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Abstract: This study proposed the belt-type microstructure array flexible mold designed hot roller
embossing process technology. An extrusion molding system was integrated with belt-type hot roller
embossing process technology and, deriving the asymmetric principle as the basis of prediction,
designed a belt-type microstructure array hot roller embossing process system. This study first
focused on the design and manufacturing of a belt-type hot roller embossing process system (roll to
belt-type). It then carried out system integration and testing, along with the film extrusion system,
to fabrication microstructure array production. Hot embossing was used to replicate the array of the
plastic micro lens as the microstructure mold. The original master mold was fabricated with micro
electromechanical technology and the PC micro lens array as the microstructure (inner layer) film
using the gas-assisted hot embossing technology. A microstructure composite belt and magnetic
belt were produced on the hot roller embossing by an innovated coated casting technique. The
forming accuracy of the belt-type microstructure array flexible mold hot roller embossing process
and the prediction precision of numerically simulated forming were discussed. The proposed process
technology is expected to effectively reduce the process cycle time with the advantages of being a fast
and continuous process.

Keywords: belt-type; hot roller embossing; asymmetric principle; micro-structure; film extrusion

1. Introduction

In recent years, due to the vigorous development of the semiconductor industry and the continuous
progress of high technology, commercialized testing instruments, optical communication products, and
consumer electronics products are facing the trend of miniaturization, integration, and multifunctional
development. Traditional reflective and refractive micro structural components are very limited due
to their special properties. It is difficult to develop general miniaturizing processes, due to high
cost and difficult mass production. The plastic micro optical components of the same function are
inexpensive and easily produced in quantity, and can be integrated with the existing optoelectronic
components to form a micro optical mechanical and electrical system [1–3]. Due to the wide application
of plastic polymer embossing and forming technology [4–6] in microstructure array components
and vast market demands, two kinds of embossing and replicating form technology (plane type and
roller type) are commonly used. However, compared to the plane embossing technology, the roller
type embossing technology [7–17] has the advantages of continuous mass production and shortened
embossing duration. In 1997, Gale [18] used electroplating nickel mold technology to duplicate the
extremely thin nickel mold, in order to achieve mass replication of the structure. The technology
adopted a roller coated with nickel mold and roll-to-roll production concept [19–21]. However, during
the rolling process, due to a too-fast rolling speed (roller speed), the parts actually touched by the
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imprint are only the quick contacts of roller to roller. This might easily cause insufficient time for
the holding pressure. In this case, the imprint is indefinite or the rebound causes insufficient width
and depth, or in the general rolling process, incomplete contact problems between the roll to roll
and roller central section often occur. At the same time, general roller embossing is formed on the
roller or coated on the roller with a microstructure. However, as a tight adherence is difficult, mold
displacement and warping occur frequently during rolling. In addition, roller imprint technology is
applied to hot pressed nanoimprint lithography, and its mold belongs to the non-transparent rigid
mold, which requires precise high temperature and high pressure processing equipment. Therefore,
the process is slow and the cost of the mold is high. The high cost of precision roller embossing
equipment is the main deficiency of this kind of process. If a soft mold is used for roller embossing,
it has insufficient strength and is not resistant to high temperature. In order to improve the above
shortcomings, this study addressed the above problems, and developed the belt-type microstructure
array micro hot rolling process technology. The proposed technology is expected to continuously
replicate the microstructure of the belt on the surface of polymer film by using the continuous extrusion
process of the extruder, continuous film extrusion, and the continuous rolling process of the belt rolling
system. The effect of the holding pressure of the embossing of the belt could be continued, which is
expected to efficiently solve the rebound caused by too fast embossing and indefinite embossing width.
In addition to effectively utilizing the magnetic attraction between magnetic rollers to perform high
density imprinting, the high precision rolling action is assisted by adjusting the appropriate gas to
form pressure.

