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Abstract: Over the years, scientists have been continually striving to develop innovative solutions to
design and fabricate medicines with improved therapeutic potential. Conventional dosage forms,
such as tablets, capsules, and injections, are limited when exploited for advanced therapeutics, such
as drug targeting. To cater to these limitations, nanofibres have emerged as novel nanomaterials to
provide enhanced bioavailability, targeted drug release, extended drug release profile, minimum
toxicity, and reduced dosage frequency, which has indisputably improved patient adherence and
compliance. This review will concern understanding the potential of drug-loaded nanofibres in drug
delivery while comprehending a detailed description of their different production methods. The
literature has been thoroughly reviewed to appreciate their potential in developing nanofibrous-
based pharmaceutical formulations. Overall, this review has highlighted the importance, versatility,
and adaptability of nanofibres in developing medicines with varied drug release kinetics. Several
problems must be resolved for their full commercial realisation, such as the drug loading, the initial
burst effect, the residual organic solvent, the stability of active agents, and the combined usage of
new or existing biocompatible polymers.
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1. Introduction

In recent years, nanotechnology research has grown massively, earning the epithet
‘tiny science’ [1,2]. The area of nanotechnology concerns the investigation, manipulation,
and understanding of the properties of materials at the nanoscale [3]. Over the years,
nanomaterials have been considered the centre of technological advancements for phar-
maceutical, biomedical, and energy applications [4–6]. The production of structures in
the nanometric range has provided groundbreaking developments in the healthcare sec-
tor [7]. Among various types of nanostructures that have been produced for practical
applications, nanofibres are considered useful owing to their high surface area, porosity,
ease of fabrication and excellent mechanical performance [8–10]. Currently, polymeric
nanofibres are holding the inimitable limelight [11] due to their potential to address some
of the limitations of conventional pharmaceutical formulations [12], which lack exactitude
in advanced therapeutics [13]. In addition, they offer a promising solution for designing
a drug delivery system in which the location, rate, and timing of drug release need to
be controlled to achieve the desired therapeutic effect. Generally, these are solid fibres
with a diameter of less than 1 µm (1000 nm) [14], having intrinsic nanoscale properties
along with unique functionality (high surface area, high surface area–to–volume ratio, high
mass transport, and interconnected nanoporosity) [15–18]. For these special characteris-
tics, nanofibres are considered promising and universal drug delivery systems and can
be fabricated using established technologies to attain wide-ranging drug-release kinetics
(Figure 1). Nanofibres can also potentially protect the drug from decomposition within the
body before reaching the target site. These have been exploited to develop formulations
for oral, ocular, topical, transmucosal, and transdermal routes. This review is focused on
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appraising and compiling the literature to understand the potential of nanofibres in drug
delivery while understanding the various manufacturing techniques [19].
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2. Electrospinning

Electrospinning (ES) is a versatile and robust technique that produces fibres in the
micro-to-nanometric range with a controlled surface morphology [20]. The porosity of these
nanofibre-based meshes may vary, which can be tailored and controlled by modification of
the experimental protocol. In electrospinning, a strong electric field (kV range) is applied
to the liquids, which enables them to develop fine-charged jets. These liquids are usually
polymer solutions, emulsions, polymer melts, or suspensions containing one or more active
pharmaceutical ingredients [21,22]. Based on these liquids’ rheological and conductive
properties, the applied voltage may change to develop fibres. This technology is considered
economical in laboratory and small-scale production [23,24]. It has been exploited for
various industrial applications (Figure 2), including biomedical [25], tissue engineering [26],
environmental [27], biochemical [28], drug delivery [21], protective clothing [29], and
energy storage [30]. In the early 1600s, William Gilbert first reported physical phenomena
when he observed spherical drops of water being drawn and deformed into a cone shape
or a spray of liquid when a piece of charged amber was placed close to it [31]. There were
some notable scientific contributions from C.V Boys (1887), J.F. Cooley (1900 and 1902), W.J.
Morton (1902), and John Zeleny (1914), but based on his initial experiments conducted in
the 1930s, Anton Formhals (1934–1944) made further notable developments. He patented
a setup capable of continuously producing fine nanofibres [32,33]. This period is the real
beginning of electrospinning technology. Later, in the 1960s, Geffrey Taylor investigated
the shape of the cone generated under the influence of an electric field with a 49.3◦ conical
angle [34]. This cone was named the ‘Taylor cone’, and it has been used widely to explain
the process of electrospinning and electrospraying.

