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Abstract: With a steadily increasing number of machines and devices producing electromagnetic ra-
diation, especially, sensitive instruments as well as humans need to be shielded from electromagnetic
interference (EMI). Since ideal shielding materials should be lightweight, flexible, drapable, thin and
inexpensive, textile fabrics belong to the often-investigated candidates to meet these expectations.
Especially, electrospun nanofiber mats are of significant interest since they can not only be produced
relatively easily and cost efficiently, but they also enable the embedding of functional nanoparticles
in addition to thermal or chemical post-treatments to reach the desired physical properties. This
paper gives an overview of recent advances in nanofiber mats for EMI shielding, discussing their
production, physical properties and typical characterization techniques.

Keywords: shielding effectiveness; near-field antenna; vector network analyzer; carbonization;
dielectric properties; conductive properties; magnetic properties; porosity

1. Introduction

Reducing the electromagnetic radiation in a given area, e.g., to protect sensitive instru-
ments and other electronics or also humans from radiation, is performed by electromagnetic
interference (EMI) shielding materials. Such materials work by reflection as well as by
absorption. Especially shielding of radio frequency radiation is often necessary due to the
increasing number of sources emitting in the range of ~104–1012 Hz, such as computers,
electric motors, power lines, etc. [1–3]. Below this frequency range, low-frequency (typ-
ically up to some kilohertz) or quasi-static (typically up to some hertz) as well as static
electric and magnetic fields are sometimes also shielded, e.g., in earthbound experiments
simulating space missions, where the Earth’s magnetic field is undesired, or in magnetic
resonance tomography (MRT) where health personnel should not be exposed to large
magnetic fields [4–6].

Generally, high-frequency electromagnetic fields are shielded by conductive materials,
while low-frequency magnetic fields are shielded by magnetic materials with high perme-
ability (µ > 104), and electrostatic fields are shielded by grounded-conductive shells [7,8].

Shielding effectiveness describes a reduction in the transmission of electromagnetic
waves by the shielding material. The transmission coefficient T is defined as

T =
Et

E0
=

Ht

H0
, (1)
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with the electric (magnetic) field intensity without shielding E0 (H0) and with shielding Et
(Ht), respectively [9]. The shielding effectiveness SE is defined as

SE = 20 log
1
T

= 20 log
E0

Et
= 20 log

H0

Ht
= 10 log

P0

Pt
(2)

with the power P0 (Pt) for the measurement without (with) shielding [9]. The SE is com-
posed of shielding due to reflection (R), absorption (A), and multiple reflections (M) [10]:

SE = SER + SEA + SEM (3)

This formula indicates which materials may be suitable for electromagnetic shielding.
Reflection losses SER will occur for electrically/magnetically conducting materials and be
greater for higher conductivity and lower permeability; absorption losses SEA occur upon
interaction between electric or magnetic dipoles in the material with the electromagnetic
field and are larger for high conductivity and high magnetic permeability; while multiple
reflection losses SEM are usually small and often neglected if the distances between reflect-
ing surfaces or interfaces are much larger than the skin depth [11]. It must be mentioned
that mobile charge carriers, i.e., electrons or holes, can result in reflection losses even if no
percolation/conduction paths are formed, so that even materials that are not conductive on
a macroscopic scale can cause reflection losses for electromagnetic waves [11]. This is espe-
cially important in case of integrating conductive nanoparticles in coatings or nanofibers
where the filling may be insufficient to form percolation paths, or where the nanoparticles
may be coated with an isolating shell to prevent them from oxidation.

Sometimes, a deeper view into the shielding mechanisms is possible, especially in
correlation with simulations. Wang et al., e.g., subdivided the polarization properties of
graphene-based hetero-structures into defects (vacancy, point defect and large-scale defect),
polar groups and interfaces and underlined their importance for the EM properties of a
dielectric material, in addition to the conductive properties of the material [12,13]. These
results were gained by measurements of the real and imaginary part of the complex dielectric
permittivity at different temperature and frequencies as well as by first-principle calculations.