2. Asymmetric Principle for Roller Embossing System

2.1. Expressions Related to the Tip (Microstructure) Imprinting on the Substrate

2.1.1. General Expressions

At first, given the feature size and geometric position of the tip, we can completely describe the tip
shape and configuration. That is, we can get the equations that represent the surface of the tip shape,
which are attached on the model. Suppose there exists a point Ci on the surface of the model M, the
point Ci can be represented by a position vector Ri,R, as show in Equation (1).

Ri,R = (xi, yi, zi)
T =


xi
yi
zi

, (1)

Here the subscript R is the reference frame, it is a fixed frame attached on the machine platform.
In our system, the machine platform is fixed at all times, but the substrate can be lifted.

Then let us see what happens after we rotate the model. Given ϕ and θ, we can get two rotation
operators, one concerns the effect of ϕ rotation, another concerns the effect of θ rotation.

Rotation operator Oϕ;R→M(1), which describes a point transforms into a new position, and
consequently a new coordinate accompanies it after the model’s proceeding ϕ rotation, as shown in
Equation (2).

Oϕ;R→M(1) =


cos(ϕ) sin(ϕ) 0
− sin(ϕ) cos(ϕ) 0

0 0 1

, (2)

where R is the reference frame and M is the frame attached on the model. Rotation operator
Oϕ;M(1)→M(2), which describes a point transforms into a new position, and consequently a new
coordinate accompanies it after the model proceeding θ rotation, as show in Equation (3).
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Oϕ;M(1)→M(2) =


cos(θ) 0 0

0 1 0
− sin(θ) 0 1

, (3)

Let us proceed to the operation of the two operators. Step 1 is the ϕ rotation, that is Oϕ;R→M(1),
on the point Ci. We can see after the model M ϕ rotation, the point Ci goes to a new position, it is
represented by a position vector Ri,M(1), as show in Equation (4).

Ri,M(1) = Oϕ;R→M(1)·Ri,R, (4)

The second step is that we proceed with θ rotation, that is Oθ;M(1)→M(2), continuously after the
ϕ rotation. Then the point Ci, represented by the position vector Ri,M(1), should go to another new
position, described by a position vector Ri,M(2), as show in Equation (5).

Ri,M(2) = Oθ;M(1)→M(2)·Ri,M(1)
= Oθ;M(1)→M(2)·Oϕ;R→M(1)·Ri,R,

(5)

Thus, we can get the new coordinate of some point Ci, which lies on the surface of the tip (or
model) at all times but is transformed into a new space position after the two rotation operations,
Oϕ;R→M(1) and Oθ;M(1)→M(2). Here we have to understand that the coordinate of any point, say Ci,
regardless of whether it is transformed or not, is always described in terms of machine platform
reference frame, R.

To double check the correctness of the above expressions, we define a rotation operator O−ϕ;M(1)→R,
describing the model −ϕ rotation, as show in Equation (6).

O−ϕ;M(1)→R =


cos(−ϕ) sin(−ϕ) 0
− sin(−ϕ) cos(−ϕ) 0

0 0 1

 =


cos(ϕ) − sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1

 (6)

If there exists a point that is represented by a vector Ri,M(1), then after the point undergoes the
rotation operator O−ϕ;M(1)→R, it should go back to the original position Ri,R. That means operators
Oϕ;R→M(1) and O−ϕ;M(1)→R are inverse to each other, as show in Equation (7).

Oϕ;R→M(1)·O−ϕ;M(1)→R = O−ϕ;M(1)→R·Oϕ;R→M(1) = 1, (7)

2.1.2. Case One: Cylinder-Shape Tip

Here we consider the case of the tip, the mold is cylinder-shape. At first, let us see the surface
equation of the cylinder-shape tip and the plane equation of substrate. We assume the surface equation
of the cylinder-shape tip is:

ψcylinder−shap tip,

Here we do not show the explicit form of this cylinder-shape tip surface equation. The plane
equation of the substrate is:

ψsubstrate =

{
0·(x− 0) + 0·(y− 0) + 1·(z− 0) = 0

z = 0

}
, substrate is not lifted,

and

ψsubstrate =

{
0·(x− 0) + 0·(y− 0) + 1·(z− 0) = 0

z = ∆h

}
, substrate has been lifted a distance ∆h.