Moreover, Taylor also proposed two critical instabilities, i.e., Rayleigh instability and
bending instability, which aided in describing the parallel electric field jet phenomena [35].
Later, in the 1990s, Doshi and Reneker reported the development of nanostructured ma-
terials using this technique, and attention towards nanotechnology increased dramati-
cally [36,37]. Since then, fibres from electrospinning technology have garnered interest
from both industrial and academic sectors. The literature has made tremendous efforts to
advance electrospinning technology by investigating mechanisms of fibre-making, char-
acterization of fibres, and exploring novel ways of their applications [5]. Electrospinning
involves feeding the spinning fluid in the syringe in the presence of high voltage to establish
an electric field between the syringe needle and collector. The polymeric solution at the
needle’s tip in an electric field becomes electrostatically charged to create a Taylor cone.
When surface tension overcomes the electrostatic force, a charged polymer jet is ejected,
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which becomes thinner in an accelerated electric field. Additionally, the stretching of the
polymer chain and rapid solvent evaporation resulted in solid nanofibres on the collector
wall [38]. As shown in Figure 3 [39], the conventional electrospinning setup comprises a
precision syringe pump, a high-voltage source, a syringe with a stainless-steel needle, and
a collector. The electric supply is connected to the needle and the collector wall, with either
a negative or positive charge [40]. The spinnable liquid filled in the syringe is composed
of, e.g., a polymer solution with or without an active ingredient known as the working
solution [41].

Fibers 2023, 11, x FOR PEER REVIEW 3 of 38 
 

 

Figure 2. Schematic illustration depicting the various industrial application of electrospinning. 

Moreover, Taylor also proposed two critical instabilities, i.e., Rayleigh instability and 

bending instability, which aided in describing the parallel electric field jet phenomena 

[35]. Later, in the 1990s, Doshi and Reneker reported the development of nanostructured 

materials using this technique, and attention towards nanotechnology increased dramat-

ically [36,37]. Since then, fibres from electrospinning technology have garnered interest 

from both industrial and academic sectors. The literature has made tremendous efforts to 

advance electrospinning technology by investigating mechanisms of fibre-making, char-

acterization of fibres, and exploring novel ways of their applications [5]. Electrospinning 

involves feeding the spinning fluid in the syringe in the presence of high voltage to estab-

lish an electric field between the syringe needle and collector. The polymeric solution at 

the needle’s tip in an electric field becomes electrostatically charged to create a Taylor 

cone. When surface tension overcomes the electrostatic force, a charged polymer jet is 

ejected, which becomes thinner in an accelerated electric field. Additionally, the stretching 

of the polymer chain and rapid solvent evaporation resulted in solid nanofibres on the 

collector wall [38]. As shown in Figure 3 [39], the conventional electrospinning setup com-

prises a precision syringe pump, a high-voltage source, a syringe with a stainless-steel 

needle, and a collector. The electric supply is connected to the needle and the collector 

wall, with either a negative or positive charge [40]. The spinnable liquid filled in the sy-

ringe is composed of, e.g., a polymer solution with or without an active ingredient known 

as the working solution [41]. 

Figure 2. Schematic illustration depicting the various industrial application of electrospinning.
Fibers 2023, 11, x FOR PEER REVIEW 4 of 38 
 

 

Figure 3. Schematic of a conventional electrospinning setup, reproduced with permission from [38], 

copyright 2019 Wiley Periodicals, Inc. 

2.1. Factors Affecting the Electrospinning Process 

The factors affecting electrospinning are classified generally as process, solution, and 

environmental parameters, as summarised in Table 1. In electrospinning, the process pa-

rameters depend upon the applied voltage, flow rate, needle diameter, and distance be-

tween the needle and the collector. The parameters of the solution include properties of 

the solvent used, the concentration of polymer, solution conductivity, and viscosity. The 

environmental parameters include relative humidity and temperature. All these parame-

ters directly affect the generation of electrospun fibres. In the following section, these are 

discussed in detail with their implications on the electrospinning process [42]. 

