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Abstract: Gray cast iron (GCI) is a popular automotive brake disc material by virtue of its high
melting point as well as excellent heat storage and damping capability. GCI is also attractive because
of its good castability and machinability, combined with its cost-effectiveness. Although several
lightweight alloys have been explored as alternatives in an attempt to achieve weight reduction,
their widespread use has been limited by low melting point and high inherent costs. Therefore,
GCI is still the preferred material for brake discs due to its robust performance. However, poor
corrosion resistance and excessive wear of brake disc material during service continue to be areas of
concern, with the latter leading to brake emissions in the form of dust and particulate matter that
have adverse effects on human health. With the exhaust emission norms becoming increasingly
stringent, it is important to address the problem of brake disc wear without compromising the
braking performance of the material. Surface treatment of GCI brake discs in the form of a suitable
coating represents a promising solution to this problem. This paper reviews the different coating
technologies and materials that have been traditionally used and examines the prospects of some
emergent thermal spray technologies, along with the industrial implications of adopting them for
brake disc applications.

Keywords: gray cast iron; brake discs; automotive; emissions; coatings; thermal spray; high velocity
air fuel (HVAF); suspension plasma spraying (SPS)

1. Introduction

Brake discs, also known as brake rotors, are a crucial part of the automotive braking system which
slows down the vehicle by converting kinetic energy into thermal energy, and consequently increases
the temperature of the disc friction surfaces. Brake discs have a larger sweep area and higher exposure
to air flow than the traditionally used drum brakes and, therefore, cool down at a fast rate [1]. Gray
cast iron (GCI) is the most commonly used brake disc material due to its high damping capability and
desirable thermophysical properties (melting point, thermal conductivity, and heat storage capacity)
which prevents overheating, brake noise, and brake fade [1–4]. However, the poor corrosion resistance
of GCI leading to brake judder [5,6], high weight contributing to increased fuel consumption [7],
and brake wear emissions in the form of brake dust and particulate matter [8–10] are some of the major
disadvantages of GCI.

Over the past decade, several alternative materials such as metal matrix composites (MMC),
ceramic matrix composites (CMC), and titanium alloys have also been proposed and tested for
automotive brake disc applications, with light-weighting being the primary motivation. Table 1 enlists
the main mechanical and thermal properties of some of these materials. The most notable advantage
of GCI over other materials is its combination of high melting point and thermal conductivity, which
provides excellent thermal stability, apart from cost-effectiveness.
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Among these materials, aluminum MMCs have demonstrated good resistance to corrosion and
wear whilst offering significant reduction in weight [3,11]. However, it has issues such as lower melting
temperature and higher coefficient of thermal expansion as compared to GCI [12–14]. Lightweight
titanium alloys have demonstrated 37% reduction in weight as compared to cast iron but their wear
rate has been found to be higher than GCI [15]. Carbon–carbon composites represent yet another
class of materials that has been used predominantly for aircraft and motor racing applications, but
their inherently high cost and poor braking performance at low temperatures limits their application
area [16]. Although not included in Table 1, CMCs such as carbon-fiber reinforced silicon carbide
(C/SiC) composites are known to possess excellent thermal stability up to 1300 ◦C, superior tribological
properties over GCI along with significant weight savings but suffer from very high costs and are
consequently notably used only in high performance racing cars and luxury vehicles [17–19].

Table 1. Mechanical and thermal properties of promising brake disc materials at room temperature.

Material Melting
Point (◦C)

Bulk
Density
(g/cm3)

Thermal
Conductivity
(W/m.K(◦C))

Thermal
Expansion
Coefficient

(µstrain/◦C)

Vickers
Hardness

(HV)

Youngs
Modulus

(GPa)

Poisson’s
Ratio

GCI 1200 7.2 50–72 11–13 90–216 80–100 0.27
Al-12SiC 630 2.8 120–130 17.7–18 91–138 94–98 0.3
Ti 6Al-4V 1600 4.43 8–9 8.7–9.1 332–336 113–115 0.34

Carbon-carbon
composite 3300 1.7 13–35 1.1–8.4 42–46 71–79 0.32

Data reported in Table 1 has been extracted from [20].

Apart from the drawbacks associated with alternative lightweight materials, the environmental
and health concerns due to production of fine particles during braking of composite brake discs can be
a concern and have not yet been addressed completely [21]. Thus, one of the key factors in developing
new, light weight, wear and corrosion resistant disc brake materials will also be the need to optimize
the characteristics of the associated tribo-surfaces. On account of the above stated drawbacks of the
alternate materials and the concomitant need to develop a suitable friction pad material which can be
used with these alternative materials, GCI will continue to be the material of choice for brake discs in
the near future, especially for passenger vehicles [22].

Notwithstanding the above, problems associated with wear and corrosion of GCI brake discs
also need to be urgently addressed since the adverse effects on health due to emission of dust and
particulate matter in the atmosphere are already well known [23–25]. According to recent investigations,
brake wear generates up to 55% by mass of non-exhaust emissions ensuing from automobiles. Of
specific concern is the fact that approximately 50% of the particles generated from brake wear become
airborne, with 80%–98% of them being in the PM10 (particulate matter having diameter of 10 µm or
less) range [26–28]. The limits on these emissions set by the European Commission (EC) and by the
Environmental Protection Agency (EPA) are certain to become stricter in the foreseeable future, which
will force automotive industries to search for techno-economically viable solutions [29]. One promising
approach is to seek appropriate surface treatment solutions which can reduce the wear and corrosion of
GCI brake discs while maintaining or enhancing their functional performance. In anticipation of more
stringent environmental regulations being inevitable, the coatings’ approach to mitigate disc wear
has been considered by a growing number of research groups in recent times. This article considers
all the coating technologies which have been already applied on brake discs so far or explored for
these applications, as well as some new technologies which can be potentially very promising to
comprehensively evaluate.

