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Abstract: This article proposes an advanced algorithm for the numerical solution of a coupled
nonlinear Schrödinger equations system describing the evolution of a high-power femtosecond
optical pulse in a single-mode polarization-maintaining optical fiber. We use the algorithm based on
a variant of the split-step method with the Madelung transform to calculate the complex amplitude
when executing a nonlinear operator. In contrast to the known solution, the proposed algorithm
eliminates the need to numerically solve differential equations directly, concerning the phase of
complex amplitude when executing the nonlinear operator. This made it possible, other things being
equal, to reduce the computation time by more than four times.

Keywords: coupled nonlinear Schrödinger equations; birefringent fiber; few-mode propagation; Kerr
effect; Raman scattering; dispersion; split-step Fourier method

1. Introduction

Femtosecond lasers make it possible to generate optical pulses of ultra-short duration
(up to 10 fs or less) and high power (up to 1 MW or more). Their application has increased
in various fields of human activity [1–7]. They are used most widely in biology and
medicine, material processing, measurements, and diagnostics. High-power fiber and
solid-state lasers designed for this purpose operate mainly in the wavelength range from
650 nm to 1060 nm. In the schemes of such lasers, and the delivery of ultrashort pulses
from the radiation source to the point of application, traditional quartz optical fibers and
specially designed optical fibers are used. Usually, polarization-maintaining optical fibers
are preferred [8–10]. The constant growth in the variety of applications of laser sources with
ultra-short pulses leads to the need for their adaptation to new conditions, modernization,
and improvement. All of this makes all issues related to the creation of such laser systems
relevant but, particularly, simulations of the propagation of high-power, ultrashort optical
pulses in polarization-maintaining optical fibers. The variety of fields of application of
femtosecond lasers and their specificity make it necessary to develop and improve methods
for generating and delivering pulses with specified parameters. That, in turn, requires
improving mathematical models and algorithms for modeling pulse propagation processes
in optical fibers.

It is known that, the nonlinear Schrödinger equation (NLSE) successfully describes
the propagation of optical pulses in optical fibers with nonlinearity and dispersion for a
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complex envelope, which is obtained from the Maxwell system of equations under the
condition of a slowly varying envelope approximation (SVEA) [11–13]. For the propagation
of optical pulses in an optical fiber under a multimode regime, a system of coupled
nonlinear Schrödinger equations (CNLSE) is used. This system transforms to the Manakov
system of equations for polarization-maintaining fibers [11–17]. There are a number of
numerical methods known for solving NLSE [11–33]. These include finite-difference
schemes, spectral methods, the Petrov–Galerkin method, and various split-step Fourier
method versions (SSFM). However, as a rule, preference is given to the SSFM, which
significantly exceeds the accuracy of finite-difference methods [33]. In SSFM, the second
time derivative is calculated using the discrete Fourier transform, which provides an
exponential convergence rate in the time variable.

At the same time, not everything is simple for ultrashort pulses. With a decrease
in optical pulse duration, limitations begin to appear due to the assumption of a slowly
varying amplitude [34]. When simulating the propagation of optical pulses with a duration
of fewer than ten ps in an optical fiber, it is necessary to consider the higher-order chromatic
dispersion and Raman scattering. This leads to the inclusion of additional terms in the
equations and, as a result, the transition to generalized nonlinear Schrödinger equation
GNLSE [11–13,35–39]. The use of SSFM for the GNLSE solution becomes significantly more
complicated than for the usual NLSE, since the nonlinear operator of GNLSE includes
the derivatives of the complex amplitude and its functions in time. All of this stimulates
interest in the development of algorithms for modeling the propagation of ultrashort optical
pulses in optical fibers based on the direct solutions to Maxwell’s equations, by the finite
difference time domain method (FDTD) [40–46], GNLSE solutions by finite-difference
methods [22,23,38,47–50], and, of course, based on GNLSE solutions using improved SSFM
algorithms [51–55].