2.1.1. Effect of Process Parameters 

Effect of Applied Voltage 

The supplied voltage should be sufficient to initiate jet formation, which mainly de-

pends on the properties of the solution, including viscosity and surface tension. If low 

voltage is applied, the electrostatic force will be insufficient to overcome the droplet’s sur-

face tension; as a result, the jet is not stretched out, and dripping happens. Increasing the 

voltage beyond the threshold leads to jet formation, which increases the further whipping 

and instability of fibres, and henceforth, fibre jet elongation occurs [43,44]. The effect of 

voltage on fibre diameter is controversial. Several studies have reported that increasing 

the applied voltage decreases fibre diameter [45,46]; however, several other reports dis-

cussed a negligible effect or an increase in fibre diameter [47,48]. 

Effect of Flow Rate 

Flow rate, or infusion rate, is the speed at which the spinning solution is propelled 

towards the spinneret. The rate of solution ejection depends on the inner orifice diameter 

of the spinneret, applied voltage, and the rate of flow of the solution into the spinneret. 

Optimum flow rates are needed for any given voltage for any polymer material to produce 

fibres. When the flow rates are higher than the optimum range, the fibre diameter in-

creases, impacting uniformity [49]. Faster flow rates usually produce coarser nanofibres 

at a given voltage because more solution is drawn out simultaneously. Additionally, the 

produced fibres may have defects, such as wrinkles or beads, before reaching the collector 

if enough time is not given to the solvent for evaporation. However, if the flow rates are 

lower than the optimum range, the electrospinning process can become intermittent due 

to the solution depletion at the tip of the nozzle [50,51]. 

Figure 3. Schematic of a conventional electrospinning setup, reproduced with permission from [38],
copyright 2019 Wiley Periodicals, Inc.



Fibers 2023, 11, 21 4 of 37

2.1. Factors Affecting the Electrospinning Process

The factors affecting electrospinning are classified generally as process, solution, and
environmental parameters, as summarised in Table 1. In electrospinning, the process
parameters depend upon the applied voltage, flow rate, needle diameter, and distance
between the needle and the collector. The parameters of the solution include properties
of the solvent used, the concentration of polymer, solution conductivity, and viscosity.
The environmental parameters include relative humidity and temperature. All these
parameters directly affect the generation of electrospun fibres. In the following section,
these are discussed in detail with their implications on the electrospinning process [42].

2.1.1. Effect of Process Parameters
Effect of Applied Voltage

The supplied voltage should be sufficient to initiate jet formation, which mainly
depends on the properties of the solution, including viscosity and surface tension. If
low voltage is applied, the electrostatic force will be insufficient to overcome the droplet’s
surface tension; as a result, the jet is not stretched out, and dripping happens. Increasing the
voltage beyond the threshold leads to jet formation, which increases the further whipping
and instability of fibres, and henceforth, fibre jet elongation occurs [43,44]. The effect of
voltage on fibre diameter is controversial. Several studies have reported that increasing the
applied voltage decreases fibre diameter [45,46]; however, several other reports discussed a
negligible effect or an increase in fibre diameter [47,48].

Effect of Flow Rate

Flow rate, or infusion rate, is the speed at which the spinning solution is propelled
towards the spinneret. The rate of solution ejection depends on the inner orifice diameter
of the spinneret, applied voltage, and the rate of flow of the solution into the spinneret.
Optimum flow rates are needed for any given voltage for any polymer material to produce
fibres. When the flow rates are higher than the optimum range, the fibre diameter increases,
impacting uniformity [49]. Faster flow rates usually produce coarser nanofibres at a given
voltage because more solution is drawn out simultaneously. Additionally, the produced
fibres may have defects, such as wrinkles or beads, before reaching the collector if enough
time is not given to the solvent for evaporation. However, if the flow rates are lower than
the optimum range, the electrospinning process can become intermittent due to the solution
depletion at the tip of the nozzle [50,51].

