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Abstract: Graphene and its derivatives have many superior electrical, thermal, mechanical,
chemical, and structural properties, and promise for many applications. One of the issues
for scalable applications is the lack of a simple, reliable method that allows the deposit of a
well-ordered monolayer using low-cost graphene flakes onto target substrates with different
surface properties. Another issue is the adhesion of the deposited graphene thin film, which has
not been well investigated yet. Following our former finding of a double self-assembly (DSA)
process for efficient deposition of a monolayer of graphene flakes (MGFs), in this work we
demonstrate that the DSA process can be applied even on very challenging samples including
highly hydrophobic polytetrafluoroethylene (PTFE), flexible textiles, complex 3D objects, and thin
glass fibers. Additionally, we tested adhesion of the graphene flakes on the flat glass substrate by
scotch tape peel test of the MGFs. The results show that the graphene flakes adhere quite well on
the flat glass substrate and most of the graphene flakes stay on the glass. These findings may trigger
many large-scale applications of low-cost graphene feedstocks and other 2D materials.

Keywords: double self-assembly process; conformal coating on 3D substrates; hydrophobic surface;
adhesion peel test

1. Introduction

Graphene offers many intriguing electrical, optical, chemical, and mechanical properties [1]
that are highly interesting in application in photovoltaics [2–5], sensors [6,7], coating materials for
optical components [8], as electrical & thermal conductive materials used in microelectronics [9–12],
ultrathin membranes [13], and anticorrosion layers on critical parts working under hazardous
surroundings [14–16].

High quality graphene layers can be grown by chemical vapor deposition (CVD) on copper or
nickel sheets [17,18], or by sublimation of silicon on a single crystalline SiC wafer [19,20], leaving behind
a high quality crystalline carbon in the form of graphene. For most applications, however, the grown
graphene thin film has to be transferred onto targeting substrates, which results in high cost due to
low throughput of the CVD growth as well as the sophisticated layer transfer process. Specifically,
it is hard to produce a uniform layer on 3D structures and objects using the CVD-grown graphene;
for example, for application as an anti-corrosion coating on the surface of 3D objects, functional
coating on optical lenses, conducting thin film for antistatic coating, or for shielding of electromagnetic
irradiation. This significantly limits the applications of graphene.
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Nanoplatelets of graphene or graphene oxide (GO) [21–23] can be produced chemically [24]
or electrochemically [25] in a large amount by exfoliation of graphite. These are appropriate for
large scale applications and the costs are much lower than those produced by CVD or on SiC wafers.
These GO or graphene nanoplatelets are usually provided in form of powders or suspensions in
an appropriate solvent. For many applications of such 2D materials, however, well-ordered thin
films have to be fabricated on the surface of supporting substrates so that they can preserve their 2D
properties. The existing Langmuir–Blodgett (LB) process [26] offers the opportunity to manipulate the
graphene or GO powders (suspensions) to form a monolayer of graphene flakes (MGFs; a monolayer
consists of few-layer graphene flakes without being overlapped) on a uliqid surface, and the layer can
be subsequently transferred onto the targeting substrates by the so-called dip coating process. The LB
process, however, is very time consuming (the whole process takes hours) and is restricted only to
hydrophilic surfaces. In many cases a sophisticated pretreatment for hydrophobic surfaces is needed
to turn them to hydrophilic. Additionally, the LB process does not allow a uniform deposition on
complex 3D objects.

In a previous publication [27], we demonstrated a double self-assembly (DSA) process to
effectively form a large-area uniform MGFs (within seconds) and to subsequently transfer it onto
various substrates. However, the potential of the DSA process has not been fully demonstrated yet;
for example, deposition on very challenging substrates such as highly hydrophobic surfaces like
polytetrafluoroethylene (PTFE), flexible textiles or complex 3D objects, and strongly curved surfaces
such as thin optical fibers. These features could be essential for many applications such as sensors,
functional coatings, wearable electronics, and fiber-based optical sensors. In addition, the adhesion of
the deposited graphene flakes is the most critical point for many applications, and has not been well
investigated up to now.