Another important point is the skin effect, meaning that high-frequency electromag-
netic fields can only penetrate into the surface region of a material, not into the bulk, where
these skin depths decrease with increasing frequency, conductivity and permeability [11].
For metals such as copper or nickel, electromagnetic fields of 1 GHz frequency are reduced
to 1/e at penetration depths around 0.5–2 µm, showing that electromagnetic shielding
can normally be performed by relatively thin shields. This is why many authors describe
electromagnetic shields by textile fabrics, either woven, knitted or other macroscopic
fabrics [14–18] or even nanofiber mats, as will be presented in this paper.

This review is organized as follows: In the next sections, different measurement
methods are presented, followed by a short description of the electrospinning technique
and the different fibers and mats that can be produced in this way. Different physical
properties of nanofibers, such as conductive or magnetic properties, can be intrinsic to the
nanofibers or added by a post-treatment, which will be described subsequently, followed
by other factors influencing the shielding properties of a nanofiber mat, such as thickness
or porosity.

2. Measuring Electromagnetic Shielding and Related Parameters

Electromagnetic shielding is mostly measured according to the ASTM D4935-18 stan-
dard [19]. It is based on using a vector network analyzer combined with a test fixture in
which, alternatingly, reference and test specimens are embedded, as shown in Figure 1 [20].



Fibers 2022, 10, 47 3 of 16

Fibers 2022, 10, x FOR PEER REVIEW 3 of 16 
 

in which, alternatingly, reference and test specimens are embedded, as shown in Figure 1 
[20]. 

 
Figure 1. (a) Reference and (b) load specimens used for EMI-shielding measurements, with 
dimensions given in millimetres. Reprinted from [20], copyright (2021), with permission from 
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men holder unit, as defined in the standard, and investigated by a setup as depicted in 
Figure 2 [21]. Here, a network analyzer is coupled with the specimen holder where the 
outer conductor of the coaxial transmission line is extended throughout the whole holder 
unit (green parts), while the fabrics placed at the position of the sample cross section can 
shield the signal between the conductive parts. Measurements with the reference speci-
men are used to define the reference level with the space between the conductors being 
empty. This setup allows the reflected and the transmitted power, i.e., distinguishing 
between reflection and absorption losses [21]. Test frequencies are typically in the range 
of 30 MHz to 1.5 GHz [15,20–22], but can also be extended to higher frequencies using 
appropriate waveguides [23]. Higher frequencies of around 3–30 GHz are typically used 
in digital telecommunication, satellite communication and waveguide communication, 
so that especially testing these frequencies is highly in-demand. 

 
Figure 2. Schematic of the measurement setup for electromagnetic shielding according to ASTM 
D4935-18. Reprinted from [21], copyright (2019), with permission from Elsevier. 

Other existing standards are, e.g., related to durable relocatable shielded enclosures 
(ASTM E1851-15) [24], (IEEE 299-2006) enclosures and boxes [25], or EN 61000-4-21 
(identical to IEC 61000-4-21) [26] which necessitates a special chamber, so that textile 
shielding fabrics are often investigated by the aforementioned ASTM D4935-18. Never-
theless, this standard is not unproblematic, due to the edge-contact requirements which 

Figure 1. (a) Reference and (b) load specimens used for EMI-shielding measurements, with dimen-
sions given in millimetres. Reprinted from [20], copyright (2021), with permission from Elsevier.

In this so-called waveguide method, these specimens are placed in a coaxial speci-
men holder unit, as defined in the standard, and investigated by a setup as depicted in
Figure 2 [21]. Here, a network analyzer is coupled with the specimen holder where the
outer conductor of the coaxial transmission line is extended throughout the whole holder
unit (green parts), while the fabrics placed at the position of the sample cross section
can shield the signal between the conductive parts. Measurements with the reference
specimen are used to define the reference level with the space between the conductors
being empty. This setup allows the reflected and the transmitted power, i.e., distinguishing
between reflection and absorption losses [21]. Test frequencies are typically in the range
of 30 MHz to 1.5 GHz [15,20–22], but can also be extended to higher frequencies using
appropriate waveguides [23]. Higher frequencies of around 3–30 GHz are typically used
in digital telecommunication, satellite communication and waveguide communication, so
that especially testing these frequencies is highly in-demand.
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Figure 2. Schematic of the measurement setup for electromagnetic shielding according to ASTM
D4935-18. Reprinted from [21], copyright (2019), with permission from Elsevier.