Thus, after solving the equations for ψcylinder and ψsubstrate, we can get the imprinted intersection
contour, which is shown on the substrate. The imprinted contour equation, as show in Equation (8):
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Xscase o f cylinder−shape tip =

 (x−xi,∆h)
2

a2 +
(y−yi,∆h)

2

b2 = 1
z = ∆h

, (8)

The contour is a cycle (as a = b) or an ellipse (as a , b).

2.1.3. Case Two: Sphere-Shape Tip

Similar to the case of the cylinder-shape tip, at first, let us see the surface equation of the
sphere-shape tip and the plane equation of substrate. We assume the surface equation of the
cylinder-shape tip is:

ψsphere−shap tip,

Here we do not show the explicit form of this sphere-shape tip surface equation, and the plane
equation of the substrate is:

ψsubstrate =

{
0·(x− 0) + 0·(y− 0) + 1·(z− 0) = 0

z = 0

}
, substrate is not lifted,

and

ψsubstrate =

{
0·(x− 0) + 0·(y− 0) + 1·(z− 0) = 0

z = ∆h

}
, substrate has been lifted a distance ∆h.

Thus, after solving the equations for ψspherer and ψsubstrate, we can get the imprinted intersection
contour, which is shown on the substrate. The imprinted contour equation, as show in Equation (9).

Xscase o f sphere−shape tip =


(
x− xi,∆h

)2
+

(
y− yi,∆h

)2
= r2

i,∆h
z = ∆h

, (9)

where ri,∆h is generally not a constant. The intersection contour is a circle, but with a different
radius generally.

2.2. Intersections of Model and Pattern

This is the position to represent how to calculate the nanoimprint patterns. Beginning with Weng’s
study of asymmetric grayscale roll-to-plate [22], since we have gotten the coordinate of each point on
the surface of model after oblique operation performance by applying the transformation matrix Uϕθ,
the nanoimprint patterns can be easily and directly obtained by solving the simultaneous equations
sets of model, M(r) = 0, and plane Epattern, Spattern(r)= 0. During operation the transformation matrix
Uϕθ, as show in Equation (10).

Uϕθ

= cosϕ


sinϕ tanϕ+ cosϕ cosθ −sinϕ+ sinϕcosθ sinθ
− tanϕcosθ+ cosθsinϕ cosϕ+ sinϕ tanϕ cosθ sinθ

−sinθ − tanϕsinθ cosθ/cosϕ

,
(10)

where, ϕ: rotation angle, θ: oblique rotation angle{
M(r)= 0

Spattern(r)= 0

}
, (11)

Here, M(r) = 0 can be represented by some characteristic points and recast as
{
Mi(r) = 0

}
, in

which i denotes such characteristic points including some points or lines or planes on the surface of
the model, e.g., the center and corners, center lines and side lines of a square column, or the center,
center lines and perimeter of a circular column, and the explicit form of Spattern(r)= 0 is described by{
x, y ∈ R, z = −h

}
. So the simultaneous equations sets of model M(r) and plane Spattern(r) become:
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{ {
Mi(r) = 0

}{
x, y ∈ R, z = −h

} }
, (12)

By solving these equations sets Equation (12); we obtain intersection points of these equations
sets. These interaction points form the nanoimprint pattern produced on the surface of plane Epattern.

