm−1 of the PEEK polymer are lost, and new characteristic signals of the silver
nanoparticles appear which increase the intensity with the proportion of silver deposited, confirming
an optimal distribution of silver on the surface of the polymer. The absorption band at 1070 cm−1 is
characteristic of the presence of AgNPs [42,43]. The bands at 1650 and 1400 cm−1 are of the ketone
bond and of the conjugated carbons in the aromatic ring, respectively, which are empty spaces of
the polymer where no silver was deposited. In the IR spectrum of the PEEK/Ag0.12 sample with
two layers, the characteristic signals of the organic compounds are not present, and this is only the
characteristic of the interaction of the silver with the polymer, demonstrating the total coating of the
surface area of the polymeric substrate [44].
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3.3. Transmission Electron Microscopy (TEM) Analysis

The transmission electron microscopy images of PEEK polymers coated with two layers silver
nanoparticles are shown in Figure 3. The analysis of the TEM images showed a distribution of the size
of the crystals by means of the ImageJ software; this is shown in Figure 4. The results derived from the
statistical analysis corroborated the average sizes of the silver crystals deposited in the polymer and
evidenced by the X-ray diffraction patterns using the Debye–Scherrer equation.Coatings 2018, 8, x FOR PEER REVIEW  6 of 17 
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The comparison among particle sizes obtained by XRD and TEM are presented in Table 1.
The experimental results shown that the silver nanoparticles with the polymer were coated on average
by less than 30 nm. Based on previous studies [45], particle dimensions play an important role in the
antibacterial activity of the coating and, therefore, this must be monitored in the final coating assembly.
In the same way, the synthesis of silver nanoparticles using the Tollens reagent and an economic
reducing agent, such as D-glucose, allowed control of the size and shape of the nanoparticles deposited
in the PEEK [46]. In the same way, when different concentrations of AgNO3 are used, the increase
in the size of the synthesized nanoparticles is related to the amount of ammonia. By increasing the
concentration of silver in the different samples, the amount of ammonia required for the reaction is
also increased, thus favoring the stabilization of the complex [Ag(NH3)]+. This phenomenon decreases
the amount of Ag+ species, which causes the decrease of stable silver nuclei in the reduction process
with glucose, and induces the formation of large particles in the growth stage [47–49].

Figure 5 shows the transmission electron microscopy images of the PEEK/Ag0.12 sample cut
with ultramicrotome at different magnifications. In Figure 5a,b the obtaining of uniformly sized
silver nanoparticles adhered to the PEEK polymer is corroborated by electrostatic forces generated
by the high charge of the reduced silver in the synthesis process [17,50]. Likewise, the AgNPs form
agglomerates of regular size, which extend throughout the PEEK substrate surface. Figure 5c shows the
resistance to friction applied by the diamond tip in the cut with ultramicrotome on the polymer coated
with silver nanoparticles. The cut is made in a transversal way allowing the PEEK film (thickness 6 µm)
and the metallic silver adhered to the polymer by electrostatic interactions [51] to be observed.
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Figure 5. TEM images of the sample PEEK/Ag0.12 with two layers. (a) 100 nm; (b) 200 nm; (c) 1 µm.

3.4. Thermogravimetric Analysis (TGA)

Thermogravimetric analysis (TGA) of all samples is shown in Figure 6, in which it is clear that
PEEK as a thermoplastic polymer exhibits a thermal decomposition above 500 ◦C. The amount of silver
deposited is determined from the difference of pure PEEK and modified PEEK thermograms [52,53].
The temperature at which the difference was taken was 675 ◦C, since at this temperature the polymer is
decomposed as shown in Figure 6 and as reported in the literature [54]. In this sense, for the polymers
coated with a single layer of silver nanoparticles in concentrations of 0.04, 0.08 and 0.12 mol/L the
amount of silver was 5.9%, 8.12% and 10.8% silver, respectively.
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Figure 6. Thermogravimetric analysis (TGA) of uncoated PEEK, PEEK/Ag0.04, PEEK/Ag0.08 and
PEEK/Ag0.12 samples (a) with one coating layer and (b) with two coating layers.