Other existing standards are, e.g., related to durable relocatable shielded enclosures
(ASTM E1851-15) [24], (IEEE 299-2006) enclosures and boxes [25], or EN 61000-4-21 (identi-
cal to IEC 61000-4-21) [26] which necessitates a special chamber, so that textile shielding
fabrics are often investigated by the aforementioned ASTM D4935-18. Nevertheless, this
standard is not unproblematic, due to the edge-contact requirements which may cause
large measurement errors [27]. Marvin et al. thus suggested using a simple system in
which the sample is placed between source antenna and receiving antenna, the latter of
which is fully embedded in an absorber material to avoid diffracted waves reaching the
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receiving antenna [27]. They showed that a shielding effectiveness of up to 100 dB could be
measured in a broad frequency range between 1 GHz and 8.5 GHz.

Besides these potential edge contact problems, Vasquez et al. mentioned the not fully
defined specifications of the tester, such as unclear surface finish and end dimensions, while
the ends, in addition, do not fit properly to standard connectors, in addition to the large
mass of the tester around 18 kg [28]. They suggested a simplified design which could be
attached to N-type standard connectors at the ends to the usual 50 Ω/10 dB attenuators (cf.
Figure 2), with significantly smaller samples of diameters 30.48 mm to also enable testing
materials that are difficult to produce in larger quantities. For their tester, they calculated a
theoretical cutoff frequency of 18.2 GHz and tested it up to 13.5 GHz and found satisfactory
results for various materials.

Valente et al. used mathematical characterizations of SE testers similar to the standard
one by investigating impedance mismatch and lossless network conditions [29]. They
suggested a larger cross-section to avoid strong discontinuities in smaller testers due to
the sample thickness and underlined the importance of high dimensional accuracy and
improved surface finishing to avoid impedance mismatches.

In contrast to these methods, Perumalraj et al. used an open-space method to investi-
gate the electromagnetic shielding of conductive textile materials [30]. A general overview
of possible measurement setups was given by Geetha et al., who differentiate them into
open-field (free-space) methods, shielded-box methods, shielded-room methods and the
coaxial transmission-line methods, to which the ASTM D4935-18 belongs [31]. Their evalu-
ation of the different methods is given here in brief, showing that different methods may
have their advantages and disadvantages for different samples and frequency ranges under
investigation:

- Open-field (free-space) method—distance of 30 m between device and receiving
antenna; wide variations due to differences in product assembly.

- Shielded-box method—metal box with sample port in one wall, receiving antenna
inside, transmitting antenna outside; difficult electrical contact between test specimens
and shielded box, limitation of the frequency range to about 500 MHz, poor correlation
between tests in different laboratories.

- Coaxial transmission line—e.g., ASTM D4935; standard method for planar speci-
mens, time consuming (several minutes to hours per spectrum, depending on the
measurement method), typically in the range from 10 kHz to 1 GHz.

- Shielded-room method—similar to shielded box method, anechoic chamber of typical
ground area 2.5 m2, large test specimens needed between transmitting and receiving
antenna [31].

As mentioned before, the conductive and magnetic properties of the samples play
an important role for the shielding effectiveness of a material, although even insulating
materials with embedded conductive particles will have a certain shielding effect. While
the conductivity of a rigid material can unambiguously be measured, this is much more
complicated for textile materials. For low conductivities, a teraohm-meter can be used, as
described in DIN 54345-1, working with circular electrodes and exerting a defined pressure
on the fabric with defined electrode distances. For higher conductive fabrics, different
suggestions can be found in the literature. Knittel and Schollmeyer used contacting bars
at a defined distance upon which they exerted a defined load to measure the in-plane
resistance of a woven fabric [32]. In addition, solder lines were applied on the textile fabric
along the positions of the contact bars to further increase the contact between measurement
instrument and conductive coating on the fabric. The problem of high contact resistances
was also mentioned by Kacprzyk, who found that, even in circular electrode systems such
as a teraohm-meter, and in three-electrode systems used for volume or surface resistance
measurements, high contact resistances can significantly influence the measured surface or
volume resistance [33]. Even in four-probe measurements, normally used for measurements
of small resistances or, more generally, resistances that are small in comparison to the contact
resistance between sample and measurement, deviations from the real value occur if the
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contact resistance is too high, causing problems during bioimpedance measurements with
textile electrodes and similar dry electrodes contacting the skin [34].