Effect of Distance between Needle and the Collector

The distance between the needle tip and collector also plays an important role in
controlling the morphology of the electrospun nanofibres. The morphology of nanofibres
can be affected easily by the distance because it depends on the evaporation rate, deposition
time, whipping, and instability interval [52]. Therefore, a critical distance must be main-
tained to develop uniform and smooth electrospun nanofibres [53]. Numerous researchers
have studied the effect of the distance between the tip of the needle and collector and
concluded that large diameter and defective nanofibres are produced when the distance is
small. In contrast, the diameter of fibres is decreased when the distance is enhanced [52,54].
However, in some studies, no direct effect on the fibre’s morphology was observed when
the distance between the metallic needle and collector was changed [55].



Fibers 2023, 11, 21 5 of 37

Table 1. Effects of different parameters on the morphology of fibres during the process of electrospin-
ning [56].

Parameters Effect on Fibre Morphology

Increases in applied voltage Increase/decrease in fibre diameter

Increase in flow rate Increase in fibre diameter also leads to (beads on fibre) in case of high flow rate

Increase distance from needle to collector Electric field unstable, difficulties in performing process

Concentration of polymer Increase in fibre diameter with increase in concentration

Viscosity Low generation of beads, high increase in fibre diameter

Solution conductivity Decrease in fibre diameter with increase in concentration

Solvent volatility Fibres exhibit micro texture (pores on the surface of fibres, which increase their
surface area)

2.1.2. Solution Parameters

In the electrospinning technique, the polymer solution’s viscosity depends primarily
on the concentration of the polymer and the type of solvent used. Viscosity is considered
a critical parameter because it controls the solutions’ spinnability and its effect on the
entanglement of the polymeric molecules for the formation of a continuous polymer jet [57].
However, the polymer solution with low viscosity produces smooth fibres with good
mechanical strength and smaller diameters [58]. When the solution has very low viscosity,
the polymeric molecules will not be adequately entangled, so beads or drops might be
produced instead of fibres after spinning. In another scenario, extremely high viscosity will
obstruct polymer flow through the capillary, thus preventing nanofibre production due to
localized gel formation Figure 4 [59].
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Figure 4. Effect of different polymer concentrations and their molecular entanglement have a direct
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The solvent must be volatile to provide sufficient evaporation when the polymer jet
moves towards the collector. The polymer solution is usually fabricated using volatile
solvents, which has led to the development of fibres with a high surface area and porous
structure. However, if fewer or non-volatile solvents are used, they may lead to the
development of fibres having lower surface area and increased pore size, which may be
considered less suitable for drug delivery and biomedical applications [59]. Finally, the
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conductivity of a polymer solution can also considerably impact the fibres’ morphology.
Polymer solutions with more substantial conductivity can produce a jet with a greater
charge, thus resulting in stronger electrostatic forces. So, the polymer jet experiences greater
tensile strength and is stretched more, thus resulting in nanofibres with a smaller diameter
and fewer beads [60]. The conductivity of the polymeric solutions can be enhanced by
adding polyelectrolytes and ionic salts [41,61,62].

2.1.3. Ambient Conditions

Ambient conditions also play a significant role in the process of electrospinning as
high temperature leads to the development of nanofibres with a lower diameter; however,
an increase in humidity results in surface pore development [63,64].

3. Types of Electrospinning Techniques and Their Applications in Drug Delivery
3.1. Monoaxial Electrospinning

Monoaxial (or uniaxial) electrospinning is the most prominent method in which the
fibres can be made via a single capillary nozzle in the presence of high voltage. Drug
delivery systems in monoaxial electrospinning are usually produced using a polymer
liquid (typically a solution, suspension, or emulsion). A drug is dispersed in a volatile
solvent that can be dragged along with the polymer jet. During the process, higher electrical
potential (commonly 5–20 kV) is applied between the needle and the metal collector in the
monoaxial electrospinning [65]. The setup of monoaxial electrospinning can be made to
spin vertically or horizontally onto a rotating drum or a conduction plate, as illustrated in
Figure 5 [53].

