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Abstract: Commercial seawater reverse osmosis (SWRO) membranes were coated with iron
nanoparticles (FeNPs) and biofouled with a bacterium strain isolated from the Sea of Cortez,
Mexico. This strain was selected and characterized, as it was the only cultivable strain in pretreated
seawater. Molecular identification of the strain showed that it belongs to Bacillus halotolerans MCC1.
This strain was Gram positive with spore production, and was susceptible to Fe+2 toxicity with a
minimum inhibitory concentration of 1.8 g L−1. Its biofouling potential on both uncoated and FeNP
coated reverse osmosis (RO) membranes was measured via biofilm layer thickness, total cell count,
optical density and organic matter. The FeNP-coated RO membrane presented a significant reduction
in biofilm cake layer thickness (>90%), total cells (>67%), optical density (>42%) and organic matter
(>92%) with respect to an uncoated commercial membrane. Thus, Bacillus halotolerans MCC1 shows
great potential to biofoul RO membranes as it can pass through ultrafiltration membranes due to its
spore producing ability; nonetheless, FeNP-coated membranes represent a potential alternative to
mitigate RO membrane biofouling.
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1. Introduction

Halotolerant bacteria are of great biotechnological importance for industry, as they are easy to
grow under limited nutritional requirements. Moreover, their tolerance to high salt concentrations
minimizes laboratory contamination risks [1]. Several researchers investigating halotolerant bacteria
have focused on their capacity to produce antibiotics and enzymes [2], while others have used them
to design microbial inoculants to increase the salinity tolerance of crops [3]. For example, in India,
a halotolerant bacillus has been used for the biosynthesis of enzymes (L-Glutaminase) in bioethanol
production [4]. In Algerian wetland ecosystems, a study found that halotolerant strains belonging to
the genera Haloferax, Halococcus and Haloarcula showed a high production of molecules with important
biotechnological applications, such as in the coastal agriculture, pharmaceutical and environmental
fields [5]. In Spain, the dominant halotolerant genera isolated from the Bras del Port salt basins included
Salinivibrio, Pseudomonas, Alteromonas, Alcaligenes, Acinetobacter and Flavobacerium. These halotolerant
microorganisms have exhibited potential for several applications in the food, pharmaceutical, medical
and environmental fields [6].

In the seawater reverse osmosis (RO) desalination industry, halotolerant bacteria have gained
great interest because they are involved in membrane biofouling, one of the biggest problems faced

Coatings 2019, 9, 462; doi:10.3390/coatings9070462 www.mdpi.com/journal/coatings

http://www.mdpi.com/journal/coatings
http://www.mdpi.com
https://orcid.org/0000-0002-6509-1156
https://orcid.org/0000-0003-2234-7147
https://orcid.org/0000-0002-2524-1172
http://dx.doi.org/10.3390/coatings9070462
http://www.mdpi.com/journal/coatings
https://www.mdpi.com/2079-6412/9/7/462?type=check_update&version=2


Coatings 2019, 9, 462 2 of 12

by membrane-based desalination [7]. Biofouling is an operational problem in SWRO that can reduce
production efficiency, leading to severe economic impacts [8]. Biofouling involves microorganism
attachment and growth on the membrane surface, and is very difficult to treat due to the ability of
microorganisms to multiply even if most are eliminated in pretreatment [9]. As biomass accumulates
in the feed channel of membrane modules, this leads to technical problems (increases in the working
pressure or reduction of permeate flux, as well as the need of more frequent chemical cleaning, among
others), decreasing the process productivity, reducing the life span of membranes and increasing
process costs [10,11]. To reduce the impact of biofouling problems, some research efforts have focused
on coating the membrane surface with various nanoparticles (NPs) that are known to have antimicrobial
properties, such as Ag, CuO, ZnO and TiO2 [12–15]. In addition, NPs have been used as antifouling
coatings in different marine industrial environments in order to prevent biofouling [16]. However,
these NPs are expensive and difficult to synthetize; therefore, their use as a membrane coating increases
desalination costs. Iron nanoparticles (FeNPs) are a promising coating agent, as they cost less than other
NPs, are easy to synthesize and have a biocide effect by promoting Fenton or Fenton-like reactions,
producing oxidative stress by generating reactive oxygen species (ROS), disrupting lipids, proteins
and DNA, and eventually causing bacterial death [17–19].