Notwithstanding their attractive performance, the growing concern with hard chrome is that the
plating bath contains hexavalent chromium Cr(VI), which forms a toxic mist during operation and is
known to be carcinogenic [30,31]. In the US, the permissible exposure limit (PEL) for hex chrome and its
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compounds set by the Occupational Safety and Health Administration (OSHA) is 5 µg/m3 [32], whereas
in Sweden, the limit is set at 20 µg/m3 [33]. In the automotive industry, the European Parliament and
the Council on end-of-life vehicles has set this limit to 0.025 mg/m3 in the EU and the permissible
amount is limited to 2 g per vehicle [34]. Such restrictive environmental laws will increasingly limit the
use of this technology on a commercial scale and motivate development of other techno-economically
viable alternatives.

2. Coating Technologies for Brake Discs

Over the years, several different types of coatings have been explored to combat problems of wear
and corrosion and some of these have also been considered for automotive brake disc applications.
Both, conversion and overlay coatings deposited using various techniques have been suitably applied
on automotive components. A brief discussion of the coating techniques which have already been
extensively investigated for brake-disc applications is provided below. Since thermally sprayed
coatings will be the focus in this article, the techniques are grouped into two broad categories,
namely (i) non-thermal spray processes and (ii) thermal spray processes. As subsequently discussed,
thermal spray processes concern coating technologies in which feedstock powder particles fed into a
high-temperature, high velocity ‘flame’ are heated to a molten/semi-molten state and accelerated before
impacting onto a surface to form a coating. The complementary non-thermal spray processes discussed
herein mainly comprise electrochemical surface treatment techniques as well as other powder-derived
coating processes that complement thermal spray. Furthermore, for the sake of brevity, the following
sections are oriented towards and limited to brake disc relevant discussions only.

2.1. Non-Thermal Spray Processes

2.1.1. Hard Chrome Plating

It is a traditionally used technology since the 1920s for diverse automotive applications, such as
engine valves, brake discs, brake pads, shock absorber rods etc., due to its high hardness, excellent
wear and corrosion resistance, low coefficient of friction (CoF), as well as aesthetics [35,36]. Chrome
plated coatings having a dense microstructure with very low oxide inclusions have shown excellent
resistance to corrosion in harsh environments [37] and very high fracture toughness [30]. The wear
resistance of chrome plated coatings has also proven to be superior both in sliding and erosive wear
conditions [30,38]. In the study carried out by Balamurugan et al. [39], the chrome plated stainless-steel
disc exhibited superior wear resistance, both at low and high temperature, and slightly lower mass
loss as compared to the plasma sprayed WC-12Co stainless-steel disc. Similarly, the superior wear
resistance of the chrome plated cast iron disc was also reported by Lal et al. [40]. The chrome plated
cast iron disc also exhibited a lower CoF as compared to the bare cast iron disc. On the other hand,
Krelling et al. [41] found that hard chrome plating on a steel disc had the presence of numerous cracks
and microcracks as shown in Figure 1. They reported that the high hardness of the chromium layer
resulted in a severe wear of the coating during its pin-on-disc test against an Alumina counter body
due to the formation of brittle phases, which was further assisted by these cracks in the coating.
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Figure 1. Cross sectional micrograph of hard chrome coated specimen showing; (a) coating overview;
and (b) detail of the black circle shown in (a) [41]. Reprinted with permission from [41]. © 2018 SciELO.

2.1.2. Plasma Electrolytic Oxidation (PEO)

Plasma electrolytic oxidation (PEO) also known as micro-arc oxidation, is an electrochemical
surface treatment process for generating oxide coatings on metals and alloys of aluminum, magnesium,
titanium, and their composites [42]. The process is similar to anodizing but employs higher voltage
and current which results in the discharges creating a plasma on the metal surface [42]. This results in
chemical conversion of the metal into its oxide which can grow up to 100 µm in thickness. The coating
fabricated by this process is uniform and can be applied on parts with complex geometries [43].
The process does not pose any risk to human health [43] and has been widely developed for many
applications including wear resistance [44,45], corrosion protection [45,46], and thermal protection [47].

Alnaqi et al. compared the thermal performance [48] and frictional properties [49] of PEO coated
Al-alloy (6082-T6) and Al-MMC (AMC640XA) with GCI brake discs. Both the coatings exhibited
higher hardness and stable CoF, although the coating on Al-alloy was more uniform and denser than
the coating on Al-MMC. The coated Al-alloy disc showed very good structural integrity at elevated
temperatures, although not as good as the reference GCI brake disc. Figure 2 shows the average CoF
for the three discs during their dynamometer testing at surface temperature below 200 ◦C. It can be
seen that the CoF of the coated discs is slightly less but still comparable to the GCI brake disc.
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Figure 2. Average CoF for 3 different brake disc materials, adopted from Alnaqi et al. [49].

Although PEO coatings have been used widely, the inherent porosity content can be a major
drawback. Curran et al. [43] found that the porosity in PEO coatings can reach up to 20% if not
controlled properly. Tsai et al. [50] reported that the operation requires high energy and is not often
employed for large workpieces due to its high power consumption which can increase operational
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costs. It should also be emphasized that the PEO process is only suited for materials like Al-based,
Mg-based, and Ti-based composites and their alloys, which form a corresponding protective oxide
scale as a conversion coating [51,52]. Therefore, it is inappropriate for GCI brake disc applications,
unless application of a prior coating of one of the above metals/alloys can be considered before being
subsequently subjected to the PEO process in the form of a duplex coating [53,54].