In [54] R. Deiterding et al., a detailed analysis of the difficulties of solving the GNLSE,
based on the classical SSFM implementation algorithm, is presented. In this case, when
executing a nonlinear operator, direct methods of numerical differentiation, schemes based
on the Runge–Kutta method, or direct and inverse Fourier transforms, are used to find
the complex envelope’s derivatives and their functions relating to time. This approach
lacks stability and reliable convergence [54,55]. To solve the problem, it is proposed in [54]
to execute the nonlinear operator of SSFM by solving the differential equation obtained
from GNLSE, by eliminating the linear part. This differential equation by the Madelung
transformation is converted to a differential equations system for the modulus and phase
of the complex envelope (Madelung equations). The Madelung equations are solved by
numerical methods at each step of the SSFM, under executing the nonlinear operator.
In [55], this solution is generalized for the system of coupled GNLSEs. When numerically
solving the Madelung equations, difficulties arise with errors in the zeros region of wave
function. Errors in the calculations make the relative phase undefined [56,57]. It requires
the control under the calculation of changes in the phase of a complex envelope. The
changes of a phase under calculation must not exceed modulus 2π. Accordingly, it needs
the use of more accurate adaptive computational grids for the Madelung equations and, as
a consequence, the computation time increases. Of course, we would like to avoid this, for
example, by eliminating or replacing differential equations for the complex envelope phase.

In this paper, we propose the development of the method described in [54,55]. Here,
we present a new algorithm for solving a coupled GNLSE system based on SSFM, for
simulating the propagation of an ultrashort pulse in a single-mode optical fiber with
birefringence. This algorithm makes it possible to get rid of the differential equations for
the complex envelope phase solved at each simulation step when executing a nonlinear
operator. A comparison of the simulation results obtained using the proposed algorithm
and the known algorithm [54,55] is carried out. The results of a comparison of the data
obtained by simulations using the proposed algorithm with the experimental data described
in detail in [58–64] are presented.
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2. System GNLSE for Single-Mode Polarization-Maintaining Optical Fiber

In general, term evolution of optical pulses with a duration of fewer than 10 ps in
multimode optical fibers, can be described by a system of coupled GNLSE [55]:

∂Am
∂z = − αm

2 Am − β1,m
∂Am

∂t − j β2,m
2

∂2 Am
∂t2 +

β3,m
6

∂3 Am
∂t3 +

+jγm Am
N
∑

n=1
Cm,n|An|2 − γm

ω0,m

N
∑

n=1
Bm,n

∂
∂t

(
|An|2 Am

)
− jγmTR Am

N
∑

n=1
Bm,n

∂
∂t

(
|An|2

)
,

m = 1, N, n = 1, N, m 6= n.

(1)

where Am is the—complex envelopes of the optical impulse of the m-th mode, An is
the—complex envelopes of the optical impulse of the n-th mode, αm is the—attenuation
coefficient of the m-th mode; β1,m, β2,m, β3,m are—dispersion parameters of the first, second
and third orders of the m-th mode, respectively; γm is the—nonlinearity parameter for the
m-th mode; Cm,n, Bm,n are—coupling coefficients between the m-th and n-th modes; TR is
the—Raman scattering parameter;ω0,m is the—angular frequency of the m-th mode; z is
the—coordinate along the axis of the fiber; and t—is time.

Taking into account the solution of [14], by analogy with [16], for two orthogonally
polarized modes of a polarization-maintaining optical fiber, from (1) we obtain a system of
2 coupled equations of the following form:

∂Am
∂z = − α

2 Am − β1,m
∂Am

∂t − j β2,m
2

∂2 Am
∂t2 +

β3,m
6

∂3 Am
∂t3 +

+jγm Am

(
|Am|2 + 2

3 |An|2
)
− γm

ω0

[
∂(|Am |2 Am)

∂t + 1
3

∂(|An |2 Am)
∂t

]
− jγmTR Am

(
∂|Am |2

∂t + 1
3

∂|An |2
∂t

)
(2)

Here m = 1, 2; n = 1, 2; m 6= n.
By the rules of differentiation, we can write system (2) in the following form [55]:

∂Am
∂z = − α

2 Am − β1,m
∂Am

∂t − j β2,m
2

∂2 Am
∂t2 +

β3,m
6

∂3 Am
∂t3 − γm

ω0

(
|Am|2 + 1

3 |An|2
)

∂Am
∂t +

+jγm

[
Am

(
|Am|2 + 2

3 |An|2
)
+
(

j
ω − TR Am

)(
∂|Am |2

∂t + 1
3

∂|An |2
∂t

)] (3)

As already mentioned, one of the most effective methods for solving the CNLSE
system is SSFM. The main problem of its application for solving the coupled GNLSE system
includes the derivatives of complex variables and/or their functions to time in parts of
equations describing nonlinear processes. Also, a singularity of form 1/Am appears in this
part of the equations [55].