This is even more problematic regarding conductivity measurements on nanofiber
mats on which no large pressure can be exerted without the danger of damage. While
several papers reporting on the electric conductivity of electrospun nanofiber mats mention
the four-probe method [35–37], only few of them explain the contacting process. Some
papers describe measurements based on commercial four-point probes, e.g., the Jandel
RM3 Test unit [38,39], which try to exert a standardized pressure onto textile and similarly
soft samples. Some authors mention the use of a conductive silver paste to create a reliable
contact [40–42], which is in our experience quite often carried out, but unfortunately not
always mentioned in the resulting papers, although it is a good method to enlarge the
contact area without squeezing the fibers.

Magnetic properties are usually measured contact free and nondestructively, so that
the aforementioned contact problems do not occur here. Optical methods, such as mea-
surements of the magneto-optic Kerr effect (MOKE), are generally highly complicated on
rough surfaces [43] and thus usually not taken into account. Instead, instruments such as
an alternating gradient magnetometer (AGM), vibrating sample magnetometer (VSM), or
superconducting quantum interference device (SQUID) are used, which enable measuring
even very small magnetic moments [44–47].

3. Electrospinning Techniques

Electrospinning is described in detail in many review papers and books, including
the most recent developments [48–50]; thus, here, only a short overview of the principle is
given and of different fiber and nonwoven structures that can be gained by it.

Generally, electrospinning works by introducing polymer droplets into a strong electric
field, mostly by a syringe (needle-based electrospinning, Figure 3a [51]) or by constantly
coating a wire with the solution (wire-based electrospinning, Figure 3b [52]). Many other
possibilities exist to introduce the polymer solution or melt into the electric field, e.g., by
rotating spinnerets, often aiming at an improved spinning efficiency [53]. A special form of
needle-based electrospinning is coaxial electrospinning, applying a needle with an inner
and an outer nozzle through which two different polymer solutions or other fluids can be
pressed to create, e.g., core-shell fibers [54–56].
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Inside the electric field, Taylor cones (Figure 3a) are formed at the tip of the needle,
along the wire or at any other kind of spinneret, from which a jet of the polymer solution
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spirals towards the counter electrode, while the solvent evaporates until nanofibers are
placed on the collector. The collector especially defines the orientation of the nanofibers
to each other—while homogenous, static collectors (Figure 3b) create arbitrarily oriented
nanofibers, rotating collectors (Figure 3a) and partly conductive or otherwise-modified
substrates can be used to reach a certain alignment of the fibers [57].

4. Functionalization of Electrospun Nanofiber Mats for Electromagnetic Shielding

As mentioned before, the conductive, magnetic and also dielectric properties of
nanofiber mats will influence the shielding effectiveness. Improving these properties is
possible by adding corresponding blend materials or nanoparticles directly to the spinning
solution, in this way creating intrinsic properties of the nanofibers, or by a post-treatment,
e.g., by dip-coating, carbonization, etc. This section describes some exemplary possibilities
of functionalization. Other factors are the thickness of the nanofiber mat, the fiber diameters
and the porosity as well as the fiber orientation, which will also be discussed here in brief.

4.1. Conductive Nanofiber Mats

Conductive nanofiber mats can be prepared by electrospinning from conductive
solutions or melts, by carbonization after electrospinning, or by applying a conductive
coating [58]. Lee et al. prepared core-shell nanofiber mats with polyvinylidene fluoride
(PVDF) as the core and poly (3,4-ethylenedioxythiophene) (PEDOT) as the shell, without
additional conductive fillers, and found an increased absorption of electromagnetic waves
and multi-reflections due to the porous nanostructure [59]. They reported an SE of approx.
40 dB in the X-band, i.e., in the range of 8–12 GHz.

Combining a conductive precursor and carbonization, Guo et al. used a PAN/TaCl5
solution for electrospinning [60]. After thermal stabilization and carbonization at 1200 ◦C,
they received TaC/C composite nanofiber mats with conductivities around 5–10 × 102 S/m
and a shielding effectiveness of 24–38 dB, depending on the nanofiber mat thickness and
the production parameters.

