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Abstract: (Meth)acrylic terpolymers carrying siloxane (Si), fluoroalkyl (F) and ethoxylated (EG) side
chains were synthesized with comparable molar compositions and different lengths of the Si and EG
side chains, while the length of the fluorinated side chain was kept constant. Such terpolymers were
used as surface-active modifiers of polydimethylsiloxane (PDMS)-based films with a loading of 4 wt%.
The surface chemical compositions of both the films and the pristine terpolymers were determined
by angle-resolved X-ray photoelectron spectroscopy (AR-XPS) at different photoemission angles.
The terpolymer was effectively segregated to the polymer−air interface of the films independent of
the length of the constituent side chains. However, the specific details of the film surface modification
depended upon the chemical structure of the terpolymer itself. The exceptionally high enrichment in
F chains at the surface caused the accumulation of EG chains at the surface as well. The response
of the films to the water environment was also proven to strictly depend on the type of terpolymer
contained. While terpolymers with shorter EG chains appeared not to be affected by immersion in
water for seven days, those containing longer EG chains underwent a massive surface reconstruction.

Keywords: surface-active polymer; surface segregation; surface modification; amphiphilic polymer;
polysiloxane; fluoropolymer; PEGylated polymer; X-ray photoelectron spectroscopy

1. Introduction

The dispersion of non-reactive surface-active additives is generally regarded as a facile and
straightforward method to modify the surface properties of a polymer film without affecting its bulk
properties to a significant extent [1–4]. The surface segregation process and, therefore, the selective
accumulation of the additive at the interface with the external environment (air, water, organic vapors)
is a complex phenomenon that depends on several factors that may add to each other, including
the additive molecular structure and composition, molecular weight, surface tension, chemical
compatibility with the host matrix and chemical affinity with the external environment [5–10]. A special
class of surface-active additives consists of amphiphilic copolymers [11–13]. Random copolymers
in particular have gained a great deal of interest in the last decade being their synthesis easier and
more suitable for an industrial scale production than the block copolymer counterparts [14]. Notably,
random copolymers have been proven to generate nanostructured materials as a result of their
self-assembling in solution [15–20], bulk and at the surface of polymer thin films [4,21]. In the
field of coatings, surface-active additives have been utilized for several purposes, especially for the
development of antifouling (AF)/fouling-release (FR) coatings to combat marine biofouling [12]. In this
regard, reactive [22–25] and non-reactive amphiphilic copolymers [21,26–29] generally composed
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of poly(ethylene glycol) (PEG) chains, as the hydrophilic component, and polysiloxane and/or
fluoropolymer chains, as the hydrophobic component, have been investigated. The hydrophilic
component of election is PEG on the basis of its known high resistance to the adhesion of proteins,
bacteria, cells and marine organisms [30,31]. Moreover, fluorinated and siloxane chains, besides
performing a FR action attributed to their hydrophobicity [32,33], can also play other distinct roles.
In particular, fluorinated chains are anticipated to promote the diffusion and accumulation of the
entire copolymer to the coating surface, as a result of their ability to self-segregate and self-organize
at the outermost surface layers of polymer films [34–36]. Polysiloxane chains are also known
to have a low surface tension behavior, albeit this character is not so distinct as for fluorinated
chains [37–39], and have been introduced into several types and architectures of polymers to modify
the surface properties [40,41]. However, in this case, the main role of polysiloxane chains is to act as a
compatibilizer with the host elastomeric polydimethylsiloxane (PDMS) matrix to prevent macrophase
separation. Moreover, low modulus PDMS-based films are generally thought to favor removal of
marine organisms by a peeling-like, lower-energy mechanism [33,42].

In this work, we prepared novel amphiphilic films composed of a condensation-cured PDMS
matrix, in which an opportunely designed surface-active amphiphilic terpolymer was physically
dispersed in order to modify the surface structure and property of the films derived therefrom.
The synthesized terpolymers, consisting of a (meth)acrylic backbone carrying fluorinated (F),
ethoxylated (EG) and siloxane (Si) side chains, possessed comparable mole percentages of each
type of side chains, but different lengths of the EG and Si and chains, while the length of the F chain
was fixed. In particular, we studied the surface nanoscale composition and surface segregation of
the terpolymer by means of angle-resolved X-ray photoelectron spectroscopy (AR-XPS). Interestingly,
we found that the chemical composition of the PDMS-based films within the first few nanometers
(~3 nm) of the surface was almost equal to that of the corresponding pristine terpolymer included in
the formulation, independent of its chemical structure. However, the amount of each element at the
surface as well as the effectiveness of surface segregation were strongly affected by the structure of
the terpolymer itself. A peculiar reconstruction of the film surface was found when the PDMS-based
films were immersed in water, which unexpectedly did not result in an increased concentration of the
hydrophilic EG chains at the outer surface to contact water.