Fibers 2023, 11, x FOR PEER REVIEW 7 of 38 
 

 

Figure 5. Schematic illustration of setting up of electrospinning apparatus: (a) typical vertical setup 

and (b) horizontal setup of electrospinning apparatus. Reproduced with permission from [53], cop-

yright 2010 Elsevier. 

Application of Monoaxial Electrospinning in Drug Delivery 

Electrospinning offers remarkable flexibility in the choice of active ingredients and 

polymeric materials [67–69] for drug delivery applications. High drug loading capacity 

(up to 60%) [70–72], high encapsulation efficacy, simultaneous delivery of therapeutic 

agents, ease of operation, and cost-effectiveness scale [73] are also appealing features in 

the application of drug delivery, especially for postoperative local chemotherapy and 

wound-dressing materials [19]. Numerous carrier materials, from natural to synthetic (bi-

odegradable and non-degradable) polymers or a blend of both, have been used success-

fully for electrospinning [74]. Moreover, drugs that have been investigated for monoaxial 

ES belong to different classes of therapeutics, like antibiotics [75,76], anticancer drugs 

[77,78], anti-inflammatory [79], cardiovascular [80,81], and ocular drugs [82,83]. In the fol-

lowing sections, some studies from the literature have been reported that employed mon-

oaxial electrospinning for drug delivery applications and the summarised characteristics 

have been tabulated in Table 2. 

Electrospun nanofibres have been used successfully to provide a new delivery plat-

form for antibiotic therapy. For instance, Behbood et al. [75] produced chitosan and gelatin 

electrospun nanofibres to provide a mucoadhesive oral delivery of vancomycin. The pre-

pared fibres were crosslinked with glutaraldehyde to improve the fibrous composites’ 

mechanical properties and water stability. From in vitro dissolution studies, the release of 

the drug changed from delayed to sustained release, and the dissolution data is best de-

scribed using the Higuchi mathematical model following diffusion dominate drug release 

kinetics. In a recent study, a gastro-retentive drug delivery system was developed based on 

Bletilla striata polysaccharide (BSP), a natural polymer. The optimised levofloxacin-loaded 

BSP lyophilised wafers were coated with polycaprolactone (PCL) electrospun membrane. 

The optimised PCL-coated wafer displayed an excellent floating duration of more 

than 24 h with a sustained drug release profile over an extended time. Both in vitro and 

in vivo findings illustrated superior performance compared to the pure drug [76]. Addi-

tionally, the delivery of electrospun nanofibres of indomethacin to provide a colon-tar-

geted drug delivery after oral administration is evaluated by Akhgari et al. [84]. The for-

mulation comprising Eudragit S:Eudragit RS (60:40) with the 3:5 drug:polymer ratio dis-

played a pH-responsive drug release. A minor drug release was noticed at pH 1.2, 6.4 and 

6.8; however, the bulk of the drug was released at pH 7.4 (simulated colon environment). 

Figure 5. Schematic illustration of setting up of electrospinning apparatus: (a) typical vertical setup
and (b) horizontal setup of electrospinning apparatus. Reproduced with permission from [53],
copyright 2010 Elsevier.

Application of Monoaxial Electrospinning in Drug Delivery

Electrospinning offers remarkable flexibility in the choice of active ingredients and
polymeric materials [67–69] for drug delivery applications. High drug loading capacity
(up to 60%) [70–72], high encapsulation efficacy, simultaneous delivery of therapeutic
agents, ease of operation, and cost-effectiveness scale [73] are also appealing features in
the application of drug delivery, especially for postoperative local chemotherapy and
wound-dressing materials [19]. Numerous carrier materials, from natural to synthetic
(biodegradable and non-degradable) polymers or a blend of both, have been used success-
fully for electrospinning [74]. Moreover, drugs that have been investigated for monoaxial ES
belong to different classes of therapeutics, like antibiotics [75,76], anticancer drugs [77,78],
anti-inflammatory [79], cardiovascular [80,81], and ocular drugs [82,83]. In the following
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sections, some studies from the literature have been reported that employed monoaxial
electrospinning for drug delivery applications and the summarised characteristics have
been tabulated in Table 2.