The percentages of silver deposited in the polymers coated with two layers of silver nanoparticles
were 16.1, 18.5 and 20.99% Ag for the concentrations of 0.04, 0.08 and 0.12 mol/L, respectively. Due to
the aromatic structure of the PEEK, a higher amount of residues are obtained (more than 60%) after
heating at to 700 ◦C [31]. This analysis contrasts with the results of X-ray diffraction and FTIR in
terms of the proportional amount of silver deposited in the PEEK, but confirm the thermal stability of
materials above 450 ◦C.

3.5. Morphological Evolution and Particle Distribution by Scanning Electron Microscopy (SEM)

The deposition and dispersion of AgNPs in the PEEK was evaluated by scanning electron
microscopy at different resolutions. Figure 7 shows the SEM images of different PEEK films with
a silver layer on the surface, in which a proportional increase in the amount of silver deposited in the
polymer is evidenced by the concentration of AgNO3 used. Considering that the silver nanoparticles
are conductive, the SEM measurements were performed without sample preparation, i.e., no gold or
graphite coating was applied before sample measuring. Consequently, the black areas correspond to
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the polymer which is not conductive, whereas the white and gray points correspond to silver particles.
The homogeneity and distribution of the AgNPs deposited on the polymer surface are quite similar
to other synthesis methods; this was possible because experimental conditions allowed controlling
the amount of deposited particles, and thus, the formation of agglomerates that increase the density
of the solids. The SEM images are congruent with the TEM images shown in Figure 5, in which
it is shown that the particles with size greater than 80 nm are composed of aggregates of smaller
silver nanoparticles.
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Figure 7. Scanning electron microscopy (SEM) images of the polyetheretherketone coated with one
layer of silver nanoparticles in concentrations of (a) 0.04 mol/L, (b) 0.08 mol/L and (c) 0.12 mol/L.

Figure 8 shows SEM images of the PEEK/Ag0.04, PEEK/Ag0.08 and PEEK/Ag0.12 systems with
two silver layers. The evolution of the PEEK coating is identified by increasing in the concentration
of silver nanoparticles. The empty black areas shown in Figure 7 correspond to PEEK; these are
homogeneously filled by silver particles, which cover most of the polymer surface as shown in Figure 8
(when two layers were applied). In the PEEK/Ag0.08 and PEEK/Ag0.12 systems, the appearance of
small agglomerations is favored, which were formed by the greater amount of silver ions available in
the reaction medium. In this sense, SEM micrographs correlate with the results of XRD, FTIR and TGA,
in terms of increasing the proportion of silver on the surface of the polymer, showing the efficiency of
the simple chemical reduction method in the deposition of metallic nanoparticles.
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3.6. Energy-Dispersive X-Ray Spectroscopy (EDS) Microanalysis

EDS microanalysis shown in Figure 9, was performed to determine the elemental composition
of the PEEK/Ag0.08 system with a single and two layers of AgNPs. The analysis was performed on
an area of 600 µm and 500 µm. The analysis was performed on the PEEK/Ag0.08 sample since it was
the one that presented the most intense OH absorption band. According to this analysis, it is clear that
the present synthesis method provides a high level of purity of the silver nanoparticles deposited in
the PEEK polymer, since a residue such as NaOH is in a proportion less than 1%. In the same way,
the elemental analysis does not evidence the presence of nitrogen atoms associated with remaining
nitrate ions.

The weight percentage of silver shown by the EDS spectra is proportional to the result of TGA,
since it is evident that the amount of silver increases with the second layer of silver nanoparticles
deposited in the polymer. The difference between TGA and EDS analysis is that in the EDS, only a small
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and surface portion of the sample is analysed, while in the TGA a more quantitative portion is taken,
being a more relevant result.Coatings 2018, 8, x FOR PEER REVIEW  9 of 17 
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Figure 9. Energy-dispersive X-ray spectroscopy (EDS) microanalysis of the sample PEEK/Ag0.08 with
a single (a) and with two layers (b).