2.3. Circular Column Arrays

The appearance of nanoimprint patterns of each column usually exhibits an ellipse shape. For the
purpose of illustration, we consider a model constituted by a single circular column. There are six
points, Pi, i=0∼5, and their corresponding position vectors, ri, i=0∼5, and a unit vector, n, to characterize
this circular column as shown in Figure 1, here the situation is similar to the case of square column
arrays. Before the oblique operation performance, points Pi, i=0∼5 and their corresponding position
vectors ri, i=0∼4 and n can be represented as:{

ri, i=0∼5 = xix̂ + yi ŷ + ziẑ = (xi , yi, zi)

n = 0x̂ + 0ŷ + (−1)ẑ = (0, 0,−1)

}
, (13)
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Figure 1. Single circular column array.

Assume we perform the oblique operation on plane Emodel, we can get the values of ϕ and θ.
Thus, the transformation matrix Uϕθ can be established from Equation (10): Then by utilizing this
transformation matrix Uϕθ, the new positions of points Pi, i=0∼5 are obtained.

ri,ϕθ, i=0∼5= Uϕθri, i=0∼5, (14)

and the new position of unit vector n can also be obtained.

nϕθ = Uϕθn, (15)

From the points pi,ϕθ, i=0∼4, they can be obtained directly from position vector ri,ϕθ, i=0∼4, and the
unit vector nϕθ, we can write down line equations Li,ϕθ, i=0∼4(r). The five line equations describe the
center line and four characteristic lines of this circular column.
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Li,ϕθ, i=0∼4(r) :
x− xi,ϕθ

x5,ϕθ
=

y− yi,ϕθ

y5,ϕθ
=

z− zi,ϕθ

z5,ϕθ
= ki, i = 0 ∼ 4, (16)

Finally, by solving the equations sets of the five lines, Li,ϕθ, i=0∼4(r); and plane Epattern; Spattern(r);
as shown in Equations (16) and (20). 

{
Li,ϕθ, i=0∼4(r)

}{
x, y ∈ R, z = −h

} , (17)

The intersection points; pi, int, i=0∼4(r) are obtained:

pi, int, i=0∼4(r) = (xi, int, yi, int, zi, int)

=
(
xi, ϕθ + kix5,ϕθ, yi,ϕθ + kiy5,ϕθ,−h

)
ki =

−h−zi, ϕθ
z5,ϕθ

(18)

where i = 0 ∼ 4, index 0 means the center of nanoimprint pattern (the shape is usually an ellipse) and
indices 1~4 denote the ends of long axis and short axis in this ellipse shape (or circle shape) nanoimprint
pattern and (x5,ϕθ , y5,ϕθ, z5,ϕθ) is the new position of tip point of unit vector n after oblique operation
performance. To get the whole nanoimprint pattern, two methods can reach this purpose. One is that
we choose lots of points constituting completely the perimeter of circle on the top of circular column,
as examples, we choose 360 points to describe well the circle on the top of circular column, that is
Pi, i=0∼360+1 as shown in Figure 1. Then, following the same calculation procedures as before, we can
obtain the intersection points pi, int, i=0∼360(r):

pi, int, i=0∼360(r) = (xi, int, yi, int, zi, int)

=
(
xi, ϕθ + kix361,ϕθ, yi,ϕθ + kiy361,ϕθ , −h

)
ki =

−h−zi, ϕθ
z361,ϕθ

(19)

where i = 0~360, index 0 means the center of nanoimprint pattern (the shape is usually an ellipse) and
indices 1~360 denote the points on the perimeter of the ellipse shape (or circle shape) nanoimprint
pattern and (x361,ϕθ, y361,ϕθ, z361,ϕθ) is the new position of tip point of unit vector n after oblique
operation performance. Connecting the 360 interaction points that constitute the perimeter of ellipse
shape (or circle shape) nanoimprint pattern, the nanoimprint pattern is obtained finally. Another is
that when we have obtained the intersection points pi, int, i=0∼4(r) as shown in Equation (9); where
i = 0~4, index 0 means the center of nanoimprint pattern (the shape is usually an ellipse) and indices
1~4 denote the ends of long axis and short axis in this ellipse shape (or circle shape) nanoimprint
pattern and (x5,ϕθ, y5,ϕθ , z5,ϕθ) is the new position of tip point of unit vector n after oblique operation
performance. As the points pi, int, i=1∼4(r) denote the ends of the long axis and short axis in this ellipse
shape (or circle shape) nanoimprint pattern, we can get the lengths of long axis, a, and short axis, b, by
coordinate pairs (pi, int, i=1(r), pi, int, i=3(r)) and (pi, int, i=2(r); pi, int, i=4(r)): a =