Electrospun nanofibres have been used successfully to provide a new delivery platform
for antibiotic therapy. For instance, Behbood et al. [75] produced chitosan and gelatin
electrospun nanofibres to provide a mucoadhesive oral delivery of vancomycin. The
prepared fibres were crosslinked with glutaraldehyde to improve the fibrous composites’
mechanical properties and water stability. From in vitro dissolution studies, the release
of the drug changed from delayed to sustained release, and the dissolution data is best
described using the Higuchi mathematical model following diffusion dominate drug release
kinetics. In a recent study, a gastro-retentive drug delivery system was developed based on
Bletilla striata polysaccharide (BSP), a natural polymer. The optimised levofloxacin-loaded
BSP lyophilised wafers were coated with polycaprolactone (PCL) electrospun membrane.

The optimised PCL-coated wafer displayed an excellent floating duration of more than
24 h with a sustained drug release profile over an extended time. Both in vitro and in vivo
findings illustrated superior performance compared to the pure drug [76]. Additionally,
the delivery of electrospun nanofibres of indomethacin to provide a colon-targeted drug
delivery after oral administration is evaluated by Akhgari et al. [84]. The formulation
comprising Eudragit S:Eudragit RS (60:40) with the 3:5 drug:polymer ratio displayed a
pH-responsive drug release. A minor drug release was noticed at pH 1.2, 6.4 and 6.8;
however, the bulk of the drug was released at pH 7.4 (simulated colon environment).

Electrospun nanofibres have also found great potential to provide site-specific de-
livery of chemotherapeutic agents due to their high biocompatibility and tuneable drug
release profiles [85]. Therefore, electrospinning has been extensively employed to develop
chemotherapeutic delivery systems. Various chemotherapeutic agents, including doxoru-
bicin [77,86], 5-FU [87–91], cisplatin [92–94], paclitaxel [95,96], and metformin [97], have
been added as model APIs to determine the ES effectiveness in cancer therapy. For example,
Kuang et al. [77] developed doxorubicin (DOX)-loaded polyblend nanofibres to provide
a biphasic release of drugs for localised cancer treatment. The release of the drug was
tuned in two stages. In the first stage, fast release of the drug was observed to suppress
the tumour growth, and in a later stage, nanofibres exhibited sustained release to prolong
the adequate therapeutic time. The polymeric blend, which provides a desired release
profile of fibres, was composed of 90% PLLA and 10% PEO. In in vivo studies, the localised
biodistribution of the drug was observed within the tumour region with no adverse effects.
In another study, PCL and chitosan were used to develop electrospun nanofibres loaded
with 5-fluorouracil (5-FU). The drug-loaded nanofibres with a high chitosan proportion
displayed a sustained release profile for a more extended period than other mats, as shown
in Figure 6. Thus, nanofibrous composites can be used as a potential candidate in the
treatment of colorectal cancer [78]. Similarly, in a recent study, PCL/gelatin fibres loaded
with 5-FU were developed, which increased the amount of gelatin in the blend, and the
release of the drug increased. The chemotherapeutic-loaded nanofibres showed suitable
cell attachment and HT-29 colorectal cancer cell proliferation whilst displaying a controlled
drug release [89].