Interestingly, most biofouling studies of NP coatings have been carried out with strains that are
not native from seawater, such as Escherichia coli and Pseudomonas aeruginosa [20,21]. Those studies are
not very useful for the desalination industry, since those strains are not ones that commonly cause
RO membrane biofouling. Hence, the studying and understanding of seawater halotolerant bacteria
is paramount for the RO desalination industry due to their negative effect on membrane durability
and productivity. Moreover, the shoreline of the Sea of Cortez is home to 32 RO desalination plants
with capacities ranging from 100 to 17,280 m3 d−1 [22] and one under construction [23]. Further, the
number of RO desalination plants in that region has been increasing in recent years (up by 68% in
three years) [22] due to frequent water scarcity. For these reasons, the aim of this paper is to study
the effect of FeNP coating of RO membranes on the extent of biofouling caused by bacteria native to
the Sea of Cortez. This is achieved by isolating and characterizing the only bacterium strain found
after a typical pretreatment of seawater sampled from the Sea of Cortez, Mexico (Bacillus halotolerans
MCC1), and using it as a model biofoulant.

2. Materials and Methods

2.1. Sampling

Seawater samples were obtained from the Sea of Cortez, at Cochorit beach near Empalme, Sonora,
Mexico at a depth of 4 m and at a distance of 3.76 km from the coast (27◦ 53’ 1.28′ N, 110◦ 47’ 5.56′ W)
(Figure 1). The samples were collected following the procedure detailed in the field manual for water
quality sampling [24]. Five samples were taken throughout the year (spring, summer, autumn and two
in winter) and at different times of the day. The physicochemical parameters measured at the time of
sampling are shown in Table 1. Three hour after sampling, the collected water was pretreated by 5 µm
cartridge filtration and 0.1 µm ultrafiltration (PURIKOR, PKUF-M) with a constant working pressure
of 0.2 MPa and a permeate flow rate of 3.7 L min−1, as a representative analogue of the pretreatment
that takes place in typical large-scale desalination plants [25].

Table 1. Physicochemical parameters of seawater samples.

Temperature
(◦C)

Electrical
Conductivity

(µS cm−1)

Total Dissolved
Solids (mg L−1)

Salt Fraction
(%)

Dissolved
Oxygen (mg L−1)

pH

24.1 ± 0.3 48,100 ± 350 34.99 ± 0.1 3.56 ± 0.0 8.42 ± 0.1 8.1 ± 0.2
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Figure 1. Map showing the location of the water collection point. 

2.2. Bacterial Isolation and Molecular Identification 

Petri dishes containing nutrient agar (NA) supplemented with sterilized pretreated seawater 
(34.99 g L−1 of salinity) were used as a culture medium. The pretreated seawater was previously 
sterilized in an autoclave (Felisa FE-399), for 15 min and 0.103 MPa at 121 °C. Pretreated seawater 
was used to provide nutritional conditions for bacterial growth, similar to those observed in their 
natural environment (Table 1).  

To determine the cultivable bacterial population and diversity of the unsterilized pretreated 
seawater, the serial dilution (1:10) method was used, preparing dilutions up to 10−3 [26]. Finally, 1 mL 
of each dilution was dispersed, onto the NA prepared in the Petri dishes, and incubated for 24 h at 
28 °C [27]. The bacterial isolation was done by triplicate. 

Macro and microscopic bacterial characterization, spore production and Gram staining were 
carried out using the Wirtz–Conklin method [28] and the Hycel stain kit (Hycel, Cat 541), 
respectively. All obtained isolates were preserved in the Native Endophytes and Soil Microorganisms 
Collection (COLMENA) [29].  

Molecular identification was carried out for the isolated bacterium strain that grew in the 
previously mentioned Petri dishes with culture medium, which was isolated from the pretreated 
seawater. Genomic DNA was extracted using the methodology of Reader and Broda [30]. Bacteria 
molecular identification was carried out amplifying the 16S ribosomal gene (16S rRNA) [31]. The PCR 
protocol was carried out according to the procedure described by Villa-Rodriguez et al [32]. The DNA 
sequences were processed using the FinchTV 1.4.0 software package (Geospiza Inc., Denver, CO, 
USA). The phylogenetic tree was created by Neighbor Joining methodology [31] using MEGA 7.0.  

2.3. Minimum Inhibitory Fe+2 Concentration 

The minimum inhibitory concentration of Fe+2 was determined by the inoculation of 1 × 104 
colony forming units (CFU) onto Petri dishes containing NA supplemented with sterile pretreated 
seawater. Further, the culture medium was supplemented with Fe+2, at concentrations of 1.0, 1.2, 1.4, 
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2.2. Bacterial Isolation and Molecular Identification

Petri dishes containing nutrient agar (NA) supplemented with sterilized pretreated seawater
(34.99 g L−1 of salinity) were used as a culture medium. The pretreated seawater was previously
sterilized in an autoclave (Felisa FE-399), for 15 min and 0.103 MPa at 121 ◦C. Pretreated seawater was
used to provide nutritional conditions for bacterial growth, similar to those observed in their natural
environment (Table 1).