A more complicated process of gaining conductive nanofibers was described by Zhang
et al., who started with an electrospun poly(acrylonitrile) (PAN) nanofiber mat, which
was treated with NaOH and dispersed [61]. This dispersion was mixed with graphene
oxide (GO), resulting in a GO-PAN film by filtration, which was afterwards thermally
stabilized and carbonized at 2000 ◦C to create a graphene/carbon fiber film. They found
conductivities around 6 × 104 S/m–1.7 × 105 S/m and a shielding effectiveness around
48–56 dB in the X-band for samples prepared with varying production parameters.

Ji et al. also started with a PAN nanofiber mat which was aminated and immersed
in a silver–ammonia solution to obtain Ag seeds, before Ag, Cu or Ni coatings were
added by electroless deposition of the respective metallic nanoparticles [62]. They found
conductivities in the range of 1.3–57 × 105 S/m, depending on the coating material, and
a shielding effectiveness of around 50–60 dB for Co and Ni, as well as around 75–90 dB
for Ag coating in the range of 8–26 GHz (X-band, Ku-band and K-band), which they also
attributed to the high absorption upon multi-reflection, as depicted in Figure 4 [62].

In a similar approach, Kim et al. used electron beam evaporation to coat electrospun
nylon (PA66) nanofiber mats with 50 nm of silver [63]. These metallized nanofiber mats,
containing oriented nanofibers, were stacked with varying nanofiber orientations and
hot-pressed to prepare composites. Conductivities of 2 × 106 S/m and 6 × 106 S/m were
reached perpendicular and parallel to the nanofiber orientation, respectively, resulting in a
shielding effectiveness of up to 60 dB in the range of 8.2–18 GHz.

A dip-coating method was applied by Lai et al. to prepare a conductive nanofiber
network [64]. Starting from glycerol-grafted PAN nanofiber mats, these membranes were
immersed into PEDOT:PSS and dried in the air in a stretched state. The authors described
that, in this way, the capillary effect during the evaporation of water upon drying re-
sulted in collapsing of the larger pores and thus increased connections between adjacent
nanofibers, in this way, increasing the conductivity. They reported conductivities around



Fibers 2022, 10, 47 7 of 16

102–103 S/m, depending on the preparation parameters, which were fully maintained dur-
ing 1000 bending cycles. The shielding effectiveness in the range of 8–12.5 GHz was around
22–55 dB, again explained by multi-reflection inside the nanofiber mat.
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As these few examples show, there are various possibilities to make nanofiber mats
conductive. In addition, the shielding effectiveness can often be further enhanced by
adding dielectric fillers, such as ZnO [65]. Similarly, many ways exist to create magnetic
nanofiber mats [66].

4.2. Magnetic Nanofiber Mats

In many cases, magnetic nanoparticles are embedded in the spinning solution to
prepare magnetic nanofiber mats. Darwish et al. prepared core/shell nanofibers from PA6
and Fe3O4 (magnetite) and found good electromagnetic shielding even for a low magnetite
loading of only 1.7 wt% [67]. Im and Park used a higher magnetite content of 11 wt% in
PVDF nanofibers and reported that more than 17 wt% magnetite resulted in aggregation
of the nanoparticles on the nanofiber surfaces [68]. PAN nanofiber mats with even higher
magnetite contents were produced by Mamun et al., e.g., 72 wt% magnetite in the final
nanofiber mat with strong agglomerations [69], while smaller amounts or the limitation of
the magnetite nanoparticles to the shell of coaxially electrospun nanofibers resulted in even
nanofibers without many agglomerations [69–71].

Besides magnetite, many other magnetic nanoparticles have been embedded in
polymeric nanofibers. Mohammadkhani et al. report on Ni nanoparticles in recycled
poly(ethylene terephthalate) (PET) nanofiber mats for EMI shielding [72]. Guo et al. pre-
pared TaC/Fe3C/C electrospun nanofiber mats by pyrolysis and found a high conductivity
of approx. 1.5 kS/m, high magnetization at saturation of 13.3 emu/g and a shielding of
up to 46 dB in the range of 8.2–12.4 GHz [73]. NiZn ferrite (Ni0.5Zn0.5Fe2O4) nanofibers
were prepared by Na et al., resulting in a large magnetization of up to ~60 emu/g [74],
while Fokin et al. discussed the influence of thermal stabilization and carbonization on
the magnetic properties of magnetite- and nickel-ferrite (Fe2O3/NiO)-containing PAN
nanofiber mats [75].