2. Materials and Methods

2.1. Materials

1H,1H,2H,2H-perfluorooctyl acrylate (F) (Fluorochem, 97%), polyethyleneglycol methyl ether
methacrylate (EGa (Mn = 300 g mol−1) and EGb (Mn = 1100 g mol−1)), bismuth neodecanoate
(BiND) (all from Aldrich), monomethacryloxypropyl-terminated poly(dimethyl siloxane) (Sia (Mn

= 1000 g mol−1) and Sib (Mn = 5000 g mol−1)), bis(silanol)-terminated poly(dimethyl siloxane)
(HO-PDMS-OH (Mn = 26,000 g mol–1, 0.1% OH)), poly(diethoxy siloxane) (ES40) (all from ABCR) were
used as received. 2,2’-azobis-isobutyronitrile (AIBN) (from Fluka) was recrystallized from methanol.
Diethylene glycol dimethyl ether (diglyme) was kept at 100 ◦C over sodium for 4 h and then distilled
under reduced pressure.

2.2. General Procedure for the Preparation of Terpolymers

In a typical preparation of a terpolymer p(Sib-F-EGb), monomers Sib (3.400 g, 0.68 mmol),
F (0.860 g, 2.05 mmol) and EGb (0,780 g, 0.71 mmol), free-radical initiator AIBN (53,7 mg) and
anhydrous solvent diglyme (20 mL) were introduced into a Carius tube. The solution was outgassed
by four freeze-pump-thaw cycles. The polymerization reaction was let to proceed under stirring at
65 ◦C for 72 h. The crude product was purified by several precipitations from chloroform solutions
into methanol (yield 48%). The obtained terpolymer p(Sib-F-EGb) contained 26 mol% Sib, 45 mol% F
and 29 mol% EGb (Mn = 21000 g mol–1, Mw/Mn = 2.2).
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1H-nuclear magnetic resonance (NMR) (CDCl3): δ (ppm) = 4.6–3.8 (COOCH2), 3.8–3.5 (CH2O),
3.4 (OCH3), 2.5 (CF2CH2), 2.1–0.7 (CH2CCH3, CH2CH, COOCH2CH2CH2Si, SiCH2CH2CH2CH3),
0.5 (SiCH2), 0.1 (SiCH3).

19F-NMR (CDCl3/CF3COOH): δ (ppm) = –5.5 (CF3), –38.5 (CF2CH2), –46 to –48 (CF2),
–51 (CF2CF3).

Fourier transform-infrared (FT–IR) (film): (cm–1) = 2963–2906 (ν C–H aliphatic), 1738 (ν C=O
ester), 1260 and 799 (ν Si–CH3), 1207–1020 (ν C–F, ν C–O, ν Si–O), 662 (ω CF2).

2.3. Preparation of Films

Glass slides (76 × 26 mm2) were rinsed with acetone and dried in an oven for 30 min. A solution of
HO-PDMS-OH (5.0 g), ES40 (0.125 g) and BiND (50 mg) in ethyl acetate (25 mL) was spray-coated onto
the glass slides using a Badger model 250 airbrush (50 psi air pressure). The films were dried at room
temperature for a day and annealed at 120 ◦C for 12 h to form a thin bottom layer (thickness ~2 µm).
On top of it, a solution of the same amounts of HO-PDMS-OH, ES40 and BiND with a terpolymer
p(Si-F-EG) (200 mg) in ethyl acetate (20 mL) was cast and cured at room temperature for a day and later
at 120 ◦C for 12 h to give a thicker top layer (overall thickness ~200 µm). The blend films containing
4 wt% terpolymer (with respect to the PDMS matrix) in the top layer were named p(Si-F-EG)4. A film
of PDMS alone was also prepared in the same way as a standard film.

Films of the pristine terpolymers were prepared by spin-coating (5000 rpm for 20 s) a filtered
3 wt% solution in chloroform and dried at room temperature for 12 h and then at 120 ◦C for 12 h
(thickness ~200 nm).

2.4. Characterization

1H-NMR and 19F-NMR spectra were recorded with a Varian Gemini VRX300 spectrometer
(Palo Alto, CA, USA) on CDCl3 and CDCl3/CF3COOH solutions, respectively. Gel permeation
chromatography (GPC) analyses were carried out using a Jasco PU–1580 liquid refractive index
detector (Hachioji-shi, Tokyo, Japan). CHCl3 was used as an eluent with a flow rate of 1 mL min–1 and
poly(methyl methacrylate) standards were used for calibration.