3. Solution of CNLSE by Using the SSFM

When solving the CNLSE system by SSFM, Equation (2) is presented in the form [33,55]:

∂Am

∂z
= (Dm + Nm)Am. (4)

where the operator Dm is determined by the linear part of Equation (2):

∂Am

∂z
= −α

2
Am − β1,m

∂Ax

∂t
− j

β2,m

2
∂2 Am

∂t2 +
β3,m

6
∂3 Am

∂t3 , (5)

and the operator Nm by their nonlinear part:

∂Am

∂z
= jγm Am

(
|Am|2 +

2
3
|An|2

)
− γm

ω0

∂
(
|Am|2 Am

)
∂t

+
1
3

∂
(
|An|2 Am

)
∂t

− jγmTR Am

(
∂|Am|2

∂t
+

1
3

∂|An|2

∂t

)
. (6)
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Respectively

Dm = −α

2
− β1,m

∂

∂t
− j

β2,m

2
∂2

∂t2 +
β3,m

6
∂3

∂t3 , (7)

Nm = jγm

(
|Am|2 +

2
3
|An|2

)
− γm

Amω0

∂
(
|Am|2 Am

)
∂t

+
1
3

∂
(
|An|2 Am

)
∂t

− jγmTR

(
∂|Am|2

∂t
+

1
3

∂|An|2

∂t

)
. (8)

Or, according to (3):

Nm = jγm

{(
|Am|2 +

2
3
|An|2

)
+

j
ω0

(
|Am|2

Am
+
|An|2

3Am

)
∂Am

∂t
+

(
j

ω0
− TR

)(
∂|Am|2

∂t
+

1
3

∂|An|2

∂t

)}
. (9)

For Dm and Nm independent of the coordinate z, the system of equations of the form
(2) has a solution written in the form:

Am(z + h, t) = Am(z, t)· exp[h(Dm + Nm)]. (10)

In the general case, operators Dm and Nm are noncommuting, and solution (10) is
written in the form:

Am(z + h, t) = Am(z, t)·[exp(hDm)· exp(hNm)].

As a rule, the symmetric calculation scheme is used [55,56]:

Am(z + h, t) = Am(z, t)·
[

exp
(

h
2

Dm

)
· exp(hNm)· exp

(
h
2

Dm

)]
. (11)

Such a scheme for noncommuting operators increases the approximation accuracy
when implementing algorithms based on SSFM [30].

4. Algorithm for the Execution of the Linear Operator SSFM

The linear operator when solving the CNLSE system using SSFM is performed in the
spectral domain. For that, the fast Fourier transform is used. In this case, the execution of
the linear operator can be described as follows [33,55]:

Am(z, t)· exp
(

h
2

Dm

)
= F−1

{
exp

[
h
2

(
−α

2
− jβ1,mω− j

β2,m

2
ω2 − j

β3,m

6
ω3
)]

F[A(z, t)]
}

. (12)

Here F and F−1 are the operators of the direct and inverse Fourier transform, respec-
tively. Naturally, the calculations use the fast Fourier transform algorithm.

5. Known Algorithms for Executing the Nonlinear SSFM Operator

Using the traditional approach used for CNLSE without considering Raman scattering,
it is assumed that the complex envelope derivatives are calculated numerically, and the
nonlinear operator is determined by expressions (8) or (9). The simplest variant is to directly
substitute the operators of numerical differentiation in (8) and (9). For example, [54]

∂Am

∂t
=

Am,i+1 − Am,i−1

2∆t
, (13)

∂|Am|2

∂t
=
|Am,i+1|2 − |Am,i−1|2

2∆t
. (14)
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Furthermore, to calculate these derivatives, we can use direct, and inverse Fourier
transforms [54]:

∂Am

∂t
= F−1[jωF(Am)], (15)

∂|Am|2

∂t
= F−1

[
jωF

(
|Am|2

)]
. (16)

The analysis of solutions carried out in [54] shows that the SSFM algorithms for GNLSE
calculated the complex envelope’s derivative when executing the nonlinear SSFM operator,
based on numerical differentiation or the direct and inverse Fourier transforms lack stability
and reliable convergence. Furthermore, when solving the modified CNLSE system, it is
necessary to consider the presence of the 1/Am singularity in the nonlinear operator.

In [53], the nonlinear component of the coefficient at the first derivative ∂Am/∂t is
neglected, and, to improve the convergence, the derivative ∂|Am|2/∂t is calculated as:

∂|Am|2

∂t
= Re

{
F−1

[
jωF

(
|Am|2

)]}
. (17)

It is a somewhat controversial decision. Nevertheless, it made it possible to achieve an
acceptable agreement with the experimental data. At the same time, it is evident that this
approach does not entirely solve the problem.