To determine the cultivable bacterial population and diversity of the unsterilized pretreated
seawater, the serial dilution (1:10) method was used, preparing dilutions up to 10−3 [26]. Finally, 1 mL
of each dilution was dispersed, onto the NA prepared in the Petri dishes, and incubated for 24 h at
28 ◦C [27]. The bacterial isolation was done by triplicate.

Macro and microscopic bacterial characterization, spore production and Gram staining were
carried out using the Wirtz–Conklin method [28] and the Hycel stain kit (Hycel, Cat 541), respectively.
All obtained isolates were preserved in the Native Endophytes and Soil Microorganisms Collection
(COLMENA) [29].

Molecular identification was carried out for the isolated bacterium strain that grew in the
previously mentioned Petri dishes with culture medium, which was isolated from the pretreated
seawater. Genomic DNA was extracted using the methodology of Reader and Broda [30]. Bacteria
molecular identification was carried out amplifying the 16S ribosomal gene (16S rRNA) [31]. The PCR
protocol was carried out according to the procedure described by Villa-Rodriguez et al [32]. The DNA
sequences were processed using the FinchTV 1.4.0 software package (Geospiza Inc., Denver, CO, USA).
The phylogenetic tree was created by Neighbor Joining methodology [31] using MEGA 7.0.

2.3. Minimum Inhibitory Fe+2 Concentration

The minimum inhibitory concentration of Fe+2 was determined by the inoculation of 1 × 104

colony forming units (CFU) onto Petri dishes containing NA supplemented with sterile pretreated
seawater. Further, the culture medium was supplemented with Fe+2, at concentrations of 1.0, 1.2, 1.4,
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1.6, 1.8 and 2 g L−1. The inoculated Petri dishes, using three independent replicates, were incubated at
28 ◦C for six days. The bacterial population in each Petri dish was determined by CFU count every 24 h.

2.4. Accelerated Biofouling Test on RO Membranes

Accelerated biofouling on two commercial RO membranes (Dow Filmtec SW30HR) was carried
out using a high concentration of the studied bacterial strain and providing it with sufficient nutrients
in the feed water. One of these membranes was coated with the minimum inhibitory concentration of
FeNPs (FeNP membrane) via immersion, ensuring the NP dispersion by sonication for 1 h, following the
methodology of Armendariz et al. [18]. The membrane was immersed into fresh DI water for 10 min to
activate the carboxyl groups and then the membrane was dipped into the aqueous suspension of FeNPs
for 24 h, followed by rinsing with an ultrasonic bath for 5 min. The other membrane was not coated
(uncoated membrane) and used as blank for reference and comparison. The FeNPs were synthetized
and characterized [18,19] according to the method of Baltazar et al. [33] and Arancibia-Miranda et al. [34].
The chemical structures and morphology of the FeNPs were characterized by X-ray Diffraction (XRD)
using a Shimadzu XRD-6000 diffractometer (Kyoto City, Japan) and Scanning Electron Microscopy
(SEM) using a Nova NanoSEM-200 (FEI Company, Hillsboro, OR, USA).

The bacterial growth on the RO membrane surface took place in CF042 crossflow membrane cells
(Sterlitech Corp., Kent, WA, USA) (Figure 2). The feed water comprised sterile pretreated seawater
and a high amount (109 CFU mL−1) of the studied strain. In addition, a sterile nutrient broth was
added daily to the feed water, to guarantee optimal bacterial growth. The operating pressure was
6.38 MPa during the test, which ran for 90 h at an average temperature of 30 ◦C, while the pH remained
in a range of 6–8. A low crossflow velocity of 0.15 m s−1 was used in order to minimize shear stress
and encourage a high biofouling rate. After the accelerated biofouling test, biofouled membranes
were analyzed by scraping 1 cm2 of biofilm. Then, the optical density of the scraped biofilm was
determined by spectrophotometry, the biofilm cake layer was measured using inverted microscopy,
and a Neubauer chamber using an optical microscope in 100×was used to carry out the total cell count
in the biofilm. The amount of organic matter was determined by the catalytic combustion method [10].
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2.5. Statistical Analysis

An analysis of variance of simple classification based on a linear model of fixed effects was
performed for the CFUs found over time, and the statistical differences between the mean values were
determined by the Tukey method for p ≤ 0.001. For the biofilm cake layer, optical density (OD), total cell
count (TCC) and organic matter (OM), the theoretical t-student probability distribution for quantitative
continuous variables for significance levels of p ≤ 0.001 was used. A simple linear regression analysis
based on a linear model of fixed effects was performed. The degree of goodness of fit between the
Fe+2 concentration and the final CFU count was determined. From these equations, the optimal
inhibitory concentration of bacterial growth was determined using an ordinary least squares method.
The software STATISTIC version 8.5 (StatSoft, Tulsa, OK, USA) was used for the statistical analyses.