Differential scanning calorimetry (DSC) analysis was performed with a Mettler DSC-30 instrument
(Columbus, OH, USA) from –150 to 80 ◦C at heating/cooling rate of 10 ◦C min–1 under a dry nitrogen
flow. The glass transition temperature (Tg) was taken as the inflection temperature in the second
heating cycle.

Contact angles were measured by the sessile droplet (10 µL) method with a FTA200 Camtel
goniometer (Portsmouth, VA, USA), using water (θw) (J. T. Baker, HPLC grade) as wetting liquid after
10 s from deposition.

Atomic force microscopy (AFM) experiments under ambient conditions were carried out in
intermittent contact (tapping) mode with a Multimode system equipped with a Nanoscope IIIa
controller (Veeco Instruments, New York, USA) using silicon cantilevers with a nominal force constant
of 42 N m–1 from Olympus type OMCL-AC160TS (Tokyo, Japan) at a resonance frequency of about
320 kHz. The scan rate was kept at 1 Hz, while the tip–sample forces were carefully minimized to
avoid artifacts. Tip radius of less than 7 nm (manufacturer’s information) was used. To quantify
the variation in the microscale structure of the coatings, the root-mean-square roughness (RMS) was
determined over regions of 1 × 1 µm2 and 10 × 10 µm2:

RMS =

√√√√ 1
m n

n

∑
j=1

m

∑
i=1

Z2(xi, yj) (1)

with Z the height and x, y the in-plane coordinates stored by the AFM software (version 6.13).
X-ray photoelectron spectroscopy (XPS) spectra were recorded by using a Perkin-Elmer PHI

5600 spectrometer (Chanhassen, MN, USA) with a standard Al-Kα source (1486.6 eV) operating at
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300 W. The working pressure was less than 10–8 Pa. The spectrometer was calibrated by assuming
the binding energy (BE) of the Au 4f7/2 line to be 84.0 eV with respect to the Fermi level. Extended
(survey) spectra were collected in the range 0−1350 eV (187.85 eV pass energy, 0.4 eV step, 0.05 s step–1).
Detailed spectra were recorded for the following regions: C(1s), O(1s), Si(2p) and F(1s) (11.75 eV pass
energy, 0.1 eV step, 0.1 s step–1). The standard deviation (SD) in the BE values of the XPS line was
0.1 eV. The spectra were recorded at two photoemission angles ϕ (between the surface normal and
the path taken by the photoelectrons) of 70◦ and 20◦, corresponding to sampling depths d of ~3 nm
and ~9 nm, respectively (d = d0 cosϕ, where d0 is the maximum information depth (d0 ~10 nm for the
C(1s) line)). The software used for background subtraction (Shirley type) [43] and quantitative analysis
was the PHI software (version 5.2) for data collection in PHI 5600ci Multitechnique (Chanhassen,
MN, USA). The atomic percentage was evaluated using the PHI sensitivity factors (considering both
the cross-section and the beam out depth) with triplicate measurements on different film spots and the
estimated experimental error was ±0.5% [44]. To take into account charging problems, the C(1s) peak
was considered at 284.5 eV and the peak BE differences were evaluated. The XPS peak fitting procedure
was carried out by means of Voigt functions and the results evaluated through the χ2 function [45].
The deconvolution of XPS signals was performed with the software Igor Pro.

3. Results and Discussion

3.1. Synthesis of Terpolymers

Amphiphilic terpolymers p(Si-F-EG) with siloxane, fluorinated and ethoxylated side chains
were prepared by free-radical polymerization of monomethacryloxypropyl-terminated poly(dimethyl
siloxane) (Si), 1H,1H,2H,2H-perfluorooctyl acrylate (F) and polyethyleneglycol methyl ether
methacrylate (EG). The terpolymers were characterized by a similar molar content of the three co-units,
but differed in the average lengths, i.e. the average number degrees of polymerization of the EG and
Si side chains, m ~4 (EGa) and m ~22 (EGb) and n ~11 (Sia) and n ~65 (Sib), while that of the F side
chain was fixed (6 CF2 groups) (Scheme 1). The formation of terpolymers was confirmed by 1H-NMR,
19F-NMR and FT-IR analyses. Their chemical composition was evaluated from the integrated areas of
the signals at 0.5 ppm (SiCH2 of Sia and Sib), 2.5 ppm (CH2CF2 of F) and 3.3 ppm (OCH3 of EGa and
EGb). Therefore, by alternatively changing the length of the siloxane and ethoxylated chains it was
possible to modify the content of hydrophobic/hydrophilic co-units, that is the amphiphilic character,
of the surface-active terpolymer and the eventual ability of the film surface to interact/reconstruct
after immersion in water.
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Scheme 1. Synthesis of amphiphilic terpolymers p(Si-F-EG) consisting of x, y, and z mol% co-units
carrying Si, F, and EG side chains, respectively.