2.1.3. Laser Cladding

Surface treatment by laser cladding is a method that has been increasingly exploited in recent times
for various applications to improve wear [55–59] and corrosion resistance [60,61]. This process enables
deposition of pore- and crack-free coatings up to 2 mm in thickness with a strong substrate-coating
metallurgical bonding and minimal heat input into the substrate [55,56,62,63]. However, some
drawbacks with laser cladding on GCI have been reported. De Hosson et al. [62] studied the wear
resistance of Co-based coatings deposited on GCI using high power laser cladding. The authors
observed cracking inside the coating because of internal stresses gradually built up during the cladding
process. Similar cracking was also seen in the study carried out by Fernández et al. [64] in which cracks
due to residual stresses were observed in a laser clad NiCrBSi alloy coating, as shown in Figure 3. Sun
et al. [65] have also investigated the friction and wear behavior of different materials deposited by
laser cladding on compacted GCI substrates and reported a variation in microstructure, composition
as well as hardness through the thickness of the coating. Nowotny et al. [58] and Van Acker et
al. [55] investigated the maximum volume content of Co and Ni, respectively, in WC-Co and WC-Ni
composites deposited by laser cladding. The authors concluded that the maximum volume content for
Co is 35% and for Ni is 45% in the composite, as higher values were found to result in large pores,
cracks and poor bonding [55,58]. Recently, Zhou et al. [57] found that excessive heat input during laser
cladding can lead to decarburization of WC to W2C resulting in porosity and crack formation. Due
to the above stated limitations, along with the fact that laser cladded coatings are easily susceptible
to cracking due to the mismatch in the coefficient of thermal expansion between the substrate and
coating material, use of this process for brake disc applications has been restricted.
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2.1.4. Plasma Transferred Arc (PTA)

As in the case of laser cladding, this process too produces metallurgical bonding between the
coating and the substrate, and is capable of depositing thick coatings with high deposition rate in
a single layer [66]. Among all the above mentioned surface engineering technologies, PTA also has
the additional advantages of high plasma temperature (up to 30,000 ◦C) to enable complete melting
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of feedstock powder, excellent arc stability along with low thermal dilution, and low environmental
impact (low oxides emissions) [67,68]. In recent years, PTA has attracted more and more attention
for use in sectors such as aircraft, mining, nuclear, and automotive for the purpose of wear and
corrosion resistance [69]. Among the wide range of metal powders suited for PTA deposition, Ni- and
Co-based alloys are commonly used for high wear- and corrosion-resistant coatings [67]. Apart from
the aforementioned advantages, PTA has some problems when used on GCI substrates. Fernandes et
al. [70] investigated the factors affecting wear performance of a Ni-based coating deposited on GCI.
This study found that dilution from GCI can reach as high as 59% with increasing arc current as shown
in Figure 4 and is accompanied by a decrease in hardness as well as wear resistance.Coatings 2019, 9, x FOR PEER REVIEW 6 of 26 
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For completeness, the salient features of all the above-mentioned non-thermal spray processes are
summarized in Table 2.

Table 2. Summary of non-thermal spray processes as candidates for brake disc coating applications.

Coating
Process Source Possible Coatings Microstructural

Features References Drawbacks

Hard chrome
plating Electrolyte CrO3

Metallurgical bonding,
highly dense and thin

coating
[35,36] Hexavalent

Chromium—carcinogenic

PEO Electrolyte Oxides of Al, Mg, Ti

Protective oxide scale,
metallurgical bonding
and uniform coating

thickness

[48,49,71]

Suited only for few metals
like Al, Mg, Ti, and their
alloys capable of forming

protective oxides by
chemical conversion

Laser Cladding Wire or powder
Wide range of Metals
alloys, cermets and

ceramics

Metallurgical bonding,
dense and thick

coatings
[57,62,65,72,73]

Different laser beam
absorptivity at GCI surface

can result in
non-homogeneous

thermal fields; excessive
heating can lead to thermal

damage to feedstock
(e.g., decarburization of

WC to W2C)

PTA Wire or powder
Wide range of
Metals, alloys,

cermets and ceramics

Metallurgical bonding,
dense and thick

coatings
[66,70,74,75]

Possibility of dilution from
cast iron, to change coating
composition and influence

mechanical properties

2.2. Thermal Spray Processes

Thermal spray is a generic term for a technology that involves a group of coating processes
capable of depositing diverse metallic, intermetallic, or ceramic layers on component surfaces for varied
functional applications, most often as protection against aggressive environments. In its most common
form, the technique relies on injection of powder of the material to be coated into a high-temperature,
high-velocity zone where the powder particles are fully/partially molten and propelled at a high
particle velocity onto the substrate surface to form a splat. These splats serve as building blocks
for forming a coating which is mechanically bonded to the substrate [76]. Different variants of the
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thermal spray family are distinguished by the manner in which the high-temperature, high-velocity
zone is created and, in turn, are characterized by vastly varying properties. Excellent reviews on
different thermal spray techniques, describing the mechanisms of coating formation and the typical
features of the resulting coatings are available [77–79]. By virtue of its versatility, thermal spraying is
already in commercial use for a wide range of applications spanning aerospace, oil and gas, biomedical,
and automotive industries.

The relatively older thermal spray processes such as atmospheric plasma spray (APS) and high
velocity oxy-fuel (HVOF) have already been deployed on various automotive engine, suspension and
steering, as well as transmission parts [80–82]. Over the years, several APS and HVOF coatings have
been considered for automotive brake disc applications to increase the wear and corrosion resistance
of the disc material [81,83]. The relatively new thermal spray variants of high velocity air fuel (HVAF)
spraying and suspension plasma spraying (SPS) have also been gaining rapid attention due to the
advantages over the conventional HVOF and APS technologies, respectively [84,85]. The above
technologies have been individually discussed in the subsequent sections, specifically with respect to
their relevance for brake disc applications.

2.2.1. Atmospheric Plasma Spray (APS)

APS is a widely used commercial process for depositing coatings for numerous functional
applications. The typical particle size of feedstock powder ranges from 10 to 100 µm, resulting in
splats having diameter ranging from a few tens to hundreds of micrometers [77,86]. The rampant
industrial utilization of APS can be linked to its capability to spray a variety of metallic, cermet, or
ceramic materials owing to the high temperature of the plasma jet which may exceed 20,000 ◦C [79,86].
APS coatings have already been in use in the automotive industry to improve the friction and wear
properties of piston rings, cylinder blocks, and various other passenger vehicle parts [83,87–90].