An alternative SSFM implementation algorithm for solving the coupled GNLSE system
is proposed [54,55], where to search the solution within the framework of the symmetric
SSFM scheme, the following sequence of operators are described:

A(1)
m = exp

(
h
2

D
)

Am(z, t), (18)

A(2)
m = A(1)

m + h·N
(

A(1)
m , A(1)

n

)
,

Am(z + h, t) = exp
(

h
2

D
)

A(2)
m .

In this case, the nonlinear operators N(Am) are sought as a solution to the system of
differential equations written for the nonlinear part of the GNLSE system (2) [55]:

∂Am

∂z
= jγm Am

(
|Am|2 +

2
3
|An|2

)
− γm

ω0

∂
(
|Am|2 Am

)
∂t

+
1
3

∂
(
|An|2 Am

)
∂t

− jγmTR Am

(
∂|Am|2

∂t
+

1
3

∂|An|2

∂t

)
. (19)

In Refs [54,55], Equation (19) is solved by using the Madelung transformations repre-
senting the complex envelope in the form:

Am(z, t) =
√

I(z, t)· exp[jφm(z, t)], (20)

I(z, t) = |Am(z, t)|2,

here ϕm(z, t)—the phase of the complex envelope for m-component.
After substituting (20) into the system of two coupled GNLSE (2), we went over to the

equivalent system of hydrodynamic differential equations, which already includes four
differential equations of the form

∂Im

∂z
+

γm

ω0

[(
3Im +

1
3

In

)
∂Im

∂t
+

2
3

Im
∂In

∂t

]
= 0, (21)

∂φm

∂z
+

γm

ω0

(
Im +

1
3

In

)
∂φm

∂t
+ γmTR

[
∂Im

∂t
+

1
3

∂In

∂t

]
= γm

(
Im +

2
3

In

)
.
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It was shown in [54,55] that the eigenvalues of the system (21) are of the same sign,
which made it possible to propose a solution of a simple finite-difference scheme of inversely
directed differences on a uniform grid

Ip+1
m,k = Ip

m,k −
h

∆t
γm

ω0

[(
3 Ĩp

m,k + Ĩp
n,k/3

)
·∆Ip

m,k + 2 Ĩp
m,k·∆Ip

n,k

]
, (22)

φ̃
p+1
m,k = φ

p
m,k −

h
∆t

γm

[
TR

(
∆Ip

m,k + ∆Ip
n,k/3

)
+

1
ω0

(
Ĩp
m,k + Ĩp

n,k/3
)
·∆φ

p
n,k

]
. (23)

φ
p+1
m,k = φ̃

p+1
m,k + hγm

(
Ip+1
m,k + 2Ip+1

n,k /3
)

. (24)

Here, given that γm > 1

Ip
q,k =

1
2

(
Ip
q,k + Ip

q,k−1

)
, ∆Ip

q,k = Ip
q,k − Ip

q,k−1, k = 1, 2 . . . N; p = 1, 2 . . . N; q = m, n (25)

Here, N—is the number of integration steps; p—is the number of the current grid point
on the distance axis; k—is the number of the current grid point on the time axis; h—is the
grid step along the distance axis; ∆t—is the grid step along the time axis. Under solving the
system, it is must be taken into account the following condition. The phase increment is
taken to be an absolute value and lies in the range from 0 to 2π. Then, the finite difference
method is performed according to the scheme (22)—(25) gives a stable solution under the
condition [54]

γm

ω0
max

{
3Im,k + In,k/3

} h
∆t
≤ 1. (26)

Of course, it would be desirable to exclude from (21) the equations for the phase,
limiting ourselves to equations for the intensities and complex envelope.

6. The New Algorithm for Calculating the Nonlinear Operator of the SSFM for
Solving a System of Coupled GNLSE

When simulating the propagation of orthogonally polarized modes in polarization-
maintaining optical fiber, it can be assumed that γm = γn = γ. Taking this into account, we
write (19) according to (3) in the following form:

∂Am

∂z
= − γ

ω0

(
|Am|2 +

1
3
|An|2

)
∂Am

∂t
+ jγAm

[(
|Am|2 +

2
3
|An|2

)
+

(
j

ω
− TR

)(
∂|Am|2

∂t
+

1
3

∂|An|2

∂t

)]
.

Or, considering that ∣∣Aq(z, t)
∣∣2 = Iq(z, t), (27)

where q = m,n, as

∂Am

∂z
= − γ

ω0

(
Im +

1
3

In

)
∂Am

∂t
+ jγAm

[(
Im +

2
3

In

)
+

(
j

ω
− TR Am

)(
∂Im

∂t
+

1
3

∂In

∂t

)]
. (28)

First, consider the first part of this equation

∂Am

∂z
= − γ

ω0

(
Im +

1
3

In

)
∂Am

∂t
.