The thermal behavior of the terpolymers strictly depended on the type of the constituent co-units
(Table 1). In particular, p(Sia-F-EGa) was completely amorphous and showed two glass transition
temperatures (Tg) at −124 ◦C and −52 ◦C similar to those of the corresponding homopolymers p(Sia)
and p(EGa), respectively. Differently, p(Sib-F-EGb) showed two melting transitions at −53 ◦C and
21 ◦C due to the longer Sib and EGb side chains, respectively, in addition to a Tg at −129 ◦C typical
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of the siloxane chain. The Tg of the EGb, expected at ca. −60 ◦C, was not detected because it was
superimposed to the melting peak of the Sib (Figure S1). p(Sib-F-EGa) displayed an intermediate
behavior showing only the two thermal transitions of the longer polysiloxane Sib, while the Tg of the
shorter EGa was hidden by the melting peak of the Sib. These results indicate that all the terpolymers
were microphase separated in the bulk in EG-rich and Si-rich domains, each of which displayed the
thermal behavior of the respective homopolymer.

Table 1. Physical-chemical properties of terpolymers p(Si-F-EG).

Terpolymer Composition a)

(mol%)
Mn

b)

(g/mol) Mw/Mn
b) Tg,Si

c)

(◦C)
Tg,EG

c)

(◦C)
Tm,Si

c)

(◦C)
Tm,EG

c)

(◦C)

p(Sib-F-EGb) 26/45/29 21000 2.22 –129 - –53 21
p(Sib-F-EGa) 22/52/26 21000 2.06 –129 - –54 -
p(Sia-F-EGa) 19/58/23 9000 2.94 –124 –52 - -

a) Mole percentage of siloxane (Si), fluorinated (F) and ethoxylated (EG) side chains in the terpolymer. b) By gel
permeation chromatography (GPC). c) Glass transition temperature and melting temperature of Si and EG.

The amphiphilic terpolymers were used as non-reactive, physically dispersed surface-active
additives in condensation cured PDMS matrices. The terpolymers were dissolved in ethyl acetate
together with the bis(silanol)-terminated PDMS matrix and the ES40 cross-linker, in the presence
of bismuth neodecanoate as catalyst. The solution was cast on glass slides, previously modified by
deposition of a thin layer (~2 µm) of cross-linked PDMS. This bottom thinner layer acted as a primer
to improve adhesion between the glass substrate and the film formulation (overall thickness ~200 µm)
to avoid delamination of the film during the subsequent tests upon immersion in water.

Each terpolymers were dispersed in a 4 wt% content with respect to the PDMS matrix in the top
layer and the corresponding films were named p(Si-F-EG)4.

3.2. Surface Segregation of the Amphiphilic Surface-Active Terpolymer

Surface segregation of the terpolymer in the condensation-cured matrix films was investigated by
AR-XPS at photoemission angles ϕ of 70◦ and 20◦. The survey spectra of the samples did not show the
presence of elements other than Si, C, O, and F (Figure 1). The XPS atomic surface compositions of the films
p(Si-F-EG)4 are reported in Table 2 together with those of the respective terpolymers. For comparison,
the calculated theoretical values for ideal homogeneous samples are also added in Table 2.
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Figure 1. X-ray photoelectron spectroscopy (XPS) survey spectra for the amphiphilic
polydimethylsiloxane (PDMS)-based film p(Sia-F-EGa)4 (dashed line) and the respective terpolymer
p(Sia-F-EGa) (continuous line) at ϕ of 70◦ (red) and 20◦ (black).
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Table 2. XPS atomic surface composition of amphiphilic PDMS-based films p(Si-F-EG)4 and respective
terpolymers p(Si-F-EG). The errors on the values of composition were estimated to be ±0.5%.