In recent years, there has been a growing interest in fabricating electrospun nanofibres
composed of either natural or synthetic polymers through an electrospinning technique for
wound dressing fabrication [98]. For instance, Alavarse et al. [99] developed tetracycline hy-
drochloride (TCH)-loaded PVA/chitosan fibrous mats for wound dressing. The produced
fibrous mats exhibited a burst delivery in the initial 2 h with an effective antibacterial activ-
ity against E. coli, S. aureus, and Staphylococci epidermidis. The in vitro scratch assays and
cell viability studies showed that the prepared mats were non-cytotoxic and could be used
as a potential candidate for wound healing. In another study, Bakhsheshi-Rad et al. [100]
developed gentamycin-loaded chitosan-alginate fibres for wound healing. The prepared
mats displayed good antibacterial activity, cell attachment, and in vitro proliferation with
enhanced regeneration of mice skin. In another study, moxifloxacin-loaded chitosan/PEO
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nanofibres were fabricated to provide enhanced healing and antibacterial efficacy as a
wound dressing. The developed fibrous mats displayed good antibacterial activity and ef-
fectiveness in wound healing compared to the blank nanofibrous mats [101]. The technique
of ES has also found great potential in drug delivery via the ocular route. For instance,
Mehta et al. [82] investigated the electrospun fibres using one-step spinning process coat-
ings as a novel approach for drug delivery through contact lenses to enhance the permeation
of timolol maleate in the eye. The digital images of the coated and uncoated lens are shown
in Figure 7. The resultant fibrous coatings containing PVP, poly (N-isopropyl acrylamide)
(PNIPAM), borneol (as permeation enhancer), and the drug displayed 20% more drug
release compared to the coatings without permeation enhancer. In another study, the
ophthalmic inserts of hyaluronan-based nanofibres for ε-polylysine and ferulic acid dual
delivery. The ferulic acid was blended with polymers and then cross-linked covalently with
ε-polylysine after the electrospinning process. The cross-linked ocular inserts displayed
in vitro biocompatibility and antibacterial activity with fast erosion, which led both the
actives to release within 20 min [83].
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Table 2. Summarised characteristics of some studies employing monoaxial electrospinning for drug
delivery applications.

Drug(s) Polymer(s) Solvent(s) Drug Release
Characteristics Reference

Vancomycin Chitosan and gelatin Glacial acetic acid and water Sustained drug release [75]

Levofloxacillin Bletilla striata and PCL DCM and DMF Sustained drug release [76]

Indomethacin Eudragit RS100 and Eudragit
S100 Ethanol pH-controlled drug release [84]

Doxorubicin PEO and PLA 2,2,2-Trifluoroethanol Biphasic release [77]

5-fluorouracil Polycaprolactone and chitosan Formic acid/acetic acid
solution Sustained drug release [78]

5-fluorouracil Polycaprolactone and gelatin Acetic acid and Formic acid Controlled drug release [89]

Tetracycline
hydrochloride PVA and Chitosan Water and acetic acid

solution
Initial burst followed by
sustained release [99]

Ciprofloxacin PLCL and PNIPAAm HFIP Thermosensitive drug
release [102]

Gentamicin Chitosan and alginate Acetic acid and DI water - [100]

Moxifloxacin Chitosan and PEO DI Water - [101]

Timolol maleate PVP and (PNIPAM) Ethanol Triphasic drug release [82]

Ferulic Acid Hyaluronan and PVP Ethanol and Water Burst release [83]

PCL = Poly(ε-caprolactone), PEO = Poly (ethylene oxide), PLA = Poly(lactic acid), PVP = Polyvinylpyrrolidone,
PLCL = Poly(l-lactic acid-co-ε-caprolactone), PNIPAAm= Poly(N-isopropylacrylamide), DCM = Dichloromethane,
DMF = Dime-thylformamide, HFIP = Hexafluoro-2-propanol, DI water = Deionised Water.

3.2. Coaxial Electrospinning

Coaxial electrospinning or (co-electrospinning) encompasses a two-needle spinneret
for the development of nanofibres, in which one needle is concentrically inserted inside the
other, as illustrated in Figure 8 [103]. Two spinnerets with different or immiscible polymeric
solutions pump at varying rates from a single needle port during the coaxial spinning
process. The shell solutions flow around the core spinneret (containing the core solution)
up to the end of the spinneret until both solutions come in contact and pull towards the
collector due to the applied electrostatic potential difference. The core-shell structure is
maintained throughout this process, leading to the formation of long core-shell fibrous
mats [104]. By applying coaxial electrospinning, multiple drugs can be loaded into the
core-sheath fibres, and their release kinetics can be controlled [105].
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Applications of Coaxial Electrospinning in Drug Delivery

Coaxial electrospinning provides excellent flexibility in the selection of materials and
drugs. Moreover, the modified technique gives high drug encapsulation and enhanced
resistance in the protection of bioactives against the harsh environment. The low cost
and easy-to-operate setup of coaxial electrospinning make it an appealing system for
producing core-shell nanofibres [106]. In the following passages, some studies using coaxial
electrospinning in drug delivery are discussed, and their summarised characteristics are
tabulated in Table 3.