Following our former work, in this contribution we demonstrate the potential of the DSA process
on very ambitious samples, such as on a highly hydrophobic surface (polytetrafluoroethylene PTFE,
commonly known as Teflon), highly flexible textiles, conformal coating on complex 3D objects,
(e.g., a laser-engraved glass souvenir), and glass fibers with a very large curvature (and small
diameters). We also present our preliminary results about the adhesion of the MGFs deposited
on a smooth glass substrate. The adhesion was investigated by scotch tape peel tests on MGFs
deposited on flat Borofloat glass substrates; such peel tests are an established method to evaluate the
adhesion of the coating [28]. It is noted that such a peel method has been used during studies of the
2D graphene, where it was shown that the mechanical peel of graphite powder results in exfoliation,
and single atomic layer graphene can be obtained by repeated peels [29]. It was found by our peel
tests that the van der Waals force between the flakes and the flat glass substrate is large enough to hold
most of the flakes even after repeated peeling.

The principle of the DSA process [27,30,31] is illustrated in Figure 1 as a cross-sectional view.
The graphene suspension is dispersed onto the water surface by a syringe to form a loose MGFs
floating on the water surface (Figure 1a). Subsequently the loose MGFs are laterally compressed by
sodium dodecyl sulfate (SDS) molecules added at the edge of the water surface [30,31]. During the
fast spreading of the SDS molecules on the water surface, the graphene flakes are pushed together
and form dense MGFs (Figure 1b). Then the water is pumped out or the samples are raised up to let
the MGFs settle down on the substrate. After drying the substrate, the MGFs attach to the substrate
(Figure 1c).

A slight excess of SDS is essential to stabilize the MGFs during the deposition. The SDS molecules
stay mostly beneath the water surface at the place where they are injected. The area occupied by the
MGFs is reduced due to the deposition on the substrate as well as on the side wall of the petri dish
during the lowering of the water level. The area free of graphene increases and is newly occupied by
SDS molecules to maintain the pressure at the edge of the MGFs. The excess SDS molecules emerge
on the water surface in a self-assembly way so that the area free of graphene flakes is always fully
occupied by SDS molecules, and the pressure at the edge of the MGFs is maintained. This occurs in a
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very fast and smart self-assembled way so that the dense MGFs is stabilized and hold together during
the deposition. In addition, the individual graphene flakes within the MGFs floating on the water
surface can still rearrange their positions by self-assembly during the entire deposition to fit the contour
of the substrate, so that a uniform and conformal coating of MGFs on 3D structures can be guaranteed.
This is the origin of the name of the double self-assembly (DSA). It is noted that SDS surfactants have
been used as a stabilizer mixed with carbon nanotubes for the formation of stable suspension [32,33];
in such cases, the SDS molecules bind on the surface of carbon nanotubes forming micelles in the
suspension. The SDS molecules are used in a different way in our case; they were intentionally used to
compress the graphene flakes on the water surface, and the SDS molecules have no contact at least
with the graphene flakes in the middle. The pressure exerted by the SDS molecules stabilizes the MGFs
floating on the water surface, so that no cracks in the MGFs form during the deposition.
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Figure 1. Sketch of the double self-assembly (DSA) process for the graphene coating in the top view
(upper images) and cross sectional view (lower images): (a) Dispersion of the graphene flakes on the
water surface forming a loose monolayer of graphene flakes (MGFs); (b) compression of the MGFs by
sodium dodecyl sulfate (SDS) molecules to form a densely packed MGFs with the excess SDS molecules
staying immersed in water; (c) pumping out of water (or raising the sample out of the water) so that
the dense MGFs settle down on the substrate.