Magnetic coatings are another way to make a nanofiber mat magnetic. Huo et al. used
magnetron sputtering with Ni on SiC/C nanofiber mats and found strongly frequency-
dependent reflection losses with peaks at 7 GHz, 11.8 GHz and 14.5 GHz which they
attributed to interface polarization, as depicted in Figure 5 [76]. They explained the impor-
tance of the conductive path in the network to allow transporting excited hopping electrons,
in addition to the microwave dissipation due to the magnetic loss of the Ni particles. In
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addition, multiple interfaces between Ni, SiC and carbon were found to cause dielectric
dipole interactions and related relaxations, so that more microwaves were attenuated.
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Huang et al. also applied magnetron sputtering of FeCo coatings on carbon nanofibers
to reach a magnetization at saturation of ~3 emu/g and a reflection loss of 17–24 dB at
5–15 GHz [77].

Zhang et al. used electroless plating of Ni-Co instead to prepare magnetically coated
PAN-poly(urethane) (PU) nanofiber mats [78]. They found a magnetization at saturation
of approx. 50 emu/g and an electric conductivity of 7 × 103–11 × 105 S/m, resulting in a
shielding effectiveness of ~30–90 dB for samples with different coatings and nanofiber-mat
thicknesses in the frequency range of 8–26 GHz (X-band, Ku-band and K-band).

A simple dip-coating procedure was used by Miao et al. to receive magnetic nanofiber
mats [79]. Starting with an electrospun thermoplastic polyurethane (TPU)/PAN/magnetite
nanofiber mat, MXene was subsequently added by dip-coating, resulting in a strong
adhesion of the MXene nano-sheets to PAN and magnetite. In this way, a magnetization
at saturation around 20 emu/g was reached, combined with a conductivity of 6–20 S/m,
resulting in a shielding effectiveness of 10–25 dB in the range of 8–12 GHz.

Finally, it must be mentioned that even pure metallic nanofibers can be produced by
electrospinning, followed by calcination of the polymer that is necessary as a spinning
agent. Yang et al. described electrospinning PAN with Ni(CH3COO)2·4H2O from an N,N-
dimethylformamide (DMF) solution, followed by calcination at 550 ◦C in air and finally
reduction under H2 flow at 400 ◦C to prepare porous Ni nanofibers [80]. They found high
magnetization at saturation of 50–55 emu/g, depending on the porosity, and reflection
losses of around 40 dB at 10 GHz.

Similarly, Na et al. prepared Ni0.5Zn0.5Fe2O4 nanofibers by electrospinning polyvinyl
pyrrolidone (PVP) with Fe(NO3)2·9H2O from DMF, followed by calcination at 650 ◦C [81].
Depending on the frequency between 0 and 18 GHz, they found maximum losses of
42–60 dB for different absorber thicknesses.

4.3. Morphology of Nanofiber Mats

Besides the conductive and magnetic properties of electrospun nanofiber mats, their
morphology also plays an important role for the shielding effectiveness, especially due to
the multi-reflection inside the nanofibrous membranes (cf. Figure 4). Nevertheless, these
properties are in most studies not varied, so that only few literature reports can be found
quantifying these effects.

Yuan et al., reported on designing the morphology of electrospun MnO-nanograin-
decorated vanadium nitride/carbon nanofibers, in which the nitriding time could be used
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to tailor the MnO nanograin shape covering the VN/C nanofibers [82]. They found a
high reflection loss of 63 dB at 8.8 GHz and showed that, by adjusting the thickness, the
nanofiber mats showed high absorption in the whole X-band and Ku-band.

Li et al., investigated graphene-filled PVA nanofiber mats and found a variation in the
nanofiber diameter distribution with the graphene content [83]. However, the graphene
content also significantly influenced the surface resistivity, so that a certain variation
in the shielding effectiveness with graphene content can not only be attributed to the
nanofiber diameter.

Ramlow et al., compared SiCN and SiCN/PAN nanofibers, having average diameters
of approx. 1790 and 570 nm, respectively; only the latter showed sufficient return loss due to
large-enough open pores between the nanofibers where multi-reflections were possible [84].
They underlined this idea by a comparison with the literature regarding electrospun
ceramic nanofibers from Si-based precursors, as depicted in Figure 6, which indicates a
relation between small fiber diameters and large return losses [84]. This correlation between
morphology and EMI-shielding effectiveness could be expected based on the previously
discussed shielding effect of increased multi-reflections inside a nanofiber mat.
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After discussion of the different factors influencing the electromagnetic shielding
effectiveness, the next sections will give an overview of the most recent research results in
this area.