3.7. Atomic Force Microscopy (AFM) analysis

Surface analyses of the coated Polyetheretherketone films were evaluated by AFM. Figure 10
shows AFM images of the systems with the first coating layer. The images confirm the homogeneity of
the nanoparticles deposited in the PEEK substrate, just as the SEM imaging previously revealed.
Likewise, the height of the images is consistent with the TEM analysis, where a coating of the
nanometric order with excellent particle distribution on the surface of the polymer was obtained.
Figure 10b shows a collapse caused by the piezoelectric tip of the equipment, because the PEEK film
and the silver coating are very thin.
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Figure 10. Atomic force microscopy (AFM) images of the (a) PEEK/Ag0.04, (b) PEEK/Ag0.08 and
(c) PEEK/Ag0.12 systems with one layer.

The AFM images of the PEEK/Ag systems obtained with two layers of silver are shown in
Figure 11. The images represent the remarkable increase in the thickness of each sample obtained
with two layers of silver. The PEEK films with two layers of silver deposited on their surface at
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concentrations of 0.04 and 0.08 mol/L shown in Figure 11a,b exhibit a small amount of aggregate
particles. Figure 11c shows the excellent homogenization in the second stage of coating of the polymer,
generating small agglomerations because of the high concentration of silver.
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Figure 11. AFM images of the (a) PEEK/Ag0.04, (b) PEEK/Ag0.08 and (c) PEEK/Ag0.12 systems with
two layers.

The average thickness of the three samples after the second coating process is in the range between
200 and 300 nm, and increased proportionally with the increase in Ag concentration. In general,
the AFM analyses confirm the results by SEM regarding the homogeneous distribution of the silver
nanoparticles deposited in the PEEK substrate.

The analysis of the roughness of PEEK materials coated with silver was evaluated with the
root mean square (RMS) parameter shown in Table 2. The RMS value is related to the amount of
silver deposited in the polymer. When increasing the amount of silver, the average roughness of
the material increases forming several nanometric-sized valleys. The PEEK samples coated with
a single layer of silver have small surface roughness values, due to the thin layer of silver deposited
in the chemical synthesis method. In the same way, samples coated with two layers of silver have
higher RMS values according to the quantity of silver nanoparticles deposited on the surface of the
polymer [55]. The amount of nanoparticles deposited on both sides of the polymer has an inference in
the antibacterial properties. This occurs because more Ag+ species are generated which are responsible
for inhibiting bacterial growth as explained in the following section and as reported by Liu et al. [55].
The surface roughness value also provides information on the adhesion of the silver nanoparticles
on the polymer, corroborating the TEM analysis, since as a nanometric-sized coating, electrostatic
interactions between the metallic silver and the polymer result [56]. In addition, the surface contact
of the nanometer probe with the silver deposited in a single layer does not drag but leaves a groove
upon movement, showing the effective adhesion with the polymer as indicated by Wenfei Li et al. [57].
On the other hand, in the samples with two layers the adhesion improves since the entire surface of
the polymer is coated with AgNPs increasing the electrostatic interactions.
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Table 2. Surface roughness values of the different PEEK samples coated with silver.

Sample Surface Roughness (nm) Root Mean Square (RMS)

PEEK/Ag0.04 – 1 Layer 0.96 ± 0.3
PEEK/Ag0.08 – 1 Layer 1.54 ± 0.2
PEEK/Ag0.12 – 1 Layer 2.36 ± 0.7
PEEK/Ag0.04 – 2 Layer 56.38 ± 3.7
PEEK/Ag0.08 – 2 Layer 67.44 ± 3.0
PEEK/Ag0.12 – 2 Layer 92.63 ± 1.8

3.8. Antibacterial Test

The antibacterial activity of the PEEK films coated with various concentrations of silver
nanoparticles by a green method using the Tollens reagent and a monosaccharide were tested against
two Gram-negative bacteria: Escherichia coli and Serratia marcescens and one Gram-positive bacterium:
Bacillus licheniformis, evaluating the zone of inhibition by a contact method direct with medium agar as
shown in Figures 12–14. The results of the zone of inhibition measured with the ImageJ software are
shown in Table 3.
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Table 3. Antibacterial activity of silver nanoparticles deposited in PEEK films.