Formally, its solution, by analogy with (11), can be represented as

Am(z + h, t) = Am(z, t) exp
[
−th

1
Am(z, t)

∂Am(z, t)
∂t

]
.

th = h
γ

ω0

[
Im(z, t) +

1
3

In(z, t)
]

. (29)



Fibers 2022, 10, 22 7 of 17

By using the SSFM, we assume the constancy of the intensities within the step along
the length. Within the framework of the assumptions, this equation reduces to the advection
equation, which has a solution [65]:

Am(z + h, t) = Am(z, t− th). (30)

It is correct. According to (30), for calculations, one can use the sorting algorithm to
preserve indices and approximation, for example, by cubic splines. However, it is easier
and faster to find an approximate solution by the finite difference method according to the
inverse difference scheme on a uniform grid:

Ap+1
m,k = Ap

m,k −
h

∆t
γ

ω0

(
3 Ĩp

m,k + Ĩp
n,k/3

)
·∆Ap

m,k. (31)

Here Ĩp
m,k, Ĩp

n,k are calculated according to (25), and the differences ∆Ap
m,k are deter-

mined as
∆Ap

q,k = Ap
q,k − Ap

q,k−1; k = 1, 2 . . . N; p = 1, 2 . . . N; q = m, n. (32)

The second part of Equation (28) can be written as

∂Am

∂z
= jγAm

[(
Im +

2
3

In

)
+

(
j

ω
− TR Am

)(
∂Im

∂t
+

1
3

∂In

∂t

)]
. (33)

Equation (33) includes derivatives ∂Iq/∂t. Let us express them in derivatives ∂Iq/∂z
using the equations for the system’s intensity (21). From (21), we obtain a system of
two equations

∂Im

∂z
+

γm

ω0

[(
3Im +

1
3

In

)
∂Im

∂t
+

2
3

Im
∂In

∂t

]
= 0, (34)

∂In

∂z
+

γn

ω0

[(
3In +

1
3

Im

)
∂In

∂t
+

2
3

In
∂Im

∂t

]
= 0.

Solving this system for the sought derivatives, we obtain a solution in the form:

∂Im

∂t
= Cm,m(Im, In)

∂Im

∂z
+ Cm,n(Im, In)

∂In

∂z
, (35)

∂In

∂t
= Cn,m(Im, In)

∂Im

∂z
+ Cn,n(Im, In)

∂In

∂z
.

Substituting (35) into (28), we obtain

1
Am

∂Am

∂z
= −th

1
Am

∂Am

∂t
+ Nm + bm,m

1
Im

∂Im

∂z
+ bm,n

1
In

∂In

∂z
. (36)

or [66]
∂[ln(Am)]

∂z
− bm,m

∂[ln(Im)]

∂z
+ bm,n

∂[ln(In)]

∂z
= −th

1
Am

∂Am

∂t
+ Nm.

Or
∂{ln[Am/Q]}

∂z
= −th

1
Am

∂Am

∂t
+ Ñm. (37)

Here

Ñm = jγAm

(
Im +

2
3

In

)
, (38)

Qm = Ibm,m
m ·Ibm,n

n , (39)

bm,n = (1 + jTRω0)
Im

(
1
3 Im + 2 7

9 In

)
8 2

3 Im In + I2
m + I2

n
. (40)
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From (36), it follows that

Am(z + h, t)
Qm(z + h, t)

=
Am(z, t)
Qm(z, t)

exp
(

Ñm

)
exp

[
−th

1
Am(z, t)

∂Am(z, t)
∂t

]
. (41)

Let

Ãm(z, t) = Am(z, t) exp
[
−th

1
Am(z, t)

∂Am(z, t)
∂t

]
, (42)

then according to (41), what can write the solution to Equation (27) in the form:

Am(z + h, t) = Ãm(z, t)
Qm(z + h, t)

Qm(z, t)
exp

(
Ñm

)
. (43)

The intensities Im(z + h, t), In(z + h, t) necessary to determine the function Qm(z+ h, t)
by Equation (37) we find by solving the system (33) using the finite differences method. For
this, we use a simple finite-difference scheme of inversely directed differences on a uniform
grid (22). The same scheme, taking into account (30), (32), and (40), we use to calculate
Ãq(z, t).

Thus, we obtain the following algorithm for the execution of the nonlinear operator
in SSFM.

1. According to (27), we calculate the intensities Iq(z, t).
2. Using Equations (38)–(41), we calculate the functions Qq(z, t) and Ñm.
3. Calculate the intensities at the nodes Ĩp

q,k and the difference ∆Ip
q,k∆Ap

q,k, according to
(25) and (32).