2. Materials and Methods

All the petri dishes, glass beakers, syringes, and substrates used in these experiments were
thoroughly cleaned by acetone and dried by N2 blowing. Then they were rinsed in deionized water
several times. For the textiles a slightly different cleaning without acetone was needed. The textile was
immersed into deionized water for several minutes and then the water was discarded. The procedure
was performed repeatedly several times in order to remove contaminations from the textile. After the
cleaning, the petri dish with the sample was filled with several hundred mL deionized water until
the water level is about 5 mm above the sample. The graphene flakes used here were emulsifier-free
and thermally reduced few-layer graphene oxide (TRGO) initially developed for printed electronics
at the University Freiburg [27,34], and contain 5 g·L−1 functionalized TRGO suspended in a slightly
alkaline water (pH 9–10 adjusted by NaOH) solution. The size of the graphene flakes was about 100
nm up to several µm. About 500 µL of the graphene ethanol suspension (graphene content: 0.5 wt %)
was added onto the water surface by a syringe until the water surface was fully occupied. The flakes
spread over the water surface and formed a loose monolayer. About 200 µL of 10 wt % SDS water
solution was added by another syringe at the edge of the petri dish, so that during the spreading of
the SDS molecules on the water surface, the loose MGFs was laterally compressed and formed a dense
MGFs (see the Video S1 in the Supplementary Material).

After adjusting the position of the substrate beneath the MGFs, the water was slowly pumped
out, so that the MGFs settled down on the substrate. This was the method for deposition on PTFE,
textile samples, and 3D structures.
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For the coating of glass fibers, the fibers were dipped vertically into the water at the area free of
graphene flakes and pulled out of the water from the area with the dense MGFs. The MGFs attached
onto the surface of the glass fibers driven by the pressure applied by the SDS at the edge of the
MGFs. For multiple layer deposition, a drying step at 80 ◦C for about 10 min was required after
each deposition. This drying step improves the adhesion of the previous graphene layers so that the
first layer(s) will not detach from the surface during the subsequent processes performed in water.
The conductivity can be improved by thermal annealing in inert gas N2 at temperatures between 200
and 600 ◦C if necessary [27].

The adhesion of the MGFs on Borofloat glass (Borofloat® 33 with a surface roughness of <1 nm)
substrates was investigated using scotch tape peel tests. To better visually demonstrate the effect,
samples partially coated with MGFs were used, so that the contrast between the MGFs and the areas
without MGFs could be better visualized. The tests were repeatedly performed several times around
the same area. After each peel, the scotch tapes were stuck on a white paper close to each other
for comparison.

3. Results

The sheet resistances, annealing behaviors, and Raman measurements of the graphene layers
deposited on flat glass substrates are reported elsewhere [27].

Figure 2a shows the SEM image of the dense MGFs deposited on a silicon wafer along with
some graphite nanoparticles. These particles were possibly the residual non-fully exfoliated graphite.
The SEM investigation was done on silicon, since a conductive substrate was needed to avoid charging,
but the same morphology was expected on other substrates. The corresponding high magnification
image in Figure 2b shows a graphene flake with wrinkles, which are typical for the solution proceeded
graphene layers [27]. The neighboring graphene flakes were connected to each other but some bare
areas appear between the flakes. The area coverage ratio of the graphene flakes was estimated to
be 84.1%–85.3% as shown in the example in Figure 2c and the corresponding processed image in
Figure 2d. The non-covered area was 14.7%–15.9% and the average size of blank area of 0.01–10 µm2.
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Figure 2. (a) SEM image of MGFs deposited on a silicon wafer; (b) high magnification SEM image of a
graphene flake deposited on silicon; (c) SEM image for the calculation of the areal coverage; and (d) the
corresponding processed image with the blank areas marked in green.

Except of the versatile possibilities of coating of the MGFs on different substrates demonstrated
in [27], in this work we have tested the applicability of the DSA process for the coating on very
challenging samples such as highly hydrophobic surfaces such as PTFE, very flexible textiles, the
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conformal coating on 3D structures, and even with very large curvatures in case of glass fibers with
very small diameters.

3.1. Large Area Deposition on Highly Hydrophobic Surfaces

One of the advantages of the DSA compared to the LB process is that it does not need a hydrophilic
substrate surface. It can be readily applied to almost any hydrophobic surfaces [27]. A representative
example of the MGFs deposition on a highly hydrophobic surface was demonstrated on PTFE in
this work. A contact angle of 103◦ ± 2◦ of deionized water on PTFE was measured before the MGFs
deposition. Figure 3a shows the dense MGFs floating on the water surface above the PTFE sample after
compression with SDS molecules. Figure 3b shows the MGFs attached to the PTFE surface (diameter
of 4.1 cm) with an area of about 13 cm2 after lowering the water level. The deposited graphene layer
was very homogenous and conductive even without further treatment and annealing.
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Figure 3. (a) The dense MGFs floating on a water surface above the PTFE sample with a diameter of
4.1 cm; (b) MGFs settles down on the Teflon surface while lowering the water level (the dashed line
shows the boundary of MGFs and SDS molecules).