∣∣∣pi, int, i=1(r) pi, int, i=3(r)
∣∣∣

b =
∣∣∣pi, int, i=2(r) pi, int, i=4(r)

∣∣∣
, (20)

Finally, the ellipse shape (or circle shape when a = b) nanoimprint pattern can be easily obtained
by utilizing intersection points pi, int, i=0∼4(r) and the lengths of long axis, a, and short axis, b, as shown
in Equation (21).

(x− x0, int)
2

a2 +
(y− y0, int)

2

b2 = 1, (21)
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3. Experimental

3.1. Belt-Type Microstructure Array Hot roller Embossing System

3.1.1. Design and Manufacturing of Belt-type Hot Roller Embossing Process System

The experimental equipment is composed of five parts: (1) magnetic roller group: The roller
group is divided into a driving roller and a number of auxiliary rollers, which provide stable support
for the belt, and the source of the thrust is provided by a pressure cylinder; (2) driving power source:
The pressure source is the pressure produced by the pressure pump; (3) microstructure roller sliding
mechanism: The mechanism of this part uses two sets of linear slide rails on the side board; (4) roller
heating system: A flexible heater band is applied, which can be placed on the inner wall of the roller
close to the roller; the heater band is controlled by the temperature controller; (5) roller’s rotating laps
counting device: It can count the rotating laps of the roller, as shown in Figure 2.

Coatings 2019, 9, x FOR PEER REVIEW 8 of 21 

 

 

Figure 2. Schematic diagram of belt-type micro hot rolling system (a) belt assembly testing schematic 
diagram, (b) stereo isometric view, and (c) exploded view and spare parts list. 

3.1.2. Establishment of Belt-type Microstructure Array Hot roller Embossing Process Technology 

This study integrated continuous film extrusion with the belt-type hot roller embossing process 
technology. The composite and magnetic composite roller embossing transfer were used as the basis 
for fabrication research. The simple schematic diagram of the process technical system architecture 
is shown in Figure 3.  

  

  
(a) (b) 

 
(c)  

Belt-type 
adjustment system 

X 

Y 
Z 

Figure 2. Schematic diagram of belt-type micro hot rolling system (a) belt assembly testing schematic
diagram, (b) stereo isometric view, and (c) exploded view and spare parts list.

3.1.2. Establishment of Belt-type Microstructure Array Hot roller Embossing Process Technology

This study integrated continuous film extrusion with the belt-type hot roller embossing process
technology. The composite and magnetic composite roller embossing transfer were used as the basis
for fabrication research. The simple schematic diagram of the process technical system architecture is
shown in Figure 3.
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3.2. Innovative Production Method of a Microstructure Belt of Coated Casting Technology

3.2.1. Discussion on the Forming Method of the Traditional Roller Microstructure

The method of laying a general roller microstructure is to lay a well-made soft mold on the roller
(push stress). During this process, it has the opportunity to pull (tension stress), which affects the
microstructure, and causes the appearance to have some variation. The influence degree of this method
on the mechanical properties of roller embossing material is discussed by simulation and measurement.
The ANSYS Workbench (version 14) was used for analysis. The tensile stress and push stress were
analyzed by standard tensile test size and material parameters (Table 1) (parameters: circular arc radius
28 mm, advance 5 mm, plastic ratio: 10:1). The simulation found that the stress concentration soft
mold is obvious, as shown in Figure 4. Under different circular arc radii during the experiment, the
mechanical properties of the soft mold after the layout are inferior to the original properties (Table 2).
Therefore, this study developed the multi-layer coated casting technology in order to fabricate the
microstructure Belt.