5. Electromagnetic Shielding by Nanofiber Mats in the X-Band and Ku-Band

As could already be expected from the previous sections, most studies working on
electromagnetic shielding concentrate on the X-band. Here, some papers from the last years
are discussed.

A special composite, suggested by Hou et al., is ZrC/SiC which was prepared by
electrospinning a polycarbosilane (PCS) solution with zirconium acetylacetone (Zr(acac)3),
followed by pyrolysis of the corresponding nanofiber mat [85]. In this way, the average
nanofiber diameter was significantly reduced from 2.6 µm of SiC nanofibers to 330 nm,
and the conductivity was increased by five orders of magnitude to 13 S/m, resulting in a
shielding effectiveness of 19 dB in the X-band. Interestingly, in high-temperature measure-
ments up to 600 ◦C, this value was even slightly increased to 20 dB, making this material
suitable for high-temperature shielding applications. The shielding process is attributed to
a combination of high incidence surface area, highly conductive ZrC nanoparticles resulting
in micro-currents on the nanofiber network which lead to conductivity loss, and, finally,
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grain boundaries and material interfaces between ZrC and SiC which lead to interface
polarization and dielectric loss (Figure 7) [85].
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Combining conductive and magnetic properties, Nasouri and Shoushtari prepared
PVP nanofiber mats with different numbers of embedded magnetite nanoparticles up
to 5 wt%, with the last value resulting in undesired agglomerations [86]. They found
an increase in the average nanofiber diameter with increasing numbers of nanoparticles
and magnetizations at saturation of 4–10 emu/g, in comparison with the value for pure
magnetite nanoparticles of approx. 70 emu/g. In addition, the electric conductivity was
decreased by four orders of magnitude from the pure PVP go PVP with 4 wt% magnetite.
Correspondingly, the shielding effectiveness in the X-band increased from approx. 5 dB of
the pure PVP nanofiber mat to 20–24 dB of PVP with 4 wt% magnetite.

A shielding effectiveness between 30 dB and nearly 100 dB was reached by electrospun
carbon nanofiber films, combined with silicone in alternating layers of a hot-pressed
multilayer stack [87]. Li et al. tested different numbers of layers and showed that this
alternating structure was superior to pure carbon nanofiber films, although a pure silicone
film did not show any shielding effect.

With a composite of PAN/SiO2 nanofiber mats, coated by Ag nanoparticles in different
amounts and dip-coated by 1H,1H,2H,2H-perfluorodecanethiol (PFDT), Li et al. reached
conductivities around 2–18 kS/m and a shielding effectiveness of up to 80 dB, depending
on AG and PFDT content [88]. Most of the shielding effectiveness was based on absorption,
with only a small addition due to reflection.

Many other groups reported new approaches to reaching high electromagnetic-shie
lding effectiveness by nanofiber mats, e.g., by adding silver nanowires [89], using con-
ductive polymers such as poly(aniline) (PAni) as a coating for cellulose nanofibers [90],
coating poly(lactic acid) (PLA) nanofiber mats with MXene [91], multilayer structures with
magnetic and conductive properties [92], or combining PVP with Ag nanoparticles to reach
a shielding effectiveness of nearly 100 dB [93]. Too many papers are published per year,
dealing with electromagnetic shielding in the X-band, to mention more than a small excerpt
of them. This is, however, different for other frequency ranges; they will be discussed in
the next sections.

Electromagnetic shielding in the Ku band, i.e., in the frequency range of 12–18 GHz,
is usually performed together with the X-band, sometimes also combined with the K-
band (18–27 GHz) [62]. Yang et al., e.g., prepared a superhydrophobic EMI-shielding
material by chemical deposition of silver nanoclusters on an electrospun polymer nanofiber
mat and modified it by stearic acid to reach the superhydrophobic effect, enabling using
it outdoors [94]. They found a very high shielding effectiveness of 90 dB which they
attributed to the high electrical conductivity of 5.7 × 106 S/m, the porous structure and
interfacial polarization.