3.2. Deposition on Flexible Textiles

A homogeneous coating of a graphene layer on very flexible substrates such as textiles and carbon
fiber [35] is essential for many applications including e-textile [36], textile based sensors [37], etc.
Due to the strong compression by the surfactant molecules, the DSA process can be applied to textile
materials immersed in water.

Figure 4a shows the cleaned textile with interwoven metal wires being immersed in the water
beneath the dense MGFs. Figure 4b shows the uniform MGFs deposited on the textile surface after
drying. The deposited graphene layer was about 30 cm2 large and showed no visible defects.
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Figure 4. (a) DSA process for the coating of MGFs on flexible textiles interwoven with metal wires at
the edges; (b) a uniform 30 cm2 MGFs deposited on the textile (after drying of the textile), except for
some very small blank areas at the edge of the textile (see the guiding dashed lines).
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3.3. Conformal Deposition on 3D Structures and Thin Glass Fibers

A conformal coating of the MGFs on complex 3D structures is one of the unique features of
the DSA process, mainly due to the smart rearrangement of the SDS molecules and graphene flakes.
The graphene flakes fit the contour of the 3D structures and a conformal coating without folding is
thereby achieved [27].

In this work, we have successfully demonstrated a uniform coating of MGFs on 3D objects in case
of a laser engraved glass souvenir with many facets. The glass souvenir was placed beneath the MGFs
as shown in the Figure 5a. A conformal and homogeneous coating of the MGFs was achieved on the
3D glass substrate as sketched in Figure 5b and shown in the photographs in Figure 5c–e. Despite the
complex structure, a very homogeneous and uniform coating of MGFs was achieved on the facets as
well as on the flat front window without any folding. In contrast, if a flat graphene layer (like a sheet
of paper) is to be attached onto 3D objects, it is impossible to do so without folding. The height of
the souvenir was about 4 cm, the lateral broadness about 3 cm, and the diameter of the bottom about
2 cm, so the area coated with MGFs was estimated to be around 35 cm2. The layer was conductive
with resistance of several mega ohm measured between any two points on the graphene even without
further treatment and annealing.
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Figure 5. (a) The glass souvenir was placed beneath the MGFs. (b) A schematic view of the MGFs
attached on the surface of the 3D object, and a conformal and homogenous coating was realized on the
facets by pumping out of the water. Photographs of the glass souvenir coated with MGFs from (c) front,
(d) right side and (e) left side. (f) The procedure for the MGFs coating on glass fibers. (g) A conformal
coating of MGFs was realized on the glass fiber by pulling it out of water. (h) Glass fibers coated with
three stacks of MGFs by repeating the process; the diameter of the upper glass fiber was 0.42 mm,
and the length of the coated piece was 11 cm. The diameter of the lower glass fiber was 0.93 mm,
and the length of the coated piece was 10 cm.

It is demonstrated in this work that a conformal coating can also be achieved on bended surfaces
with very large curvatures (i.e., small diameters). Figure 5f illustrates the procedure for the coating of a
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MGFs on a thin glass fiber. The fiber was pulled out of the water at the area formed with the MGFs, so
that the MGFs were attached uniformly on the fiber due to the pressure exerted by the SDS molecules
at the edge of the MGFs as sketched in Figure 5g. Several layer stacks of MGFs were easily realized on
the fibers by repeating the process as shown in Figure 5h, where glass fibers with diameters of 0.42
(upper) and 0.93 mm (lower) were coated with MGFs all around the fibers (the 5 euro cents coin is for
comparison). The layer is also conductive even without further treatment and annealing. An adaption
of the DSA process could enable graphene coating on longer fibers.