Despite its vast potential and widespread industrial acceptance, there are only a few notable
works on APS coated brake rotor. Watremez et al. [91] compared the friction coefficient of different
ceramic-based coatings, i.e., ZrO2, yttrium-stabilized zirconia (YSZ) and Cr3C2-25NiCr, deposited by
APS on 4130 steel brake discs. The frictional characteristic of different coated disks against iron copper
pads showed that ZrO2 and YSZ coatings exhibited higher friction coefficients than an uncoated brake
disc (~0.65, ~0.55 and ~0.45, respectively) at speeds up to 1000 rpm. On the other hand, Cr3C2-25NiCr
coating offered the lowest friction coefficient of ~0.35. Demir et al. [92] compared the frictional
performance of GCI brake rotors with GCI rotors having an APS Al2O3-TiO2 coating and an HVOF
Cr3C2-NiCr coating. The Al2O3-TiO2 coated brake disc showed negligible weight loss and operated
without brake fade at 700 ◦C after conducting a dynamometer test whereas the bare GCI disc and
the Cr3C2-NiCr coated disc had a weight loss of 2 and 4 g, respectively. On similarly coated brake
discs, Samur et al. [93] performed sliding wear tests in a salt solution against a 10 mm diameter Al2O3

counter-ball. Both the coated discs showed lower wear rate of 1.52 × 10−5 and 1.33 × 10−5 mm3/Nm
for Al2O3-TiO2 and Cr3C2-NiCr, respectively, as compared to 1.74 × 10−5 mm3/Nm for an uncoated
GCI brake rotor. Bekir et al. [94] studied the braking performance of an APS Cr2O3-40%TiO2 coated
cast iron brake disc compared to an uncoated disc. Results showed that the hardness of the coated
disc was three times greater than that of the uncoated disc. The former also displayed a significantly
reduced weight loss than the uncoated disc with the brake lining wear remaining largely unchanged,
as shown in Figure 5. The dynamometer tests also showed good stability and improvement in CoF of
the coated disc (~0.49) compared with the uncoated disc (~0.56). More recently, Abhinav et al. [95]
studied the corrosion resistance of Al2O3 + ZrO2·5CaO coatings sprayed by APS on GCI substrate. Salt
spray test results showed negligible weight loss in case of all coating systems sprayed with different
top coat thickness.
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Despite their widespread industrial adoption, one prominent drawback of APS coatings is that
the sprayed layers usually contain defects, such as high porosity, cracks, and in situ formed oxides
trapped between splats which can affect coating properties [96–100]. Moreover, the adhesion of APS
coatings thicker than 0.5 mm is typically found to be poor and the high temperature of plasma jet
can result in thermal damage to the powder feedstock (e.g., carbide decarburization, elemental loss,
or excessive oxidation of the coating) [96,98,101]. Due to these concerns, there remains much scope
for further improvements in coating quality when it comes to spraying of highly dense and corrosion
resistant coatings for brake discs.

2.2.2. High Velocity Oxy-Fuel (HVOF)

HVOF is a widely used thermal spray process both commercially as well as for research purposes
wherein raw powder particles are injected in a spray gun and accelerated by a high temperature
supersonic gas stream to produce dense coatings [102]. Typical flame temperature in HVOF is
around 3000 ◦C which is sufficient to melt the metallic powders and semi-melt the cermet feedstock
powder [103]. Propane is the most commonly used fuel for combustion, although fuels such as
propylene, acetylene, methane, kerosene, and their combinations have also been used [104]. The size of
feedstock powder particles is typically in the range of 10–63 µm and the particles can attain velocities
up to 800 m/s [104,105]. The process is commonly employed for depositing metal and cermet coatings
with very low porosity, high hardness, good cohesive and adhesive strength, along with excellent wear
resistance [102,106]. The process has also proven to be capable of providing coatings which can be a
promising replacement for conventional hard chrome plating. The HVOF technique has been used
prominently with WC-Co and WC-CoCr exhibiting superior wear resistance [107,108] and is currently
the process of choice for a vast majority of industrial wear applications. Coating of other cermets like
Cr3C2-NiCr [109,110], Cr3C2-WC-FeCoNi [111], as well as iron alloy-based powders [112,113] have
also shown promising results in terms of wear resistance. Although a risk of decarburization of fine
powder particles due to overheating [106,114] and formation of brittle carbide phases which can often
result in crack formation [115] have also been reported, the extent is much lower than that observed in
the case of APS [116].

The encouraging results obtained by HVOF spraying have expectedly prompted several efforts
aimed at addressing brake disc applications. In a study carried out by Stanford et al. [6], friction and
corrosion behavior of GCI discs coated with a stellite alloy powder by HVOF was compared to that of
three other flame sprayed coatings, viz. Ni-17Cr-2.5Fe-2.5Si-2.5B-0.15C, Fe-30Mo-2C and Zn-50SiC.
The stellite coating exhibited a lower CoF, stable friction behavior, and excellent corrosion resistance in
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contrast to the flame sprayed coatings. Studies conducted by Demir et al. [92] and Samur et al. [93]
discussed in Section 2.2.1 have also shown promising results for HVOF sprayed Cr3C2-NiCr coated
brake disc in terms of lower wear rate and high corrosion resistance as compared to reference cast iron
disc. Wear behavior of HVOF sprayed Cr3C2-NiCr coatings deposited on GCI discs was also studied
by Priyan et al. [117]. Two different powder chemistries, viz. 80Cr3C2-20NiCr and 75Cr3C2-25NiCr,
were used and the former showed the least weight loss during dry the sliding pin-on-disc test as well
as lowest CoF due to its higher carbide content. Federici et al. [118,119] carried out studies on pearlitic
cast iron brake discs HVOF coated with WC-10Co-4Cr and 75Cr3C2-25NiCr. The coated brake discs
exhibited a uniform wear track profile and very low wear rate at room temperature and at 300 ◦C as
compared to the reference cast iron brake disc when tested against a low-metallic friction pin [118].
Figure 6 shows the surface wear track profiles of the three discs after their pin-on-disc tests, which
confirm good resistance to wear of the coated discs. During the laboratory tests, the wear mechanism
of the WC-10Co-4Cr coating was found to change from abrasive wear to adhesive wear with reducing
surface roughness (Ra) of the coated specimens [119].Coatings 2019, 9, x FOR PEER REVIEW 9 of 26 
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Öz et al. [120] compared the braking performance, noise levels, and CoF of WC-12Co HVOF
coated brake discs with a GCI disc. Employing a 50 µm bonding layer of 80Ni-20Cr under a 500 µm
thick WC-12Co coating, the coated disc exhibited higher braking performance, uniform distribution
of surface temperature, lower noise levels, but slightly higher CoF than the reference GCI brake disc.
A more recent study by Wahlström et al. [121] on HVOF WC-10Co-4Cr coated GCI brake disc has also
yielded very encouraging results. The brake discs were tested against friction pins made from two
different materials, one low-metallic and the other one with embedded TiO2 nanoparticles. In both
the cases, the wear rate of the coated disc was negative, indicating that the wear debris may have
transferred from the pin material on to the disc. Figure 7 shows the wear rates of the friction pairs used
in this study. They also captured the particle emissions during its testing using a modified pin-on-disc
tribometer, with the coated disc showing 50% reduction in particle emissions as compared to the
reference GCI disc. The above reported studies abundantly reveal the promise of HVOF coatings as
one of the suitable solutions for demanding brake disc applications.
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2.2.3. Cold Gas Dynamic Spray (CGDS)