Sample Diameter of Inhibition Zone (mm) ± SD

E. coli S. marcescens B. licheniformis

PEEK 0 0 0
PEEK/Ag0.04 – 1 Layer 0 0 0
PEEK/Ag0.08 – 1 Layer 1.1 ± 0.2 0 0
PEEK/Ag0.12 – 1 Layer 1.2 ± 0.2 0.6 ± 0.2 0.5 ± 0.1
PEEK/Ag0.04 – 2 Layer 1.2 ± 0.2 0.8 ± 0.2 0.5 ± 0.1
PEEK/Ag0.08 – 2 Layer 1.4 ± 0.1 0.9 ± 0.2 0.7 ± 0.1
PEEK/Ag0.12 – 2 Layer 2.7 ± 0.3 1.2 ± 0.3 1.0 ± 0.2

SD: standard deviation.

For the antimicrobial test, an uncoated PEEK film was used as a control in the six plates, which did
not present antimicrobial activity. The amount of silver deposited on the PEEK/Ag0.04 sample with
a single layer was not enough to prevent the proliferation of the Gram-negative bacteria shown in
Figures 12 and 13, stimulating bacterial growth in the silver-free sites that are shown in the SEM
images, similar to that reported by Seuss et al. [30]. While the polymer coated with a layer AgNPs
in a concentration of 0.08 mol/L presented inhibition against E. coli but not against S. marcescens.
The PEEK/Ag0.12 system with a single layer and all the samples coated with two layers of AgNPs had
antibacterial properties, which increased the zone of inhibition with the amount of Ag+ ions deposited
in the substrate, favoring the bactericidal effect.

The antibacterial efficiency of PEEK films coated with AgNPs shown in Table 3 was higher for
E. coli compared to S. marcescens, and this was due to the presence of an envelope of two membranes
which have different proteins and phospholipids that prevent the passage of silver nanoparticles
inside the cells. [16,30,58]. Although the S. marcescens bacterium is resistant to traditional antibiotics,
the AgNPs synthesized by a green method and deposited on a polymeric PEEK substrate had
antibacterial efficiency against this microorganism, because the nanoparticles easily crossed the
cytoplasmic membrane due to its small size, causing damage to the organelles of the cell and leading to
the death of the microorganism, similar to that described by Baghayeri et al. [59] and Mathew et al. [4].

Figure 14 shows that the uncoated Polyetheretherketone films had no antimicrobial effect on the
Gram-positive bacterium Bacillus licheniformis similar to a Gram-negative bacterium. Figure 14a,b show
that the polyetheretherketone films coated with a single layer of silver nanoparticles in concentrations
of 0.04 and 0.08 mol/L did not exhibit antibacterial activity in B. licheniformis, while the PEEK/Ag0.12
system and all polymeric films coated with two layers of metallic silver counteracted the growth of
Gram-negative bacteria, by releasing silver ions in humid conditions. In addition, the amount of
nanoparticles in the culture medium increased the zone of inhibition of bacterium B. licheniformis as
shown in Table 3 [60,61]. The growth of the Gram-positive bacterium was higher in comparison with
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the Gram-negative bacteria, because the bacterium Bacillus licheniformis has a thicker peptidoglycan
layer in its membrane, which regulates and prevents the path of AgNPs in low concentrations to the
cell as indicated by Mathew T. et al. [4]. Similar results with a difference in antibacterial activity were
observed by Sikder et al. [62,63] when exploring antibacterial surfaces on PEEK and Ti6Al4V, and such
studies were performed in the case of Gram-negative (E. coli) and gram-positive (S. aureus) bacteria.
Apart from the difference in the diameter of inhibition zone, their research also presented SEM images
which prove the variance in interactions of Ag+ ions with negative and positive strains of bacteria.
And therefore, these results show a similar trend to the present work. Likewise, Mosselhy D.A. et al.
and Ur Rehman et al. [16,64] described a similar effect to the one reported in this study, where the
antibacterial properties increased with the increase of the silver nanoparticle ratio and the humid
environment in which the samples were installed, such studies demonstrated the effectiveness of the
AgNPs coatings in solid state as an antibacterial system.