Film ϕ (◦) C (%) O (%) F (%) Si (%) Cexp/Ctheor Oexp/Otheor Fexp/Ftheor Siexp/Sitheor

p(Sib-F-EGa)
theor. 51.4 22.0 8.4 18.2

70 42.2 13.4 37.7 6.7 0.8 0.6 4.5 0.4
20 45.2 20.3 20.5 14.0 0.9 0.9 2.4 0.8

p(Sib-F-EGb)
theor. 54.0 24.2 5.5 16.3

70 44.7 17.1 29.9 8.3 0.8 0.7 5.4 0.5
20 47.0 22.3 17.3 13.4 0.9 0.9 3.1 0.8

p(Sia-F-EGa)
theor. 52.3 16.6 23.9 7.2

70 43.5 10.0 44.1 2.4 0.8 0.6 1.8 0.3
20 45.7 14.3 34.8 5.2 0.9 0.9 1.5 0.7

p(Sib-F-EGa)4
theor. 50.0 24.9 ~0.4 24.7

70 41.1 11.2 43.0 4.7 0.8 0.4 107.5 0.2
20 45.9 18.8 23.3 12.0 0.9 0.8 58.3 0.5

p(Sib-F-EGb)4
theor. 50.2 25.0 ~0.2 24.6

70 42.8 15.8 34.2 7.2 0.9 0.6 171.0 0.3
20 48.0 22.7 16.8 12.5 1.0 0.9 84.0 0.5

p(Sia-F-EGa)4
theor. 50.1 24.6 1.1 24.2

70 42.6 10.1 45.4 1.9 0.8 0.4 41.2 0.1
20 46.3 12.3 37.9 3.5 0.9 0.5 34.4 0.1

All the pristine terpolymer films showed a high enrichment in fluorine at the surface, the fluorine
atomic percentage (Fexp) being higher than the theoretical value (Ftheor) for all the samples. However,
while Fexp was higher for p(Sia-F-EGa) with a larger Ftheor, the Fexp/Ftheor ratio was found to decrease
from 5.4 and 4.5 down to 1.8 in going from p(Sib-F-EGb) and p(Sib-F-EGa) to p(Sia-F-EGa) (ϕ = 70◦).
Thus, a longer siloxane chain (Sib, n ~65) promoted a more effective surface segregation of the
terpolymer than a shorter one (Sia, n ~11). Consistently, the Siexp/Sitheor ratio followed the same
trend, passing from 0.5 and 0.4 down to 0.3. Because of the great enrichment in fluorine in the top few
nanometers, the atomic percentages of all the other elements C, O and Si were significantly lower than
the theoretical ones. Moreover, the atomic percentages varied with ϕ. In particular, the F percentage
markedly increased, whereas the C, O and Si percentages decreased with increasing ϕ. Thus, there was
a composition gradient along the normal to the film surface into the bulk.

It was surprising that the surface chemical composition of the PDMS-based films containing
4 wt% terpolymer did not differ significantly from that of the respective pristine terpolymer and
the Fexp was even slightly higher for all the PDMS-based films, despite the fact that PDMS was the
largely major component (96 wt%) in all formulations. Thus, neither the thickness of the film nor
the presence of the PDMS matrix affected the surface migration of the fluorinated side chains to a
significant extent. Similar findings were reported for hydrophobic, i.e. not amphiphilic, (meth)acrylic
copolymers containing siloxane and fluorinated side chains, for which a very effective surface
segregation was found [9,46]. The observed surface enhancement in fluorine content resulted in
an exceptionally high value of Fexp/Ftheor, varying from 41.2 for p(Sia-F-EGa), to 107.5 for p(Sib-F-EGa)
up to 171.0 for p(Sib-F-EGb). Accordingly, a strong decrease in Siexp was also observed for all the films,
and in particular for p(Sia-F-EGa)4 with the higher amount of fluorine at the surface and the shorter
siloxane chains.