3.4. Adhesion of the MGFs Deposited on Flat Borofloat Glass

Adhesion of graphene layer on foreign substrates is crucial for almost all applications. Here we
present our preliminary results for MGFs deposited on glass substrates using the DSA process.
The adhesion of the MGFs deposited on Borofloat glass was tested by scotch tape peel as shown
in Figure 6a. The photo in Figure 6b shows a 2.5 × 2.5 cm2 sample partially deposited with MFGs for
better visual control. It shows that the first peel effectively removes the highly reflecting particles in
the layer, which are well visible in microscope, and corresponds to remaining graphite nanoparticles
in the suspension [27].
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Figure 6. (a) Setup of the peel test; (b) The image shows a 2.5 × 2.5 cm2 sample partially coated
with MGFs before the peel tests; the dashed rectangle marks the position around which the peel tests
were performed; (c) After each peel, the scotch tapes were stuck on a white paper one after another,
and a bare Borofloat glass was included for comparison; (d) Micrographs at the positions marked with
rectangles in (c).

The structures of the MGFs on the tapes (with a width of 1.9 cm in Figure 6c) were still seen for
the next two peels, while there was only very faint contrast seen on the tape after the fourth peel,
and almost nothing at all can be seen for the fifth and sixth times. However, after 6 peels, a uniform
thin film (at the areas originally covered with MGFs on th) remained e Borofloat glass substrate and
the structure of the thin film kept the same as previously. The micrographs in Figure 6d show that the
highly reflecting graphite nanoparticles [27] were mostly removed by the peels, while the graphene
flakes stayed on the flat glass substrates. We believe that the good adhesion of the graphene flakes on
the glass could be attributed to the van de Waals force between the graphene flakes and the smooth
glass surface, since the smooth surface allowed a much better contact between the graphene flakes and
the glass substrate, so that a large van de Waals force exists between them.

The scotch tape peel tests give strong evidence that the MGFs has a good adhesion on the flat
glass substrates. Upon further selection process to filter out the graphite nanoparticles, a better MGFs
with super adhesion could be produced. These peel tests demonstrated the good adhesion of the
graphene flakes deposited on the flat glass surface. However, it is generally known that the adhesion
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of any coating depends strongly on the surface properties (roughness, chemical bonding, etc.) of the
substrates, and has to be investigated for each of the targeting substrates individually.

4. Outlook

The advantage of the DSA process is that it is able to deposit pure graphene thin layer onto
targeting substrate, and there is no surface functionalization of the targeting substrates required and it
is possible to only use ethanol, graphene flakes and water for the suspension. It is a binder-free coating
in comparison to other approaches [38,39], and the ethanol and water are vaporized completely during
the drying. During the compression, the SDS molecules stay at the edge of the MGFs and beneath the
water at the place where they are dispersed. The substrate can be placed far away from this point,
so that the SDS molecules are not able to reach the substrate during the deposition and a very pure
graphene layer can be deposited on the substrate. Such a pure graphene layer is essential for many
applications; for example, for microelectronics, sensors, and electrodes for Li-ion batteries.

The deposition is very fast; usually the pumping of water can be done at a rate of about 2 cm/min
in the vertical direction. This does not depend on the lateral size of the sample, so large flat areas can
be deposited with MGFs within a minute.

The DSA process is able to compress the graphene flakes so that they are linked to each other at
the edges, with some bare spaces between neighboring flakes due to the irregular shape as shown
in the schematic view in Figure 7a. It has been demonstrated that these bare spaces get closed if the
process is repeated and multilayer of MGFs are deposited [27]. An ultrathin membrane can be formed
as shown in the schematic view in Figure 7b. Theoretically, the blank area of membranes consisting of
multilayers of MGFs can be estimated from that of the monolayer, and the values are listed in Table 1.
If the average size of the blank area is 0.01 µm2, seven layers of MGFs are needed in order to get it
down to sub-nm range (an average size of the blank area below 1 × 10−6 µm2). For the blank area
at the maximum of 10 µm2 (three orders higher than 0.01 µm2), a further three layers of MGFs are
needed to get a closed membranes. In both cases, the thickness of the membranes is below 10 nm if the
graphene flakes consist only with one atomic layer of carbon (thickness of ~0.3 nm).
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Table 1. The percentage of blank areas in membranes consisting of MGFs and multilayers of MGFs,
and the average size of the blank areas within multilayers of MGFs.