The antibacterial mechanism of the silver nanoparticle coatings is possible because of the Ag+

ions generated by the conversion of metallic silver into the physiological environment where the
antimicrobial evaluation occurs [16]. The silver nanoparticles in cationic form penetrate the cell,
deforming the cell membrane, and interacting with some proteins; the silver nanoparticles also
interact with the sulfur and phosphorus bases contained in the DNA, causing an interruption in
DNA replication and subsequent cell death [36,37]. Likewise, Ag+ ions form free radicals that attack
respiratory enzymes which are essential for cell replication [45,59].

The zone of inhibition of the three bacteria analyzed was similar in the PEEK/Ag0.12 samples
with a single layer and PEEK/Ag0.04 with two layers. This was possible from the homogeneously
distributed silver nanoparticles deposited once on the PEEK substrate when AgNO3 was used in
a concentration of 0.12 mol/L. Such particles had a high surface area with particle sizes below 25 nm
according to the SEM and AFM analyzes. Finally, the sample with the maximum zone of inhibition
against the growth of E. coli, S. marcescens and B. licheniformis was PEEK/Ag0.12 with two coating layers
of AgNPs, corroborating the efficacy of the synthesis method by chemical reduction of ammoniacal
silver complexes with glucose in obtaining coatings of metallic silver nanoparticles with high surface
area [65]. In addition, the increase in the proportion of nanoparticles in the polymeric substrate favors
the antibacterial effectiveness by the high liberation of silver ions in the wet conditions of the culture
medium as reported by Logeswari et al and Gao et al. [66,67].

4. Conclusions

A method of coating by a chemical route with ammoniacal silver complexes was used
to impregnate polyetheretherketone films with silver nanoparticles to inhibit bacterial growth.
The characteristic diffraction peaks of PEEK were kept constant by completely coating the surface of the
polymer. The intensity of the silver signals in the diffractograms increased with the amount of silver
nanoparticles deposited. The average size of the crystalline domains of AgNPs synthesized by a simple
chemical reduction method was less than 30 nm using the Debye–Scherrer formula, corroborating
the results by statistical analysis with transmission electron microscopy images. The electrostatic
interactions between the polymer and the deposited AgNPs were evidenced by FTIR and TEM.
The thermograms showed the proportion of silver adhered to the polymeric substrate. The proportional
deposition of silver on the surface of the PEEK was evaluated by scanning electron microscopy and
atomic force microscopy, revealing the excellent distribution of the particles when they are synthesized
with glucose. In addition, it is evident that the second deposition process leaves the polymer with
a thickness around 300 nm for all samples. The action mechanism of AgNPs against the bacterial
growth of pathogenic microorganisms is influenced by the conversion of metallic silver to Ag+.
The sample that shows the best antibacterial activity in Gram-positive and Gram-negative bacteria for
a possible application in the design of air purification equipment is PEEK/Ag0.12 with two layers,
since the excellent distribution of the coating improves contact with bacteria, inhibits the replication
process, and favors cell death
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Silver Colloid Nanoparticles: Synthesis, Characterization, and Their Antibacterial Activity. J. Phys. Chem. B
2006, 110, 16248–16253. [CrossRef]

50. Sun, M.; Feng, J.; Bu, Y.; Luo, C. Nanostructured-silver-coated polyetheretherketone tube for online in-tube
solid-phase microextraction coupled with high-performance liquid chromatography. J. Sep. Sci. 2015, 38,
3119–3304. [CrossRef]

51. Corni, I.; Neumann, N.; König, K.; Veronesi, P.; Chen, Q.; Ryan, M.P.; Boccaccini, A.R. Electrophoretic
deposition of PEEK-nano alumina composite coatings on stainless steel. Surf. Coat. Technol. 2009, 203,
1349–1359. [CrossRef]

52. Rolim, W.R.; Pelegrino, M.T.; de Araújo Lima, B.; Ferraz, L.S.; Costa, F.N.; Bernardes, J.S.; Rodigues, T.;
Brocchi, M.; Seabra, A.B. Green tea extract mediated biogenic synthesis of silver nanoparticles:
Characterization, cytotoxicity evaluation and antibacterial activity. Appl. Surf. Sci. 2019, 463, 66–74. [CrossRef]