Table 1. Material parameters of soft mold simulation.

Materials Density (Kg·m−3) Young’s Modulus (Gpa) Poisson’s Ratio

Aluminum alloy 2770 71 0.33
PDMS (10:1) 965 1.72 0.495

Table 2. Polydimethylsiloxane (PDMS) mechanical properties test results of different circular
arc radiuses.

Arc radius
(mm)

Push Distance
(mm)

The Mixing Ratio of Base
and Curing Agent (A:B)

Young’s Modulus
(MPa)

Ultimate Tensile
Strength (MPa)

28

5 5:1 1.22572 1.18493
10 5:1 1.34554 0.97491
5 10:1 1.41427 1.08201

10 10:1 1.56488 1.07021

33

5 5:1 1.17623 1.73221
10 5:1 1.73983 1.53826
5 10:1 1.34145 1.13452

10 10:1 1.39242 1.08797

0 0 10:1 1.96324 8.30731
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3.2.2. Manufacturing of Multi-layer Coated Casting Technology Microstructure Belt

This experiment used micro electromechanical technology and laser processing technology to
make the microstructure the original soft mold. The multi-layer coated casting technology (Figure 5)
was developed and innovated. Difference thicknesses were created by the substitution of mold on
the left and right. At the same time, the outermost coated film was internally made of plastic mold
with a microstructure, thus, the film has mobility. After casting, it can be cast again after partial
solidification, and the casting of the unfilled part can achieve seamless technology. In addition,
during the manufacturing of the microstructure composite belt through coated casting technology, the
sequence is: (a) outer layer: Evenly paint the polydimethylsiloxane solution on the structural surface
of the original mold after preparation; (b) intermediate layer: After consolidation, lay the carbon fiber
material and PDMS after mixed casting; (c) inner layer: Cast the polydimethylsiloxane agent with a
mixed ratio better than the stiffness, and obtain the flexible composite belt mold after the removal of
the mold, as shown in Figure 6.
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3.3. Process Procedures of Continuous Film Microstructure Hot Roller Embossing

The process procedures of this study are as follows: (a) extrude a film of specific thickness
through the extrusion and feeding system for study; (b) the film is guided to the belt hot roller
embossing process system, in which the angle of the belt shaft is adjusted to adapt to the different
conditions of roller embossing; (c) at the appropriate temperature, the speed of self-roller embossing is
controlled to complete the roller embossing process. Finally, the finished product of the continuous
film microstructure and hot roller embossing technology was obtained.

4. Results and Discussion

4.1. Discussion of the Mechanical Properties of a Belt Made of Composite Metal Powders and Fiber

4.1.1. Discussion of the Mechanical Properties of a Belt Made of Composite Metal Powders

The mechanical properties of PDMS composites made by mixing different materials were tested,
analyzed, and discussed. The experimental results show that, after the alumina powders with different
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weight percentages were mixed and solidified, the mechanical properties were tested under the
tensile test speed of 10 mm/min according to the standard test specifications of the tensile testing.
The experimental results are shown in Figure 7 and Table 3. As seen, with the increased weight
percentage of alumina powder (Figure 8), the maximum tensile load and Young’s modulus increased.
However, when the alumina powder exceeds over 40% of the weight percentage, the body of the belt
then becomes hard and brittle, which may easily crack, thus, it is not suitable for application to the
microstructure belt.
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Table 3. Mixed test results of PDMS with mixtures of 10~40% alumina powders.