4. According to (31) and (32), we compute Ãq(z, t).
5. Using Equation (22), we calculate Iq(z + h, t).
6. Using Equations (39)–(41), we calculate the functions Qq(z + h, t).
7. According to (43), we calculate the complex envelope Aq(z + h, t).
As a result, we implement SSFM as follows. Calculations are performed according to

the well-known symmetric scheme. We execute the linear operator as usual, without any
changes. All changes relate exclusively to the nonlinear operator. We present the algorithm
for executing a nonlinear operator in Figure 1.
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7. Results of Simulation of the Propagation of a High-Power Femtosecond Optical
Pulse in a Single-Mode Polarization-Maintaining Optical Fiber

To test the proposed algorithm for the execution of the nonlinear operator GSSFM,
welet us compare the simulation results obtained, with the results obtained using the
well-known algorithm [55] for executing a nonlinear operator, based on the numerical
solution of the system of Madelung equations directly. We simulated the response at
the polarization-maintaining optical fiber output to the action at the fiber input of an
ultrashort sech2-shaped pulse without a chirp. The peak power of the pulse is 100 kW
and the duration 10 fs. The length of fiber is 2 mm. We assume that the excitation of
polarization modes at the input is uniform. An optical fiber with the following parameters
was considered. Mode attenuation coefficients α1 = α2 = 0.2 dB/km. Dispersion parameters
of modes β11 = 4.890 × 10−9 s/m; β12 = 4.894 × 10−9 s/m; β21 = β22 = 3.616 × 10−26 s2/m;
β31 = β32 = 2.750 × 10−41 s3/m. The differential mode delay is was 4 ps. The nonlinearity
and Raman scattering parameters were assumed to be γ = 2.42 W−1/km and T = 3 fs.

Figure 2a,b presented as an example of simulation results at the time and spectral
regions for an input pulse duration of 10 fs.
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The error of modeling the response according to the proposed algorithm, relative to
modeling the response according to the known algorithm, was estimated as the least square
relative error (LSRE), which was calculated in the range of changes by the formula [58,59]:

LSRE = 100·

√√√√ 1
N

N

∑
i=1

(
ya

i − yd
i

yd
i

)2

, (44)

where yd
i —valid data; ya

i —approximating data; N—number of points.
In this paper, the comparison we carry out in a time domain under condition |A(t)| >

0.1·max[|A(t)|], where A(t)—is a simulated response by a known algorithm. Under calcu-
lation by Equation (44), we consider the simulation results by the known algorithm as valid
data and the results of simulation by the proposed algorithm we use as approximating data.
The simulation and calculation of the error estimations were executed for the responses of
the time domains depending on input pulse duration. Figure 3 shows the LSRE dependence
on input pulse duration.
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With an increase in the duration of the input pulses, the errors first increase and reach
their maximum values at durations of 30–50 fs. Then, with an increase in the duration of
the input pulses, the errors decrease monotonically. As expected, the discrepancy between
the simulation results for the proposed improved algorithm and that presented in [55]
decreases with increasing pulse duration. With an increase in the pulse duration in the
equations of the system, the contribution of the components that take into account Raman
scattering of light decreases. For durations exceeding ten ps, they can be neglected. In this
case, GNLSE boils down to the standard NLSE [13] and both of the above algorithms to
the standard SSFM. With a decrease in the few-cycle pulse duration, the number of cycles
decreases, and, accordingly, the influence of the phase on the evolution of the amplitude of
the complex envelope decreases. The main difference between the considered algorithms
is how they account for the evolution of the complex envelope phase. Consequently, for
few-cycle pulses, with a decrease in the pulse duration, the difference between the results
by using the considered algorithms also decreases. It should be noted here that with a
decrease in the pulse duration as it approaches the period of the carrier oscillation, the
error of theoretical estimates of the model based on the GNLSE increases in particular since
the requirement the SVEA is violated.

As demonstrated by the simulation results, estimates of errors LSRE in the entire range
of input pulse durations do not exceed 1%. At the same time and, under similar conditions,
the computing time, according to the proposed algorithm, is reduced in comparison with
the known one, by more than four times.