Cold gas dynamic spray (CGDS), also known as cold spray, is a process of depositing solid powder
particles at very high velocities, typically in the range of 800–1200 m/s, using a convergent-divergent
(de Laval) nozzle [122,123]. During its deposition, the powder particles are heated using a gas mixture
of Helium (He) or Nitrogen (N2) or compressed air and propelled at the substrate. The typical size
of powder particles is the range of 5–50 µm in diameter [123]. As the name suggests, this process is
characterized by low process temperature as compared to other thermal spray processes. The powder
particles are well below their melting point and deform plastically on impact due to high kinetic energy
thereby creating a “splat” [123]. In order for the bonding of splats to occur, the particles should have a
certain impact velocity, known as critical velocity [124,125]. This critical velocity is highly dependent
on the material properties [126,127] particle temperature [128], and also the substrate properties [129].
The main advantage of cold spray process is its lower process temperature which minimizes the risk of
the oxidation of powder particles in-flight [130].

In a study carried out by Lima et al. [131], the brittle phases of WC-Co powders such as W2C
and WO3 which are formed during spraying in other high velocity thermal spray processes were
not seen in the coatings sprayed by cold spray, as observed in Figure 8. Although largely limited
to deposition of ductile materials, the CGDS technique has been explored for various applications,
including repair. Poirier et al. [132] evaluated the wear and corrosion behaviour of a cold sprayed
300 series stainless-steel coating deposited on a Al 356-T6 brake rotor. The coating showed negligible
porosity (~0.2%) as observed in Figure 9, exhibited good adhesion strength (>76 MPa) and was found
to have very high corrosion resistance. Although the CoF of the coated rotor (0.38) was similar to
the reference GCI rotor, its wear rate ((4.774 ± 1.664) × 10−5 mm3/m) was almost four times higher.
In order to improve the wear resistance, a duplex coating with cold sprayed bond coat and arc-sprayed
top coat was developed which showed very high wear resistance ((0.751 ± 0.067) × 10−5 mm3/m).

The main limitation of this process is that it is suitable only for materials having low temperature
ductility, such as metals and polymers [133]. The loss in ductility of particles through work hardening
and high velocity impact may lead to formation of hard and brittle coatings which are also susceptible
to cracking [132,134]. Consequently, the cold spray process is not ideally suited for deposition of
carbide-based hard coatings that are relevant to dust free brake discs, although studies have reported
efforts in this direction with promising results [135,136].
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2.2.4. High Velocity Air Fuel (HVAF)

In an effort to overcome the disadvantages of carbide dissolution and brittle phase formation in
HVOF, the relatively new thermal spray process of high velocity air fuel (HVAF) has been attracting
growing attention in the last few years [137]. The process uses air instead of oxygen which makes
it colder than HVOF [138] and also has higher process velocity because of a convergent-divergent
(de Laval) nozzle thereby mitigating the problems of decarburization [106,139] while simultaneously
reducing the operational as well as production costs. The resulting very high particle velocities at
impact, in the range of 1000–1200 m/s have been found to produce extremely dense coatings with
superior cohesive and adhesive strength [140]. Therefore, HVAF coatings are deemed attractive for
corrosion and wear applications and have been investigated for depositing numerous Ni- and Fe-based
compositions [141–143] as well as carbide-laden coatings [144,145]. Due to these attractive features,
HVAF has been increasingly explored as an alternative to the HVOF technology [84]. Although no
specific work has been done on coatings solely for automotive brake discs using HVAF, several studies
have been carried out on wear resistant coatings [109,113,146] that are of potential relevance to brake
disc applications. Therefore, it will be of high interest to study the wear behavior of such coatings on
gray cast iron brake discs.

Bolelli et al. [106] compared the sliding and abrasive wear behavior of ≈300 µm thick HVAF
WC-10Co-4Cr coating with an electroplated hard chromium coating having similar thickness. The highly
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dense HVAF coating exhibited very low sliding and abrasive wear rate compared to electroplated
hard chrome coating. Moreover, the HVAF coating also retained almost all the WC grains from
the feedstock powder. Similar observations were also reported in several other studies on HVAF
WC-10Co-4Cr coatings, confirming the ability of this process to limit the decarburization of WC due to
the inherently lower process temperature [145–147]. As observed from Figure 10, the HVAF sprayed
WC-10Co-4Cr coating had fairly similar wear rate as the HVOF coating but five times lower wear
rate as compared to 300M steel substrate when tested on a reciprocating ball-on-block test against a
cemented carbide counterbody, under a load of 50 N [146]. The above stated studies also highlight the
favorable comparison of HVOF and HVAF processes, with HVAF sprayed coatings showing similar if
not slightly better tribological behavior and corrosion resistance under similar test conditions.
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Wear behavior of CrC-based cermet coatings deposited by HVOF and HVAF was investigated by
Hulka et al. [111]. They found that HVAF sprayed coatings showed slightly lower wear loss in abrasive
and sliding wear tests compared to HVOF coated specimens. Bolelli et al. [110] studied the tribological
behavior of HVAF Cr3C2-NiCr coatings at ambient temperature and at 400 ◦C. The coatings had a low
mass loss similar to the HVOF coated samples but more than three times lower than the reference
electroplated hard chrome coating. Sliding wear rate was also seen to be lower than hard chrome
coated specimen but again similar to the HVOF coating for both room temperature as well as at 400 ◦C.
The comparable results of HVOF and HVAF carbide laden coatings from above the reported studies
further strengthen the case of HVAF as one of the promising candidates which can be deployed to coat
automotive brake discs, particularly by virtue of its lower operating costs.