The C(1s) high resolution spectra for the PDMS-based films and the terpolymers are shown in
Figure 2. In all cases the C(1s) signal was resolved in five contributions, as is shown for p(Sib-F-EGa)4,
as a representative illustration, in Figure 3: (i) C−C and C−Si at 284.5 eV, (ii) C−O at 286.1 eV,
(iii) C(=O)O at 289.1 eV, (iv) CF2 at 291.7 eV and (v) CF3 at 294.1 eV. From a qualitative point of
view, the most striking finding was that the individual components of the C(1s) spectra of the blend
films almost fully overlapped those of the respective terpolymers. This finding demonstrates that
the amphiphilic terpolymer was completely located to the polymer−air interface of the PDMS-based
films, independent of the length of the EG or Si chains, and the structural arrangement of each
constituent at the molecular level was basically the same for the terpolymer whether alone or in the
blend. Although the peaks (ii) to (v) had almost the same intensities in the blends and respective
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terpolymers, a decrease in the intensity of peak (i) was observed, especially for the formulations
containing p(Sib-F-EGa) and p(Sib-F-EGb), which is in agreement with a better segregation of the F
side chains to the topmost surface layers for these terpolymers, as already suggested by the Fexp/Ftheor
ratio (Table 3). Finally, one notes that the contribution due to C−O groups of the EG side chains
was also remarkably higher for all the films than the theoretical value calculated for the respective
terpolymers (Table 3). Thus, the EG side chains, in spite of their high surface energy, were pulled to the
outer surface by the lowest surface energy F side chains. In particular, films with the shorter Ea chains
displayed a larger surface enrichment in C−O groups (peak (ii), C−Oexp/C−Otheo ~5 and ~3 for
p(Sib-F-EGa) and p(Sia-F-EGa), respectively) with respect to films containing EGb (C−Oexp/C−Otheo
~1.3), owing to the higher mobility of the shorter EGa chains. The dependence of the surface segregation
of the EG chains on their chain length was also confirmed by the fact that the C−O percentage at
ϕ = 70◦ was higher than that at ϕ = 20◦ for the films containing EGa and lower for those containing
EGb (Table 3). Therefore, for copolymers containing EGa side chains the concentration of the EG
chains within the outer ~3 nm of the polymer−air interface was maximized, in spite of their high
surface energy (~43 mN m–1). On the other hand, the intensity of the peak associated with the Si−C
contribution markedly increased, while that of the CF2 signal significantly decreased and that of the
CF3 signal completely disappeared in some cases (Figure S2).
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Figure 2. Area-normalized XPS C(1s) spectra (ϕ = 70◦) for the amphiphilic PDMS-based films
p(Si-F-EG)4 (red) and the respective terpolymers p(Si-F-EG) (black). (a) p(Sia-F-EGa)4 and p(Sia-F-EGa);
(b) p(Sib-F-EGa)4 and p(Sib-F-EGa); (c) p(Sib-F-EGb)4 and p(Sib-F-EGb).
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Figure 3. Deconvolution of the C(1s) XPS spectrum of p(Sib-F-EGa)4 (ϕ = 70◦).

Table 3. Percent contributions of peaks (i)–(v) to the XPS C(1s) signal for the amphiphilic PDMS-based
films p(Si-F-EG)4.

Film ϕ (◦) Peak (i) (%) Peak (ii) (%) Peak (iii) (%) Peak (iv) (%) Peak (v) (%)

p(Sib-F-EGa)4a,b) 70 29.1 32.3 4.8 27.2 6.6
20 61.0 24.3 3.5 11.2 -

p(Sib-F-EGb)4a,b) 70 44.5 32.0 4.4 14.4 4.7
20 50.6 38.3 2.6 8.5 -

p(Sia-F-EGa)4a,b) 70 14.6 38.0 6.0 34.7 6.7
20 35.0 27.6 9.1 23.3 5.0

a) Experimental percent contributions of peaks (i)–(v) for terpolymers p(Sib-F-EGa): 37.5%, 35.2%, 4.2%, 17.6%, 5.5%;
p(Sib-F-EGb): 49.8%, 31.4%, 3.2%, 12.5%, 3.1%; p(Sia-F-EGa): 16.2%, 40.1%, 5.3%, 32.1%, 6.3%. b) Theoretical percent
contributions of peaks (i)–(v) for terpolymers p(Sib-F-EGa): 80.0%, 10.0%, 2.4%, 6.3%, 1.3%; p(Sib-F-EGb): 67.5%
26.0%, 1.8%, 3.9%, 0.8%; p(Sia-F-EGa): 49.3%, 23.5%, 6.1%, 17.6%, 3.5%.

3.3. Surface Composition after Immersion in Water

In order to evaluate the response of the amphiphilic PDMS-based films to the water environment,
an AR-XPS analysis was also carried out on the films after immersion in water for 7 days. The chemical
composition of these film surfaces is however indicative of the actual composition as it represents
a kinetically trapped condition and not the equilibrium state reached by the polymer surface upon
immersion in water. The atomic compositions of the surfaces after water immersion are collected in
Table 4. Generally, the film surfaces were highly enriched in fluorine with respect to the theoretical
amount and its percent content decreased with decreasing ϕ, thus showing that a composition gradient
was maintained upon contact with water. On the other hand, the atomic percentages of all the other
elements were lower than the theoretical ones and increased with decreasing ϕ. However, the chemical
composition of the film surface as well as its modification upon immersion in water strictly depended
on the type of terpolymer introduced in the formulation. In particular, the films containing p(Sib-F-EGb)
underwent a surface reconstruction after immersion which resulted in a significant surface depletion
in F moieties and enrichment in Si and O. A similar trend, although less marked, was observed for the
film p(Sib-F-EGa)4, while the film p(Sia-F-EGa)4 did not display a significant variation in the atomic
percentages and only showed a slight increase in F upon immersion in water. Consistently, the C(1s)
signal of p(Sia-F-EGa)4 after immersion almost exactly overlapped the corresponding signal before
immersion, with a slight increase in the intensity of the peaks (iv) and (v) due to the CF2 and CF3