8. Compare Simulation Results with Experimental Data

To test the solution under consideration, which describes the propagation of a high-
power ultrashort pulse in polarization-maintaining optical fiber, we performed the sim-
ulation for the experimental conditions described in detail [60–66]. According to the
experiment’s description, a Ti: sapphire femtosecond laser with a mode-locking and a
center wavelength of 798 nm generated pulses with a duration of 12 fs and a peak power of
175 kW. Optical radiation at the laser output is separated using an optical splitter. The one
part of the optical power from the mirror to feed to the spectrometer or the fringe-resolved
autocorrelator. The other part is introduced into an optical fiber using an objective with a
reflector. As noted in [60–66], the use of such lenses excluded additional chromatic disper-
sion. At the output of the optical fiber, optical pulses are output using the same objective.



Fibers 2022, 10, 22 11 of 17

The spectrometer evaluates the optical signal’s spectral characteristic at the input and
output of the optical fiber. The impulse response was measured using the fringe-resolved
autocorrelator. The experimental time and spectral characteristics of optical pulses from
Refs [60–66] are presented below, together with the simulation results.

The experiment used an F-SPV optical fiber manufactured by “Newport,” optimized
for operation at a wavelength of 633 nm. It is a Bow-Tie polarized optical fiber with a
length of 2.5 mm. Table 1 shows this type of optical fiber’s main characteristics according
to the specification [67]. As in [52,53], what calculated the characteristics of the “fast”
mode as for an axisymmetric step-index fiber with a refractive index profile plotted along
the “fast” axis of the optical fiber. The characteristics of the “slow” mode were deter-
mined as follows. The propagation velocity parameter is determined assuming that the
“slow” mode propagates with a certain delay ∆β, determined by the optical fiber’s beat
length. Accordingly, β1,2 = β1,1 − ∆β. Under simulation, we use follows assumptions for
determining parameters of polarization-maintaining optical fibers. We considered the
research data for polarization-maintaining optical fibers of Refs [16,68,69], where, as in
Refs [61–66], used the same optical fiber in the experiment. Here, as in Refs [16,68,69],
assume that the chromatic dispersion parameters and the nonlinearity parameter for the
orthogonally polarized modes are the same. We accept that the Kerr nonlinearity coefficient
n2 = 3.5 × 10−20 [16,70–72]. The Raman scattering parameter is TR = 3 fs [54,55,73]. As a
result of calculations according to [13,74] for a single-mode step-index optical fiber with the
considered parameters, we obtained that β1.1 = 4.294 × 10−9 s/m, β2.1 = 4.290 × 10−9 s/m,
β1.2 = β2.2 = 3.62 × 10−26 s2/m, β1.3 = β2.3 = 2.75 × 10−41 s3/m, and γ = 4.80 W−1/km.
When determining the chromatic dispersion parameters, the refractive index of doped silica
glass is directly proportional to the concentration of the dopant [75]. A relatively large
error characterizes the estimates of the parameters of modes obtained in this way; however,
they fully satisfy the data on the fiber specification [67] and, on the whole, agree with the
parameters for this type of fiber used in the processing of experimental data in [16,60–66].

Table 1. Characteristics of F-SPV optical fiber.

No Parameter Value

1 Index Profile Step

2 Operating Wavelength 633–780 nm

3 Cladding Diameter 125 ± 1 µm

4 Coating Diameter 245 ± 15 µm

5 Numerical Aperture 0.14–0.18

6 Fiber Type Bow-Tie Polarization Maintaining Singlemode

7 Mode Field Diameter, Nominal 2.8–3.7 µm @633 nm

8 Maximum Attenuation ≤15 dB/km

9 Beat length ≤2 mm

10 Cut-off Wavelength 500–600 nm

We simulated the evolution of a high-power femtosecond pulse during propagation
in a polarization-maintaining optical fiber for the above experimental conditions. We
simulated the pulse propagation process by solving the system of Equation (4) according to
the proposed algorithm of SSFM. For example, Figure 4 shows the simulation results for
uniform excitation conditions at the input and the delay between orthogonally polarized
modes equal to 6 ps/m.
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As a result of the simulation, we obtain impulse responses at the optical fiber output.
The beat length of the optical fiber sample used in the experiment and the conditions for
the modes excitation at the input are not uniquely determined. For this reason, we first
calculated impulse responses versus mode delay and input power distribution between
orthogonally polarized modes. Figure 5a shows examples of the pulsed responses obtained
from modeling at the output of the fiber with uniform excitation of modes at the input,
depending on the mode delay. Figure 5b shows examples of the pulsed responses obtained
from modeling at the fiber output with a mode delay of 6 ps/m, depending on the power
distribution at the input between the “fast” and “slow” orthogonally polarized modes. As
follows from the graphs in Figure 5a,b, the impulse response shape significantly depends
on the mode delay and input conditions. It can change significantly when these parameters
are varied in the range of admissible values.