Weight Percentage (Al2O3) Maximum Tensile Load (N) Young’s Modulus (MPa)

10% 20.853 0.97122
20% 30.834 1.98342
30% 34.603 2.62309
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4.1.2. Discussion of the Mechanical Properties of a Belt Made of Carbon Fiber Woven with Composite
Oxide Powder

The multi-layer coated casting technology was used. The transverse and vertical directions of
the fiber parts consisted of nylon fiber and carbon fiber, respectively. The influence of carbon fiber
on the strength of the belt material was tested. Therefore, the direction of the fiber was used in the
direction of the carbon fiber weaving, and carbon fiber of 30% alumina powder PDMS was used. The
experimental results showed that the maximum tensile load was 382.9865 N and Young’s modulus was
1080.6530 Mpa when the carbon fiber belt has 30% composite alumina powder. The results indicated
excellent mechanical properties, as shown in Table 4. Therefore, this experiment used the above
parameter condition to carry out the follow-up discussion.

Table 4. 30% alumina powder PDMS composite carbon fiber belt.

Sample Maximum Tensile Load (N) Young’s Modulus (MPa)

A 386.3452 1048.9282
B 376.3492 1086.3820
C 380.7840 1076.2809
D 387.3342 1102.3927
E 384.1203 1089.2815

Average 382.9865 1080.6530

4.2. Discussion on the Replication and Forming of Belt-Type Microstructure Hot Roller Embossing

4.2.1. Discussion on the Forming of Belt-Type PDMS Soft Mold Hot Roller Embossing

The polycarbonate (PC) was placed inside the extruder hopper, which was extruded by the
extruder mold after melting at a constant speed. When the mold aperture was 45 mm and the
temperature of the mold is 275 ◦C, the extrusion amount required by the experiment could be regulated
according to the speed of the extruder screw, as shown in Table 5.

Table 5. Relationship between the relative extrusion output and the screw speed of the extruder.

Temperature (Degrees of
Temperature, ◦C)

Screw Speed (Revolution Per
Minute, RPM)

Polycarbonate Extrusion Weight
(g/min)

275

150 10.833
250 20.5
350 28.667
450 38.667

Regarding the belt type PDMS microstructure soft mold, when the temperature of the mold head
was 275 ◦C, the experiments were carried out with different thrusts, respectively. The results showed
that, under small thrust, microstructure forming was not obvious; with increased thrust, while the
microstructure forming was more obvious, the structure showed deformation. When the forming
pressure was more than 300 Kg, there was roller embossing deformation, as shown in Figure 9. The
belt-type PDMS microstructure soft mold showed displacement and deformation. As seen, high thrust
caused the PDMS microstructure soft mold structure strength to be insufficient, and roll imprinting
resulted in microstructures with mold deformation.

4.2.2. Discussion on Composite Belt PDMS Soft Mold Hot Roller Embossing Forming

In order to improve the roller embossing of the belt-type PDMS microstructure soft mold, this
study used a composite belt PDMS soft mold (30% alumina powder PDMS composite carbon fiber belt)
for roller embossing. It is known that its structural strength (Young’s modulus) can reach 10 times than
that of a single PDMS microstructure soft mold (Table 4). The experimental results showed that, under
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the same roller embossing conditions of belt-type PDMS microstructure soft mold roller embossing,
the composite belt PDMS soft mold had better formability performance, as shown in Figure 10. In
addition, when the pressure was more than 300 Kg, there was no displacement or deformation of the
microstructural Soft mold.
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4.3. Analysis and Discussion of Rolling Formability and Simulation and Prediction of Belt Microstructure
Rolling with Special Forming Angle

In order to obtain a continuous extrusion film process and achieve the expected microstructure
of the complementary shape of the belt microstructural soft mold at a special forming angle, the
asymmetric principle for roller embossing system was used as the basis for the numerical simulation
and prediction. The micro column and microstructure array of the belt microstructure: feature size:
period = 245 µm, diameter = 205 µm (Figure 11); by setting ϕ = 0◦ and θ = 0◦ conditions, cylinder
pressure = 275 Kg, mold temperature = 275 ◦C, the extruded film and the belt welded out complementary
microstructure array. The simulation and experimental results are shown in Figure 12. By setting ϕ = 5◦,
θ = 0.04◦ in a small angle, the SEM after simulation and actual belt rolling is shown in Figure 13. At the
same time, the special forming angle was achieved by cutting the forming angle to 0.025◦ Equation (22)
by geometric conversion, and the forming precision of the special angle was about 62.5%.