53. El-Faham, A.; Atta, A.M.; Osman, S.M.; Ezzat, A.O.; El-saeed, A.M.; AL Othman, Z.A.; Al-Lohedan, H.A.
Silver-embedded epoxy nanocomposites as organic coatings for steel. Prog. Org. Coat. 2018, 123, 209–222.
[CrossRef]

http://dx.doi.org/10.1039/C5RA01897H
http://dx.doi.org/10.1021/acsomega.7b00442
http://www.ncbi.nlm.nih.gov/pubmed/30023700
http://dx.doi.org/10.1038/s41598-018-27276-6
http://dx.doi.org/10.1016/j.nimb.2012.03.025
http://dx.doi.org/10.1016/j.ijhydene.2016.11.161
http://dx.doi.org/10.1016/j.triboint.2018.08.001
http://dx.doi.org/10.3390/polym8060208
http://dx.doi.org/10.1080/15533174.2016.1149731
http://dx.doi.org/10.1515/gps-2018-0030
http://dx.doi.org/10.1016/j.matlet.2017.10.120
http://dx.doi.org/10.1016/j.matlet.2018.05.009
http://dx.doi.org/10.1021/jp0448346
http://www.ncbi.nlm.nih.gov/pubmed/16851589
http://dx.doi.org/10.1016/j.cis.2008.09.002
http://www.ncbi.nlm.nih.gov/pubmed/18945421
http://dx.doi.org/10.1039/B417007E
http://dx.doi.org/10.1021/jp063826h
http://dx.doi.org/10.1002/jssc.201500545
http://dx.doi.org/10.1016/j.surfcoat.2008.11.005
http://dx.doi.org/10.1016/j.apsusc.2018.08.203
http://dx.doi.org/10.1016/j.porgcoat.2018.07.006


Coatings 2019, 9, 91 17 of 17

54. Chen, J.; Li, D.; Koshikawa, H.; Zhai, M.; Asano, M.; Oku, H.; Maekawa, Y. Modification of ultrathin
polyetheretherketone film for application in direct methanol fuel cells. J. Membr. Sci. 2009, 344, 266–274.
[CrossRef]

55. Liu, X.; Gan, K.; Liu, H.; Song, X.; Chen, T.; Liu, C. Antibacterial properties of nano-silver coated PEEK
prepared through magnetron sputtering. Dent. Mater. 2017, 33, 348–360. [CrossRef] [PubMed]

56. Felix, T.; Cassini, F.A.; Benetoli, L.O.B.; Dotto, M.E.R.; Debacher, N.A. Morphological study of polymer
surfaces exposed to non-thermal plasma based on contact angle and the use of scaling laws. Appl. Surf. Sci.
2017, 403, 57–61. [CrossRef]

57. Li, W.; Chen, Y.; Wu, S.; Zhang, J.; Wang, H.; Zeng, D.; Xie, C. Preparing high-adhesion silver coating on
APTMS modified polyethylene with excellent anti-bacterial performance. Appl. Surf. Sci. 2018, 436, 117–124.
[CrossRef]

58. Cervantes-García, E.; García-González, R.; Salazar-Schettino, P.M. Proteínas de membrana externa de Serratia
marcescens. Revista Latinoamericana de Patología Clínica y Medicina de Laboratorio 2014, 61, 224–228.

59. Baghayeri, M.; Mahdavi, B.; Hosseinpor-Mohsen Abadi, Z.; Farhadi, S. Green synthesis of silver
nanoparticles using water extract of Salvia leriifolia: Antibacterial studies and applications as catalysts in
the electrochemical detection of nitrite. Appl. Organomet. Chem. 2017, 32, e4057. [CrossRef]

60. Thaya, R.; Malaikozhundan, B.; Vijayakumar, S.; Sivakamavalli, J.; Jeyasekar, R.; Shanthi, S.; Vaseeharan, B.;
Ramasamy, P.; Sonawane, A. Chitosan coated Ag/ZnO nanocomposite and their antibiofilm, antifungal and
cytotoxic effects on murine macrophages. Microb. Pathog. 2016, 100, 124–132. [CrossRef]