groups (Figure 4c). For p(Sib-F-EGa)4 the C(1s) signals before and after immersion were very similar,
with a slight increase in the intensity of peak (i) associated with the C−Si contribution (Figure 4a).
However, in neither case was an increase in the C−O contribution (peak (ii)) detected, indicating that
the amount of EG as well as F chains remained practically unchanged after immersion in water.
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Table 4. XPS atomic surface composition of the amphiphilic PDMS-based films p(Si-F-EG)4 after 7
days of immersion in water. The errors on the values of composition were estimated to be ±0.5%.

Film ϕ (◦) C (%) O (%) F (%) Si (%) Cexp/Ctheor Oexp/Otheor Fexp/Ftheor Siexp/Sitheor

p(Sib-F-EGa)4
theor. 50.0 24.9 ~0.4 24.7

70 43.4 14.7 34.3 7.6 0.9 0.6 85.7 0.3
20 47.8 20.0 19.9 12.3 1.0 0.8 49.7 0.5

p(Sib-F-EGb)4
theor. 50.2 25.0 ~0.2 24.6

70 45.0 21.7 21.6 11.7 0.9 0.9 108.0 0.5
20 48.9 24.6 11.2 15.3 1.0 1.0 56.0 0.6

p(Sia-F-EGa)4
theor. 50.1 24.6 1.1 24.2

70 40.3 10.2 47.3 2.2 0.8 0.4 43.0 0.1
20 43.5 12.6 40.5 3.4 0.9 0.5 36.8 0.1
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Figure 4. Area-normalized C(1s) XPS spectra (ϕ = 70◦) for p(Sib-F-EGa)4 (a), p(Sib-F-EGb)4 (b) and
p(Sia-F-EGa)4 (c) before (red) and after (blue) immersion in water.

The comparison of C(1s) signals before and after immersion for p(Sib-F-EGb)4 revealed the
presence of significant differences, indicating that these films were subjected to a massive surface
reconstruction as a result of the combination of Sib, EGb and F chains in the same chemical structure.
The intensities of the peaks due to CF3, CF2 and C(=O)O moieties markedly decreased, while that
associated with C−Si increased (Figure 4b). Unexpectedly, the intensity of the signal due to the
C−O groups of the longer EGb chains decreased upon immersion in water (Figure 4b). However,
the C−O/(CF2 + CF3) ratio increased (Table 5), indicating that the hydrophilic/hydrophobic balance,
i.e. the amphiphilic character, of the film surface was larger after immersion.
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Table 5. Percent contributions of peaks (i)–(v) to the XPS C(1s) signal for the amphiphilic PDMS-based
films (ϕ = 70◦) after immersion in water for 7 days.

Film Peak (i) (%) Peak (ii) (%) Peak (iii) (%) Peak (iv) (%) Peak (v) (%)

p(Sib-F-EGa)4 33.7 30.4 4.6 24.6 6.7
p(Sib-F-EGb)4 66.7 27.1 - 6.2 -
p(Sia-F-EGa)4 13.2 38.3 4.2 37.3 7.0

Overall, it appears that, when F and EGa were combined in the same macromolecular structure,
the maximum concentration of the EG chains at the outermost surface (cf. C(1s) signal percentages
at ϕ = 70◦ and 20◦ for p(Sib-F-EGa)4 and p(Sia-F-EGa)4) did not provide the necessary driving
force for reconstruction, resulting in a chemical stability of the surface upon contact with water at
least for the investigated time of 7 days. A very different process occurred when F and EGb were
combined instead. A greater accumulation of the longer EGb chains in a region immediately below
the outer surface (cf. C(1s) signal percentages at ϕ = 70◦ and 20◦ for p(Sib-F-EGb)4) provided the
right drive for surface reconstruction, resulting from the tendency of the EG chains to migrate to
contact water. Actually, a reconstruction mechanism appears mainly to involve the migration of the
hydrophobic fluorinated chains away from the polymer−water interface, rather than the migration of
the hydrophilic ethoxylated chains toward the surface, as suggested by the reduction in the amount of
C−O groups after immersion in water. This was possibly due to the effect of the concomitant presence
of F chains that mechanically dragged part of the EG chains into the film bulk, thus preventing the
effective migration of the latter to the polymer−water interface. However, the decrease in the F chains
was much more marked than that in the EG ones, resulting in an increased C−O/(CF2 + CF3) ratio and
consistently in a higher hydrophilicity of the whole system. This peculiar reconstruction mechanism
differs from that generally reported for other amphiphilic copolymers containing ethoxylated and
fluorinated components, which led to a substantial increase in surface concentration of the ethoxylated
chains as a result of their major exposure to water [47–50].