Number of
MGFs Layers 1 2 3 4 5 6 7

Coverage ratio
of blank area 0.159 2.53 × 10−2 4.02 × 10−3 6.39 × 10−4 1.02 × 10−4 1.62 × 10−5 2.57 × 10−6

Average size of
blank area (µm2) 0.01 1.59 × 10−3 2.53 × 10−4 4.02 × 10−5 6.39 × 10−6 1.02 × 10−6 1.62 × 10−7
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These closed ultrathin membranes (or coating) can be used for high performance molecular
sieving purposes, in which the membrane allows small molecules such as H2 and H2O to pass [40,41],
while remaining impermeable to larger molecules such as CH4, ethanol [42] and ions (Na+, Cl−, Mg2+,
Ca2+, etc.) [43].

Such ultrathin membranes are required for gas separation and can also be used for reverse osmosis
in water desalination and purification. The ultrathin membrane allows a high flux at very low pressure
and will significantly reduce the power consumption of the process [40]. The DSA process could
contribute to the scalable fabrication of ultrathin membranes.

Furthermore, such impermeable coatings on 3D metal parts are expected to have the ultimate
anti-corrosion effect [14–16]. The main reason for metal (alloy) corrosion is an electrochemical process,
which occurs between two metals or phases with different electrochemical potentials in the presence
of an electrolyte. Thus a micro electrochemical cell is formed, with one phase acting as anode and
the other as cathode. The metal at the anode oxidizes and corrodes by releasing ions. With the
hermetic graphene layers deposited under pure conditions (deionized water), it is expected that no
electrochemical process on the metal surface can take place, since no electrolyte can be formed on the
surface due to the absence of salts, and no salts can pass through the hermetic graphene coating during
the operation. In comparison with other anti-corrosion coatings, the graphene layers are ultra-thin in
the nm-range, and it is resistant to many other aggressive chemicals such as strong acids and alkalis.
Furthermore, graphene is thermally stable up to 500 ◦C in air and about 2700 ◦C in vacuum [44], so such
an anti-corrosion coating might be used for critical parts working in extreme hazardous conditions.

Owing to the process compatibility to other 2D materials, the DSA process might be used for the
large-scale thin film deposition of other 2D materials as well, and will greatly contribute to application
of 2D materials.

5. Summary

In this work it is demonstrated that the DSA process can be used to deposit conformal graphene
layers on highly hydrophobic substrates such as PTFE, on flexible textiles, on complex 3D objects,
and even on single glass fibers with small diameters as low as 0.42 mm. Together with our former
work, a full spectrum of the DSA process for MGFs deposition has been demonstrated.

The DSA process works without explosive gases, vacuum, high temperature, or special equipment,
and only non-toxic environmentally friendly materials are used. This process allows uniform
deposition of MGFs on almost any substrates such as flexible transparent plastic foils, metal sheets,
glass substrates, silicon wafers with or without SiO2, and rough surfaces for the above-listed
applications. Particularly, the DSA process allows a uniform and conformal coating on complex 3D
structures, which opens many applications of the low-cost graphene feedstocks such as anti-corrosion
coating on critical parts working in extreme conditions, functional coating on optical components
including “free-form” optics, and antistatic coating.

The DSA process allows MGFs to be repeatedly deposited on the same substrate, that is, to prepare
uniform multilayers with well-ordered graphene flakes within each layer stack. This allows a precise
layer thickness and morphology control; for example, to produce ultrathin membranes for highly
efficient water desalination and gas separation applications, as well as impermeable anti-corrosion
graphene coatings on 3D parts used at extreme conditions (corrosive, high temperature, etc.).

We expect that the DSA process will greatly contribute to large-scale high performance
applications of low-cost graphene feedstocks and other 2D materials, and is industrial compatible
to trigger scalable applications up to the m2-range. The good adhesion of the MGFs on flat
substrates demonstrated in this work is another key point for up-scalable applications of the low-cost
graphene flakes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-6412/9/3/183/s1,
Video S1: Compression of the MGFs by SDS molecules.
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