2.2.5. Suspension Plasma Spray (SPS)

SPS is a relatively recent technology which uses finely grained, nanometer, sub-micrometer,
and micrometric sized powder suspension as a feedstock to form the coatings [148]. The suspension is
injected into the plasma jet where it atomizes, and the liquid component evaporates rapidly. Upon
impact, a chain of events similar to that in APS occurs: The molten particles first splat, then rapidly
solidify, and the coating is built up by successive deposition of particles [148].

SPS offers several advantages over APS. The long desire to spray sub-micron and nano-sized
particles can be achieved by this process and can enable the formation of unique coating morphology that
offers a dense coating with refine grains, small sized porosity, and excellent interlamellar bonding [85].
Furthermore, the recent advancement in axial suspension feeding for SPS technology has shown
significant improvement in both deposition efficiency and thermal exchange between the feedstock
and the plasma plume [148,149]. Recognizing the above advantages, this process has emerged as a
promising spraying technique and several studies have been carried out to explore the potential of the
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SPS process. SPS thermal barrier coatings have been the subject of particularly intensive investigation
and, as an outcome of the numerous dedicated studies, the process is now well understood. Due to its
ability to spray nano-sized particles with different solvents, the microstructure of the coatings can be
tailored to produce a variety of microstructures such as porous columnar, dense vertically cracked,
etc. [150–153]. Such microstructures can be further tailored to produce refined microstructures more
suitable for wear resistance applications than APS coatings as evident from the results of Goel et
al. [149] illustrated in Figure 11. Moreover, a preliminary work by our group to explore the potential
of SPS to spray Cr2O3 coating has shown prominent results to develop a new generation of wear
resistance coatings. The cross-section micrograph of SPS Cr2O3 demonstrates the potential of this
process to deposit a dense layer of Cr2O3 with fine porosity, as shown in Figure 12.
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However, the research on SPS wear resistance coating is still incipient and very few works have
been conducted [154–158]. Early results by Tingaud et al. [154] showed an improvement in the wear
resistance of SPS Al2O3 as well as low CoF (~0.39) by adding ZrO2 in the matrix.

The interest in exploring liquid-based spraying has been expanded significantly and novel
methods for depositing composite, multilayered, functionally graded coating, and hybrid processes
have emerged to enhance surface properties even further [159–162]. Gopal et al. [163] demonstrated
the potentials of hybrid technique by combining dual injection of distinct feedstock types to offer
superior wear resistance coating. Sliding test results of the hybrid coating (Al2O3 powder with YSZ
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suspension) showed a superior crack growth resistance as well as low CoF (~0.24) as compared with
pure coating. However, the process has not yet been fully explored for brake disc applications despite
its promising potential.

From the review of literature carried out, thermal spray variants bear promises to be applied on
GCI brake discs and, in the near future, also keep pace with the regulatory demands that are certain to
become increasingly stringent. These methods are amenable to spraying coatings over a wide range of
thickness and on parts with complex geometries. The versatility that is derived from the capability to
spray a wide range of materials such as metals, cermets, ceramics, as well as composites also offers a
unique opportunity to move towards producing coatings for GCI brake discs that would reduce dust
and emissions due to brake wear.

3. Coating Materials

There is a large range of potential materials that can be deposited by the previously discussed
thermal spray techniques for wear resistant applications. The following section summarizes an
exhaustive survey of available literature to identify materials that have been applied on actual brake
discs or on gray cast iron substrates and other materials deemed promising for wear resistant application.
Both materials deployed in actual applications, as well as those that have yielded promising laboratory
test results (in terms of low CoF and wear rate) have been considered in the ensuing discussion.
The materials have been categorized based on their composition into three major groups; (i) oxides,
(ii) carbides, and (iii) alternative materials.

3.1. Oxides

Aluminum oxide (Al2O3), titanium oxide (TiO2) and chromium oxide (Cr2O3) are widely used
materials for tribological applications requiring both wear and corrosion resistance [164–166]. The oxide
ceramics materials in general have shown high strength, hardness and good wear and corrosion
resistance [167–171]. APS has been the most commonly used thermal spray technology to deposit
these materials due to their high melting temperature [164,165,167]. Numerous studies have been
carried out to investigate the mechanical and wear resistant property of plasma sprayed ceramic
oxides [164,172–184].

Several researchers have investigated the potential of these materials to impart improved wear
resistance on brake discs by plasma spraying. Some of these studies have been discussed in Section 2.2.1.
Yet other efforts have focused on such ceramic-based APS coatings deposited on cast iron substrates
and studied their tribological behavior. Both of the above are summarized below in Table 3.

Table 3. Summary of sliding wear studies involving oxide-based coatings on brake discs and
cast-iron substrates.

Coating
Process Coating Material Substrate Coating

Hardness CoF Counter Body Ref.

APS TinO2n−1 (n = 4–6) GCI 846 HV0.2 0.58–0.78 Sintered Al2O3 ball [90]

APS
8YSZ

4130 steel brake
discs

– 0.55
Fe-Cu pad [91]ZrO2 1400 HV0.2 0.65

75Cr3C2-25NiCr 800 HV0.2 0.35

APS Al2O3-TiO2 GCI brake disc – 0.27 As per SAE J2522
dynamometer test [92]

APS Cr2O3-40% TiO2 GCI brake disc 842 HV0.5 0.49 As per SAE J2522
dynamometer test [94]

APS Cr2O3 Cast iron 1200 HV0.1 0.60 Self-mated
Cr2O3-coated discs [180]

APS Cr2O3-5MoO3 Cast iron 1700 HV0.1 0.40 Cr-plated disc [175]
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Table 3. Cont.