61. Umoren, S.A.; Nzila, A.M.; Sankaran, S.; Solomon, M.M.; Umoren, P.S. Green synthesis, characterization and
antibacterial activities of silver nanoparticles from strawberry fruit extract. Pol. J. Chem. Technol. 2017, 19,
128–136. [CrossRef]

62. Sikder, P.; Grice, C.R.; Lin, B.; Goel, V.K.; Bhaduri, S.B. Single-Phase, Antibacterial Trimagnesium Phosphate
Hydrate Coatings on Polyetheretherketone (PEEK) Implants by Rapid Microwave Irradiation Technique.
ACS Biomater. Sci. Eng. 2018, 4, 2767–2783. [CrossRef]

63. Sikder, P.; Koju, N.; Ren, Y.; Goel, V.K.; Phares, T.; Lin, B.; Bhaduri, S.B. Development of single-phase
silver-doped antibacterial CDHA coatings on Ti6Al4V with sustained release. Surf. Coat. Technol. 2018, 342,
105–116. [CrossRef]

64. Mosselhy, D.; Granbohm, H.; Hynönen, U.; Ge, Y.; Palva, A.; Nordström, K.; Hannula, S.-P. Nanosilver–Silica
Composite: Prolonged Antibacterial Effects and Bacterial Interaction Mechanisms for Wound Dressings.
Nanomaterials 2017, 7, 261. [CrossRef] [PubMed]

65. Yue, X.; Zhang, T.; Yang, D.; Qiu, F.; Li, Z.; Wei, G.; Qiao, Y. Ag nanoparticles coated cellulose membrane
with high infrared reflection, breathability and antibacterial property for human thermal insulation. J. Colloid
Interface Sci. 2018, 535, 363–370. [CrossRef] [PubMed]

66. Logeswari, P.; Silambarasan, S.; Abraham, J. Synthesis of silver nanoparticles using plants extract and
analysis of their antimicrobial property. J. Saudi Chem. Soc. 2015, 19, 311–317. [CrossRef]

67. Gao, L.; Gan, W.; Xiao, S.; Zhan, X.; Li, J. A robust superhydrophobic antibacterial Ag-TiO2 composite film
immobilized on wood substrate for photodegradation of phenol under visible-light illumination. Ceram. Int.
2016, 42, 2170–2179. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.memsci.2009.08.016
http://dx.doi.org/10.1016/j.dental.2017.06.014
http://www.ncbi.nlm.nih.gov/pubmed/28734568
http://dx.doi.org/10.1016/j.apsusc.2017.01.036
http://dx.doi.org/10.1016/j.apsusc.2017.11.216
http://dx.doi.org/10.1002/aoc.4057
http://dx.doi.org/10.1016/j.micpath.2016.09.010
http://dx.doi.org/10.1515/pjct-2017-0079
http://dx.doi.org/10.1021/acsbiomaterials.8b00594
http://dx.doi.org/10.1016/j.surfcoat.2018.02.100
http://dx.doi.org/10.3390/nano7090261
http://www.ncbi.nlm.nih.gov/pubmed/28878170
http://dx.doi.org/10.1016/j.jcis.2018.10.009
http://www.ncbi.nlm.nih.gov/pubmed/30316123
http://dx.doi.org/10.1016/j.jscs.2012.04.007
http://dx.doi.org/10.1016/j.ceramint.2015.10.002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Synthesis of Silver Nanoparticles and Coating of Polyetheretherketone (PEEK) Films 
	Characterization of PEEK Films Coated with AgNPs 
	Antibacterial Activity 

	Results and Discussion 
	X-ray Diffraction (XRD) 
	Fourier Transform Infrared (FTIR) Spectroscopy 
	Transmission Electron Microscopy (TEM) Analysis 
	Thermogravimetric Analysis (TGA) 
	Morphological Evolution and Particle Distribution by Scanning Electron Microscopy (SEM) 
	Energy-Dispersive X-Ray Spectroscopy (EDS) Microanalysis 
	Atomic Force Microscopy (AFM) analysis 
	Antibacterial Test 

	Conclusions 
	References