In agreement with these last conclusions, measurements of static contact angle with water (θw) at
different immersion times in water up to 6 days showed that θw decreased from 113◦ ± 2, 111◦ ± 2
and 106◦ ± 2 to 106◦ ± 2, 106◦ ± 2 and 84◦ ± 2 for p(Sib-F-EGa)4, p(Sia-F-EGa)4 and p(Sib-F-EGb)4,
respectively. The last film surfaces underwent a more pronounced reconstruction becoming more
hydrophilic after contact with water. Atomic force microscopy (AFM) measurements showed that
all film surfaces were featureless and very smooth (RMS ~7 nm (1 × 1 µm2)). Therefore, the effect of
surface roughness on θw could be neglected.

4. Concluding Remarks

Novel surface-active amphiphilic terpolymers composed of a (meth)acrylic backbone with
fluorinated (F), ethoxylated (EG) and siloxane (Si) side chains were engineered with variable lengths
of EG and Si chains for one given length of F chains to create chemically modified PDMS-based film
surfaces within the outermost few nanometers. AR-XPS analysis proved that all the PDMS-based films
containing the terpolymer displayed a surface chemical composition close to that of the respective
parent terpolymer, indicating that the presence of the PDMS matrix as the major component in the
formulation did not inhibit the strong surface segregation of the terpolymer, which was responsible for
the exceptionally high enrichment in fluorine of the outermost surface layers with respect to the bulk
of the film. Even though the experimental amount of fluorine at the surface was lower for the sample
p(Sib-F-EGb)4 consisting of both longer siloxane and ethoxylated side chains, the Fexp/Ftheor ratio was
the highest, indicating that the surface segregation process was the most effective for this terpolymer.
The substantial surface segregation of the fluorinated chains produced an accumulation of the high
surface energy ethoxylated chains at the polymer–air interface, thus resulting in an amphiphilic,
chemically heterogeneous surface structure at the nanoscale level of the otherwise hydrophobic
siloxane surface. In particular, the concentration of CH2CH2O groups within the first ~3 nm of



Coatings 2019, 9, 153 11 of 14

the polymer surface was maximized for terpolymers containing the shorter and more mobile EGa
side chains.

The sensitivity of the polymer films to the water environment depended on the structure of the
terpolymer and in particular on the length of the EG side chains and their content at the polymer−air
interface. In fact, for films p(Sia-F-EGa)4 and p(Sib-F-EGa)4, with the maximum percentage of
CH2CH2O groups at the outermost surface layers (ϕ = 70◦), the C−O/(CF3 + CF2) ratio, namely an
estimation of the hydrophilic/hydrophobic balance of the system, did not change upon immersion in
water, since the chemistry of the film surface was stable upon immersion. On the other hand, for films of
p(Sib-F-EGb)4, with a higher content of CH2CH2O groups in the bulk (ϕ = 20◦), the C−O/(CF3 + CF2)
significantly increased showing that the film surface became more hydrophilic upon immersion in
water. However, in no case was an enhancement detected in ethoxylated chain concentration at the
surface after immersion. The reconstruction process involved a massive migration of the fluorinated
tails away from the surface, which led to a marked increased in the amphiphilicity degree, although
part of the ethoxylated chains were also concurrently dragged into the bulk.

The features of surface structure and reconstruction of amphiphilic polymer coatings are highly
relevant to potential application, notably when distinct interactions with the water environment
are involved. Simultaneous incorporation of opposite, hydrophobic and hydrophilic, functions into
a surface-active terpolymer-based coating leads to a chemically heterogeneous and dynamically
rearranging coating surface. Such coating is conceivably able to better resist adhesion from diverse
fouling agents, such as bacteria, cells and organisms, especially those that exhibit contrasting
preferences for hydrophilic, or otherwise hydrophobic, surface characters. One prime example is in
the field of marine antifouling/fouling-release coating application.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-6412/9/3/153/s1,
Figure S1: Differential scanning calorimetry (DSC) heating curves of the amphiphilic terpolymers p(Sib-F-EGa)
and p(Sib-F-EGb). Figure S2: Area-normalized C(1s) XPS spectra of p(Sib-F-EGa)4 (a), p(Sib-F-EGb)4 (b) and
p(Sia-F-EGa)4 (c).
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