Coating
Process Coating Material Substrate Coating

Hardness CoF Counter Body Ref.

APS Al2O3 Cast iron 1150 HV0.3 0.45–0.55 D2 steel disc [185]

APS

8YSZ

Cast iron

980 HV0.1 0.85

Cr-plated disc [186]20YSZ 450 HV0.1 0.90
ZrO2 + 5CaO 300 HV0.1 0.80–0.55
Al2O3-ZrO2 960 HV0.1 0.80–0.70

APS Mo Cast iron 500 HV0.1 – AISI 303 steel pin [187]

Although not included in the above table, SPS wear resistant coatings appear promising to
investigate for brake disc application owing to their potential of utilizing the advantages of sub-micron
and nanometric powder particles. The encouraging results obtained by SPS wear resistant coatings
have already been highlighted in Section 2.2.5 and further investigations on the same front also
demonstrate the ability of this process to produce superior wear resistant coatings [188].

3.2. Carbides

Hard metal carbides such as tungsten carbide (WC) and chromium carbide (Cr3C2) bonded with
pure metal or mixture of metals consisting of cobalt (Co), nickel (Ni), chromium (Cr), iron (Fe) are one of
the most frequently used cermets for producing highly wear resistant coatings by high velocity thermal
spray processes [189–191]. These cermets, also referred to as cemented carbides, have an optimum
blend of hardness, toughness, and ductility which makes them attractive for applications that demand
materials having high wear and corrosion resistance [192]. Currently, high velocity thermal spray
processes of HVOF and HVAF are acknowledged to be the most appropriate processes for spraying
cemented carbides. The lower oxide content in deposited coatings due to low process temperatures
and short residence times due to supersonic gas stream results in good cohesion and adhesion along
with reduced porosity and low decarburization [193,194]. The carbide dissolution can be reduced
significantly by using HVAF which has an even lower process temperature than HVOF [138].

Several studies on sliding wear and thermal properties of HVOF sprayed carbide coatings on
brake discs have been carried out in the past. Among the hard metal carbides, WC-12Co, WC-10Co-4Cr
and 75Cr3C2-25NiCr have been the most popular for realizing highly wear resistant coatings. The most
notable efforts involving carbide coatings on brake discs using HVOF technique has been previously
discussed in Section 2.2.2. Table 4 below summarizes the various studies reported on carbide coatings
on cast-iron brake discs.

Apart from these studies on brake discs, such hard metal HVOF carbide coatings have also
been used extensively in other industrial applications to study their wear and corrosion resistance.
Du et al. [195] compared the wear rate of plasma sprayed WC-12Co coating on GCI substrates using a
lubricated ball on disc tribometer. They found that, although the CoF of the coating was similar to bare
GCI substrate, volume loss in case of bare GCI was six times higher than that with plasma sprayed
coating. Several comparative studies on tribological properties of thermally sprayed carbide coatings
have also been carried out in the past using HVOF and/or HVAF [106,110,111,137,146,196]. From these
studies, the carbide-based HVAF coatings have proven to be superior than HVOF in terms of their
wear resistance and the ability to retain the feedstock carbide grains. The results of various HVAF
tribological coatings reported in Section 2.2.4 have shown extremely promising results in different
wear tests and therefore make a strong case to be explored specifically for brake disc application.
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Table 4. Summary of sliding wear studies involving carbide coatings on brake discs.

Coating
Process Coating Material Substrate Coating

Hardness CoF Counter Body Ref.

HVOF Co-30Cr-12W-2.4C Gray cast iron 812 HV0.3 0.30–0.35
Non-asbestos

organic (NAO)
brake pad material

[6]

HVOF 75Cr3C2-25NiCr Gray cast iron 766 HV0.2 0.29–0.36 As per SAE J2522
dynamometer test [92]

HVOF 75Cr3C2-25NiCr Gray cast iron 766 HV0.2 – 10 mm diameter
Al2O3 ball [93]

HVOF 80Cr3C2-20NiCr Gray cast iron 1410 HV0.3 0.20–0.24 WC-6Co pin [117]

HVOF 86WC-10Co-4Cr Cast iron 1100 HV0.3 0.48–0.49
Commercial

low-metallic friction
material

[119]

HVOF 75Cr3C2-25NiCr Pearlitic cast iron 920 HV0.3 0.43–0.59
Commercial

low-metallic friction
material

[118]

HVOF 86WC-10Co-4Cr Pearlitic cast iron 1130 HV0.3 0.30–0.66
Commercial

low-metallic friction
material

[118]

HVOF 88WC-12Co Gray cast iron 510 HV0.2 0.51–0.52 Low-metallic
friction material [120]

HVOF 86WC-10Co-4Cr Cast iron – 0.48–0.49 Experimental [121]

3.3. Alternative Materials

Over the last decade, the prices of Ni and Co have increased dramatically and forced the thermal
spray community to evaluate alternative materials for wear-resistance applications [197,198]. Moreover,
metals and/or compounds of metals like Ni, Co, hexavalent Cr, and specifically WC-Co-based powders
have been identified as human carcinogens by the International Agency for Research on Cancer and by
the U.S. Department of Health and Human Services [199], especially in inhalable form [200]. There is
also a risk of fine wear debris being released when these materials are used in the form of a coating.
This has further motivated the search for economical and environmentally sustainable alternative
materials that are either free of the above elements or at least reduce their content.