Figure 6a,b show the time-domain impulse response at the output of the optical fiber
and its spectral characteristics obtained from the simulation, respectively. We obtained
these dependencies with a mode delay equal to 6 ps/m and power distribution between
orthogonally polarized modes at the input between ‘fast’ and ‘slow’ modes with ratio
70/30. Furthermore, Figure 6a,b shows the experimental curves from [60–66].

The form of the response time characteristic obtained due to modeling, according
to the proposed algorithm (Figure 6a), is practically identical to that of the experimental
curve. It has the shape of a glove with three distinct peaks. The time delay between the
main peaks of the experimental curve is 33.5 fs (Figure 6a). On the other hand, the time
delay between the main peaks of the theoretical curve is 36.0 fs (Figure 6a). Therefore,
the differences in the estimates of the time intervals between the maximum values of the
glove peaks, determined by the theoretical and experimental characteristics, do not exceed
8%. The spectrum width at the level of 0.5 for the experimental characteristic is 143.8 nm
(Figure 6b). On the other hand, the spectrum width at the level of 0.5 for the theoretical
curve is 159.4 nm (Figure 6b). Thus, the difference in the estimates of the spectral width
obtained experimentally, and modeled using the algorithm proposed in this work, is no
more than 11%.
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We must note that the parameters of the Kerr nonlinearity and Raman scattering of
light significantly affect the action of high-power pulses. However, these parameters are not
presented in the passports of the optical fibers. Therefore, as a rule, some average values
for silica fibers, in general, are taken in the calculations. Also, the dispersion characteristic
parameters of the polarization modes are not measured and indicated in the passports of
polarization-maintaining optical fibers. These values are either calculated from the design
characteristics of the fiber or are taken to be the same as for fibers of a similar type from the
publications. With such an uncertainty in the initial data, the 10–15% difference between
theoretical and experimental data is an excellent result.

The error of the obtained theoretical estimates relative to the experimental ones signifi-
cantly exceeds the difference in the simulation results obtained by solving the GNLSE using
different SSFM algorithms. First, this is due to the approximations of the model described
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by the GNLSE system. In particular, it assumes that the SVEA conditions are satisfied, there
is no wave scattering at large angles, and the divergence of the electric field is small. In
addition, this is undoubtedly due to errors of the method and algorithms used to solve
the GNLSE system. However, in our opinion, the most significant contribution was made
by the uncertainty of the initial data. It should be noted that the parameters of the Kerr
nonlinearity and Raman scattering of light significantly affect the action of high-power
pulses. However, these parameters are not specified in the optical fiber datasheets. There-
fore, as a rule, some average values for silica fibers are taken in the calculations. According
to [76], the nonlinear refraction coefficient of a silica optical fiber, doped by Germanium,
depending on the concentration of the dopant, is n2 = 2.47 × 10−20–3.32 × 10−20 m2/W.
The Raman scattering parameter of silica optical fibers can be taken equal to 3 ± 1 fs [73].
Thus, the spread of possible values of these parameters reaches 30% and more. Further-
more, the dispersion characteristic parameters of the polarization modes are not measured
and indicated in the passports of polarization-maintaining optical fibers. These values are
either calculated from the design characteristics of the fiber or are taken to be the same as
for fibers of a similar type from the publications. With such an uncertainty in the initial
data (up to 30%), the 10–15% difference between theoretical and experimental data is a
good result.

9. Conclusions

The article proposes an SSFM implementation algorithm for solving a coupled GNLSE
system to simulate the evolution of high-power ultrashort pulse propagation in a bire-
fringent optical fiber. The algorithm is based on a well-known solution based on the
application of the Madelung transform for nonlinear operator execution. In the presented
work, from the equations of the Madelung system concerning intensities, the derivatives
of intensities to time were expressed in terms of derivatives to distance. This made it
possible to obtain a system of equations that eliminates the need for the numerical solution
of differential equations, concerning the phases of complex envelopes when performing a
nonlinear operator. As a result, as shown by the simulation results, the proposed algorithm
reduces the computation time during simulation compared to the known one, based on the
numerical solution of Madelung’s equations when the nonlinear operator is executed, by
more than four times. Comparison of the simulation results obtained using the proposed
and well-known algorithms showed that estimates of errors LSRE in the considered range
of input pulse durations do not exceed 1%. At the same time and, under similar conditions,
the computing time, according to the proposed algorithm, is reduced in comparison with
the known one, by more than four times. All of the above allows us to conclude that the de-
veloped SSFM implementation algorithm can be used to solve the coupled GNLSE system
to simulate the evolution of a high-power ultrashort pulse propagating in a birefringent
optical fiber.
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