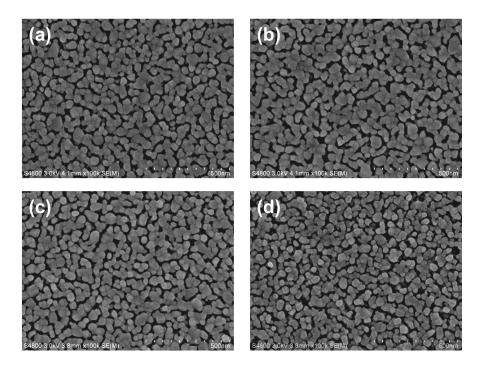
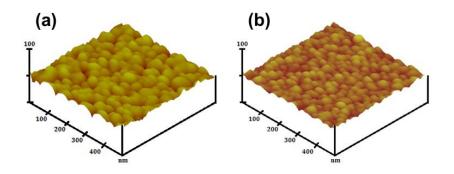
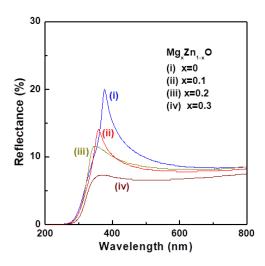


Solution-Processed Mg-substituted ZnO Thin Films for Metal-Semiconductor-Metal Visible-Blind Photodetectors


Chien-Yie Tsay *, Shih-Ting Chen and Man-Ting Fan

Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan; sarah15937@gmail.com (S.-T.C); wendy5252065@gmail.com (M.-T.F)


* Correspondence: cytsay@mail.fcu.edu.tw; Tel.: +886-4-2451-7250 (ext. 5312)


Figure S1. Top–view optical microscope (OM) image of the Au interdigitated electrodes (IDEs) of the fabricated photodetector device.

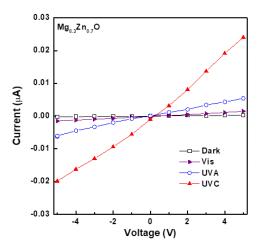

Figure S2. Plane-view field-emission scanning electron microscope (FE-SEM) micrographs of Mg_xZn_{1-x}O thin films on glass substrates: (**a**) x = 0, (**b**) x = 0.1, (**c**) x = 0.2, and (**d**) x = 0.3.

Figure S3. Surface scanning probe microscope (SPM) images of Mg_xZn_{1-x}O thin films: (**a**) x = 0 and (**b**) x = 0.2.

Figure S4. Optical reflection spectra of glass/Mg_xZn_{1-x}O thin films.

Figure S5. Current-voltage (*I-V*) characteristics of Mg_{0.3}Zn_{0.7}O photodetectors showing dark current and photoilluminated currents under irradiation with visible, UVA and UVC light.

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).