Preliminary studies on economically more appealing stellite alloy coatings or self fluxing Ni-Cr-B-Si
alloy coatings with a Fe matrix have shown promising results [112,201]. Moreover, recent work on
tribological properties of a novel coating sprayed using Fe-V-Cr-C alloy system with HVOF and HVAF
have shown that these coatings yield results comparable with stellites and Ni-Cr-B-Si alloys [113,202].
Hence, Fe-based coatings are a promising alternative to Ni/Co-based coatings due to their lower toxicity
as well as lower cost. Another alternative material, WC-FeCrAl, termed as a “green carbide” due to
the Fe-based matrix replacing Ni and/or Co as the binder, is also a potential replacement for WC-Ni/Co
carbide powders. Bolelli et al. [203] studied the sliding wear resistance of WC-FeCrAl coatings sprayed
by HVOF and the results showed its sliding wear performance to be comparable to WC-Co-Cr coating.
A comparative study of HVOF and HVAF sprayed WC-FeCrAl coatings was also carried out by Bolelli
et al. [204] where both the coatings showed very similar wear rates at room temperature and at 400 ◦C.
In another study conducted by Brezinová et al. [205], HVOF sprayed WC-FeCrAl coatings showed
excellent erosive and abrasive wear resistance as well as good corrosion resistance.

A summary of the inherent thermo-physical properties of some of the promising oxide, carbide,
and alternative materials that could be candidates for actual brake disc applications is provided in
Table 5.

Table 5. Summary of promising coating materials for brake disc application.

Material Bulk Density
(g/cm3)

Thermal Conductivity
(W/m.K (◦C))

Thermal Expansion
Coefficient (K−1 × 10−6)

Vickers
Hardness (HV) Ref.

Al2O3 3.65–3.96 30–36 4.50–8.30 1520–1680 [20]
Cr2O3 4.20–4.40 10–33 7.80–8.10 1280–1420 [20]

Fe-V-Cr-C alloy 7.50 – – 800–950 [113]
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Table 5. Cont.

Material Bulk Density
(g/cm3)

Thermal Conductivity
(W/m.K (◦C))

Thermal Expansion
Coefficient (K−1 × 10−6)

Vickers
Hardness (HV) Ref.

WC-FeCrAl 14.42 – 6.17–6.68 950–1200 [204,205]
75Cr3C2-25NiCr 7 14 11.10 1350 [206]

WC-17Co 14.54 81.50 – 1060–1170 [207]

4. Industrial Implications

The automotive industry is constantly in need of new materials and developments in order to
sustain their fast-developing business [76]. New standards and regulations that will emerge in few
years’ time concerning PM emissions from automobile brake wear are certain to force the automotive
industries to actively seek approaches for minimizing or eliminating particle emissions. Another factor
that would drive the global automotive brake market is the emergence of electric vehicles (EVs) and
hybrid vehicles. Braking systems for EVs mainly rely on the principle of regenerative braking, which
implies that the conventional frictional braking system is less frequently used. A regenerative braking
system enables the kinetic energy of the drive wheels to be converted to electrical energy by the electric
motor (generator) during braking, deceleration, or downhill running [208]. The converted electrical
energy, which is normally lost as frictional heat, is stored in energy storage devices such as high voltage
batteries, ultracapacitors, and ultrahigh-speed flywheels to extend the driving range by up to 10% [209].
However, regenerative braking is not self-sufficient as the only means to bring a vehicle to a stop, for
instance, during emergency braking. It is, therefore, usually used in combination with a friction braking
system [210]. Therefore, an electric motor (generator) brake and an electric-hydraulic composite
braking system are adopted for electric vehicles braking systems [211]. Since friction brakes are less
frequently used as in traditional vehicles due to regeneration properties [212], the problem of corrosion
will also be prominent if GCI disc rotors are used, with the fundamental property requirements placed
on friction brakes remaining unchanged in EVs. Thus, the major factors that could influence the
application of friction brakes in EVs are the demand to reduce the vehicle’s weight, reduce particle
emissions due to wear, and the requirement to prevent brake disc corrosion.

Concerns regarding non-exhaust PM emissions will also be prevalent in the near future because
the exhaust PM emissions would have been eliminated or considerably reduced due to electrification of
vehicles [29]. However, for GCI brake discs to be relevant in this era, drastic measures to improve their
corrosion and wear properties must be taken by the automotive component manufacturers. The use of
thermal spray processes to deposit highly wear resistant coatings on GCI brake discs can go a long
way in reducing the brake dust as well as other emissions from brake wear. Such encouraging results
have been already demonstrated by using HVOF in a recent study [121].

These results can be further improved by using emergent and state of the art technologies such as
HVAF and SPS. If these methods are developed to their full capability, they can potentially form a
robust coating platform to enable the automotive industry to address aforementioned problems while
achieving their sustainability goals as well as satisfying brake disc requirements [76,105]. Moreover,
the coated brake discs will also have higher durability that will indirectly lower the maintenance and
repair costs associated with them. New markets for thermal spray will also be opened which could
not only bring down the operational and production costs of these processes but also increase their
economic value simultaneously [76]. This will drive the global automobile brake disc market in the
coming years.

5. Conclusions

Brake wear emissions in the form of brake dust and particulate matter are a growing concern for the
automotive industry since they significantly contribute to increasing traffic pollution, and can also pose
a challenge in the face of increasingly stringent standards and environmental norms. As GCI continues
to be the primary brake disc material of choice for passenger vehicles, surface treatment of GCI discs
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offers a possible pathway to address the above challenge. This paper comprehensively reviews various
candidate coating techniques and materials that have been traditionally used/evaluated to mitigate
brake wear emissions. Among them, thermally sprayed coatings are noted to provide specific benefits.
Several illustrative examples of thermal spray coatings deposited on GCI substrates and/or specifically
investigated for possible brake disc applications have been presented. Compared to conventional
techniques like APS and HVOF, development of anti-wear and anti-corrosive coatings by deploying
emergent thermal spray variants such as HVAF and SPS can potentially lead to direct payback in terms of
improved air quality along with enhanced life of brake discs. The benefits that these two methods offer
compared to the relatively more well-established techniques are outlined, and the industrial implications
of adopting them for brake disc applications, have been discussed. A summary of promising oxide,
carbide, and alternative materials that could be candidates for actual brake disc applications, is
also included. A focused effort aimed at evaluating these promising spray process-coating material
combinations can lead to important tangible outcomes for the automotive industry.
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