tan−1
(6.25

245

)
= 0.025, (22)
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Figure 13. Simulation analysis and in-depth SEM diagram under conditions of belt rolling ϕ = 5◦,
θ = 0.04◦.

4.4. Effect of Large Angle Numerical Simulation and Unequal Rolling Pressure on the Accuracy of the Special
Forming Angle

4.4.1. Numerical Simulation Analysis of Large Angle of the Special Forming Angle

The asymmetric principle after simulation was applied as the simulation and prediction model in
this study. The numerical simulation program was designed and the simulation analysis of the accuracy
of rolling and experimental comparison of special forming angle was conducted. The experiment was
preliminarily verified by numerical simulation of the large scale and special forming angle. Figure 14
shows the forming angle of a single microstructure, ϕ = 30◦ and θ = 20◦. As seen, the green line is the
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location of the original structure (no angle bias); the blue line indicates the result of surface forming
after rolling with the special forming angle; the yellow line is the original structure line; and the round
shape is used for comparison. Figure 15 shows an array microstructural numerical simulation of large
scale with ϕ = 45◦ and θ = 45◦ special forming angle forming.
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Coatings 2019, 9, 274 17 of 19

Coatings 2019, 9, x FOR PEER REVIEW 19 of 21 

 

 

Figure 14. Numerical simulation results of single microstructural forming angle 𝜑 = 30°, 𝜃 = 20°. 

 

Figure 15. Numerical simulation results of array microstructural forming angle 𝜑 = 45°, 𝜃 = 45°. 

4.4.2. Effect of Unequal Rolling Pressure on the Accuracy of the Special Forming Angle 

This study used unequal rolling pressure to compare the angle of unequal embossing and 
forming accuracy under the actual roller embossing. The experimental results showed that, with the 

Special forming 
angle (blue line) 

Original microstructure for 
comparison (yellow line) 

Original microstructure (no 
angle setting, green line) 

Figure 15. Numerical simulation results of array microstructural forming angle ϕ = 45◦, θ = 45◦.

4.4.2. Effect of Unequal Rolling Pressure on the Accuracy of the Special Forming Angle

This study used unequal rolling pressure to compare the angle of unequal embossing and forming
accuracy under the actual roller embossing. The experimental results showed that, with the increase
in forming pressure, the forming accuracy and numerical simulation reached over 95%, as shown in
Figure 16. It proved that, when the asymmetric principle was adopted as the simulation and prediction
model and belt-type was used as the structural array micro hot rolling manufacturing system, the
accuracy was high.
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5. Conclusions

This study developed the belt-type microstructure array hot roller embossing process technology. It
demonstrated an innovative process for the continuous film output and roll imprinting microstructures
through an extruder and a belt roller. It also developed an asymmetric principle as the simulation and
prediction model for special forming angle roller embossing. The results showed that, the PC plastics
can adjust the extrusion capacity required by the experiment according to the rotating speed of the
extruder screw. The carbon fiber belt, which consists of composite alumina powder, has high strength
mechanical properties, and can be used to make microstructural soft molds. The microstructure
soft mold cannot be removed or stripped to obtain stable mass. After the numerical analysis of the
established asymmetric principle prediction model, the accuracy of the obtained results and the actual
forming prediction reached over 95%, thereby proving the stability of the proposed process.

Funding: This work was partially supported by the Ministry of Science and Technology (Series No. MOST
107-2221-E-415 -003 -MY2) of Taiwan, Republic of China.
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