3. Results and Discussion

3.1. Bacteria Growth, Isolation and Molecular Identification

After 24 h of incubation, only one bacterial isolate (MCC1) grew for each repetition in direct
pretreated seawater. No growth of CFUs was observed for the 10−3, 10−2, 10−1 dilutions. This bacterial
strain showed medium size colonies (5.0 ± 1.0 mm), convex, whitish such as wax, rounded edges,
fusiform and circular shape (Figure 3a). In addition, the Gram stain showed a Gram positive cell with
a size of 2.8 ± 0.2 µm (Figure 3b), and spore size of 18.0 ± 0.0 nm (Figure 3c). As the ultrafiltration
membrane nominal pore size of 0.1 µm is smaller than the typical sizes of bacteria, this indicates
that only spores could pass through the filter and grow on the Petri dishes, thus originating the
CFU found [35]. The ultrafiltration membrane did not show integrity problems during the lapse of
the testing.
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Figure 3. Macro and microscopic traits of the B. halotolerans MCC1 strain. (a) Bacterial colonies on
nutritive agar; (b) bacterial Gram stain; (c) bacterial sporulation.

Molecular identification showed that this particular strain belongs to Bacillus halotolerans MCC1.
This result confirms the macro and microscopic traits observed for the strain. Its Gram staining
(Figure 3b) showing a Gram positive Bacillus strain, agrees with reports that most sea water Bacillus
are Gram positive [36]. Moreover, this strain belongs to the specie B. halotolerans, which agrees with
its source of isolation (ultrafiltered seawater). This finding indicates that the strain MCC1 is able to
tolerate high electrical conductivity (48,100 ± 350 µS cm−1) and is not retained by the ultrafiltration
process, due to its ability to produce spores that are smaller than the UF membrane pore size (as seen
in Figure 3c). Spore production is an adaptive strategy to compensate the osmotic stress generated by
high salt concentrations in the environment [37], and is an ability that not all Bacillus possess [38,39].
These bacterial traits could be highly associated with the role of the strain MCC1 on biofouling
RO membranes.
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3.2. Minimum Inhibitory Fe+2 Concentration

Figure 4 shows the rate of bacterial growth in NA supplemented with various concentrations of
Fe+2. The data shows that the biocidal effect of Fe+2 was greater from 24 to 48 h, at any concentration
used. After 72 h, large bacterial populations were observed for the range of 1.0 to 1.6 g L−1 Fe+2. It is
clear that Bacillus halotolerans MCC1 can easily grow in Fe+2 concentrations of 1 to 1.4 g L−1, as Fe is
an essential element for life [40]. However, from 1.6 g L−1 the strain MCC1 is not able to maintain its
optimal growth rate within the first 48 h. From that moment, the bacterium shows adaptive strategies
(Fe+2 resistance) to be able to survive, because at 72 h of incubation it is possible to observe CFUs.
This could be attributed to MCC1 having adaptive abilities under extreme conditions, also evidenced
by the sporulation capacity reported in this work (Figure 3c) [37]. Finally, the biocidal effect of Fe+2 at
higher concentrations (1.8 to 2 g L−1) is greater, since there was negligible bacterial growth.
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Figure 4. Effect of Fe+2 concentration on the growth rate of B. halotolerans MCC1.

A significant decrease in the final bacterial population for the strain MCC1 was observed with
increasing Fe+2 concentration. There was a negative correlation with a highly significant (95%
confidence) dependence between these variables (r = 0.95, p < 0.001). The degree of goodness of
fit was high (R2 = 0.91) for a linear regression model (Figure 5). The greatest decrease in CFUs for
MCC1 was observed when the Fe+2 concentration was increased from 1.4 to 1.6 g L−1, presenting 50%
of the total inhibition by Fe+2. At Fe+2 concentrations of 1.8 g L−1 and higher, no bacterial growth
was observed. Despite the previously mentioned capability of Bacillus halotolerans MCC1 to adapt
to extreme conditions, there is a clear adaptability limit after which it cannot survive. Therefore,
the minimum inhibitory Fe+2 concentration was 1.8 g L−1, as the data suggests that this bacterium
cannot grow at higher concentrations. At concentrations above that level, the accumulation of Fe+2 can
stop cell growth or cause death due to DNA damage [40].
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3.3. Accelerated Biofouling Test on RO Membranes