Aiming at shielding in the X-band and the Ku-band, Kim et al. prepared a composite
from electrospun PAN and a multiwall carbon nanotube buckypaper by electrospinning



Fibers 2022, 10, 47 11 of 16

and roller coating [95]. They found a shielding effectiveness of approximately 9–23 dB for a
very thin system of 0.1 mm thickness.

For the same frequency range, Huang et al. prepared membranes of core-shell
nanofibers with Co@C nanoparticles in the shell and graphitic N-doped carbon nanofibers,
derived from PAN/PVP electrospun nanofibers, in the core [96]. They reached a high
shielding effectiveness of 56 dB and high values along the whole X- and Ku-bands for
sample thickness of 4.0 mm and 3.0 mm which they attributed to a superposition of dipolar
polarization, interfacial polarization, magnetic coupling and multiple reflections inside the
nanofiber mats.

Concentrating on the Ku-band, Xia et al. developed buckypaper/PAN nanofiber
composite films by electrospinning PAN, preparing single-walled CNTs which were self-
assembled to a buckypaper by infiltration through a nylon filter membrane on a Büchner
funnel, and finally forming the composite films by infiltrating the single-walled CNTs into
the PAN nanofiber mat [97]. They found conductivities in the range of 9–53 kS/m for
the composites, as compared to the pure buckypaper with 57 kS/m, and a total shielding
effectiveness of max. 65 dB, which was significantly larger than that of the pure buckypaper
due to interfacial polarization along the CNTs and multi-reflections.

As visible from these few examples, quite similar approaches are followed for EMI
shielding in the Ku-band, as compared to the X-band.

6. Electromagnetic Shielding by Nanofiber Mats in Other Frequency Bands

Most of the investigations of EMI shielding in the K-band were combined with mea-
surements in the Ku- and often also the X-band [62,78,91,94,98,99], while only few studies
can be found concentrating on the K-band only [100–102]. Thus, no new approaches can be
found in the literature which have not yet been reported for X- and Ku-band.

Few studies were published regarding EMI shielding by electrospun nanofiber mats
in the Ka-band (27–40 GHz) [103] and in the C-band (4–8 GHz), typically applying car-
bon/metal nanofibers [104,105]. Generally, it is necessary to reach a good impedance
matching in the desired frequency range to avoid direct reflection of the incident EM waves
causing secondary pollution, which can often be tailored by modifying the conductivity
and also the thickness of a composite [106].

The pore sizes of electrospun nanofiber mats, however, can only be tailored to a certain
extent, in this way limiting the wavelengths of the electromagnetic radiation that can
undergo multiple reflections inside the nanofiber mats. This is why lower frequencies,
i.e., higher wavelengths, are less often shielded with electrospun nanofiber mats and then
typically due to reflection losses [107–109]. In addition, lower frequencies are of less techno-
logical interest since the microwave range is largely used in communication technologies,
with 5G mobile networks extending the earlier mobile communication bands to higher
frequencies above 6 GHz for high-speed data transfer, and lower frequencies corresponding
to lower energies resulting in reduced danger of health effects on humans [110].

7. Conclusions and Outlook

With increasing use of electromagnetic radiation for mobile communication, extensive
research is being performed on EMI shielding. Electrospun nanofiber mats with conductive
and/or magnetic properties were shown to be often suitable especially for shielding of
radiation in the X-band, partly also in the Ku-band and other bands. A broad range of
approaches exists to tailor the shielding effectiveness of nanofiber mats, such as embedding
conductive and/or magnetic nanoparticles, carbonization, coating with different methods
and materials, or preparing composites with other materials.

This review gives a brief overview of these possibilities, highlighting some of the
most recent approaches, to stimulate further research combining and extending the most
promising ideas of the state of research and technology.

The increasing number of devices producing electromagnetic radiation especially in
increasing frequency ranges, mostly related to communication, will make this research more
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and more important to protect humans and equipment from unnecessary electromagnetic
irradiation, while at the same time not disturbing mobile phones or other communication
devices. It can be assumed that textile shielding materials, based on absorption instead of
reflection, will become more and more important due to their flexibility and drapability.
Especially for these fabrics, it is necessary to develop reliable alternatives to the recently
most often used ASTM D4935 to enable the faster screening of soft, flexible, potentially
even elastic materials in order to accelerate EMI shielding tests.
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