The SEM image (Figure 6) depicts the FeNPs, showing a mean particle size around 14.6 ± 1.2 nm.
Figure 7 shows the XRD peaks for the FeNPs. The crystalline structure of the FeNPs was confirmed by
XRD analysis (2θ = 44.5◦, 65.0◦ and 82.4◦) [41]. The accelerated biofouling test showed that the bacteria
can exhibit growth under conditions of very high salinity, in the range of 3%–8% salt concentration by
weight (see Figure 8). This result suggests that the bacteria indeed exhibits sporulation, as endospore
production allows the bacteria to survive in extreme environmental conditions [42,43]. In addition,
the ability of Bacillus halotolerans MCC1 to biofoul RO membranes was also demonstrated in this test.
A biofilm cake layer was formed on the membrane surface during the experiment, resulting in a
decrease in permeate flux. This strongly suggests that this bacterium strain can be useful as a model
biofoulant, especially for desalination plants in the Sea of Cortez. Further, as can be seen in Figure 8c,
the FeNP coated membrane showed significantly less biofouling compared to the uncoated membrane
(Figure 8b), evidencing the antimicrobial effect of FeNPs already demonstrated in the medical field [44].
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Figure 8. Photographs of the RO membranes before and after the accelerated biofouling tests:
(a) membrane before the test, (b) bacterial growth on uncoated membrane, and (c) bacterial growth on
FeNP-coated membrane.

The FeNP coating reduced the biofilm thickness by 90% (Figure 9a), and the bacterial density on the
membrane showed a highly significant reduction of 67% compared to the uncoated membrane, which
can be attributed to the FeNPs (see Figure 9b). The optical density also showed a highly significant
reduction related to the FeNP coating, as it was 42% lower than for the uncoated membrane (Figure 9c).
In addition, the organic matter content in the biofilm was lower (about 92%) for the FeNP-coated
membrane compared to the uncoated membrane (Figure 9d). All these results can be related to the
Bacillus halotolerans MCC1 being unable to produce iron-chelating metabolites (siderophores), which
limits its ability to tolerate and grow under high Fe concentration [45]. Therefore, the direct exposure
of this strain to the FeNPs located on the membrane affects its reproduction and growth rates. This can
also be associated with the oxidative stress that has been shown to be caused by the generation of ROS
by FeNPs, leading to damage of cellular DNA, lipids and proteins, causing bacterial death [46,47].
The existence of this latter mechanism also suggests that the Fenton reaction facilitated by the FeNPs
can cause the death of different bacteria, not only of Bacillus halotolerans MCC1 [19,46], since the FeNPs
in the presence of dissolved oxygen and water form hydrogen peroxide and Fe+2 ions. The hydrogen
peroxide and Fe+2 then, in turn, initiate the Fenton reaction cycle, which produces several ROSs with
strong biocidal effects. However, in this reaction the FeNPs also are oxidized to Fe+2, which eventually
limits the FeNPs’ effectiveness as a biocide due to the leaching of Fe+2 ions [48]. Nevertheless, the FeNPs
can still hinder biofilm growth and decrease biofouling problems in desalinations plants.
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Figure 9. Effect of FeNP coating on biofilm parameters obtained after biofouling of RO membranes
by Bacillus halotolerans MCC1: (a) thickness of biofilm layer formed onto the membranes; (b) bacterial
count obtained from scraped biofilm; (c) optical density of scraped biofilm; (d) organic matter in
scraped biofilm.

4. Conclusions

Bacillus halotolerans MCC1 is capable of biofouling RO membranes in desalination plants where it
is present in the feed seawater. Its sporulation ability helps it pass through UF membranes and causes
problems for RO desalination membranes. This bacterium strain is therefore proposed as a model
biofoulant for desalination plants in the Sea of Cortez.

Despite its resilience and adaptive capabilities, Bacillus halotolerans MCC1 is susceptible to Fe+2

ions (1.8 g L−1) and to FeNPs. Although it is well known that FeNPs have a biocidal effect, continued
studies of RO membrane biofouling with other types of seawater bacteria strains is recommended,
in order to adequately design and plan biofouling reduction strategies in seawater desalination plants.
In addition, it is advisable to carry out FeNP leaching tests to assess how long the NPs adhered to the
RO membrane will last, as well as the stability of the FeNP coating.
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