The core-shell structures obtained from coaxial electrospinning provide a controlled
drug release profile in the case of APIs that are water-soluble APIs [107]. For this purpose,
coaxially spun fibrous mats, composed of gentamicin/pluronic F127 in the core and sil-
ver/PCL in the shells, were developed as sutures to provide drug release in a sustained
manner. The in vitro release profiles of the scaffolds exhibited an initial burst followed by a
sustained release profile for up to 5 weeks, along with no apparent cytotoxicity. Moreover,
the drug-loaded scaffolds displayed higher antibacterial activity than nanofibre sutures
composed of silver or gentamycin alone [108]. In another study, nanofibrous composites via
coaxial ES were developed to provide two drug delivery systems in antitumor applications.
For the core structure, a PEG–PLGA emulsion containing Ag or Au and silibinin is used as
a therapeutic agent, while PVA containing Fe2O3 as magnetic nanoparticles serve as a shell.
The nanofibrous structure containing nanoparticles displayed an interesting, sustained
release of the drug for more than 60 h without an initial burst [109].

Coaxial electrospinning has also been exploited to fabricate pH-sensitive core-shell
nanofibrous composites for the potential delivery of chemotherapeutics in cervical cancer.
The core-shell structure PVA and PCL act as a shell, while doxorubicin is embedded in the
core. Transmission electron microscope (TEM) analysis determined that the change in flow
rate increased the thickness of the shell, as shown in Figure 9a–c. The developed nanofibres
exhibited a sustained and pH-responsive release of the drug (Figure 9d,e) with excellent
activity against Hela cells of cervical cancer [110].

In a recent study, pH-responsive core-shell nanofibrous mats of PCL and chitosan
as a carrier for the delivery of rosuvastatin were reported. The fabricated nanofibres
comprised PCL as the core and a chitosan-containing drug as the shell. The cumulative
drug release profiles showed an initial burst in the initial stage followed by a slow and
sustained release profile over 48 h. The degradation of CS in the shell increased the drug
release to 22% at pH 7.4, 64% at pH 6, and 84% at pH 4 after 48 h. From these findings, the
PCL/CS fibrous mats can be used as a valuable approach in drug delivery systems [111].
Baghali with his team [112] developed novel core-shell nanofibrous mats for wound healing
by incorporating an antibiotic (erythromycin) with appropriate transdermal absorption.
The erythromycin-loaded PCL core with zein-containing titanium dioxide (TiO2) shell
nanofibres displayed a sustained release profile for 72 h. Moreover, the prepared nanofibres
showed excellent antibacterial activity against gram-positive and negative bacteria. Thus,
the novel core-shell nanofibres can be used as an effective biomaterial in wound healing.

The treatment of ocular diseases through solid drug delivery systems has attracted
great attention due to their higher potential bioavailability compared to conventional liq-
uid formulations [113]. For this reason, Tawfik et al. [114] reported the development of
core-shell nanofibres composed of two drugs. The two different drugs were incorporated
in distinct compartments with the aim of treating the abrasion of the cornea and prevent
any associated bacterial infection. After the successful development of fibres loaded with
moxifloxacin and hydrophilic PVP as the core, the shell was composed of hydrophobic
PLGA containing pirfenidone as an antifibrotic drug. The in vitro release profile demon-
strated an initial burst release of pirfenidone followed by complete drug release after 24 h,
while shell moxifloxacin released 60% after 30 min. From these findings, further work to
tailor the release profile is required.
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Table 3. Summarised characteristics of studies employing coaxial electrospinning for drug delivery
applications.

Drug(s) Core Fluid Sheath Fluid Solvent(s) Drug Release
Characteristics Reference

Gentamicin PCL and Pluronic
® F-127 Silver and PCL DCM and DMF Initial burst followed by

Sustained drug release [108]

Silibinin PEG-PLGA with
Ag or Au Fe2O3 in PVA DCM Sustained drug release [109]

Doxorubicin PVA PCL
Distilled water and
2,2,2-Trifluoroethanol
via stirring

pH-responsive drug
release [110]

Rosuvastatin PCL Chitosan Acetic acid pH-responsive release [111]

Erythromycin PCL
Zein with
Titanium dioxide
nanoparticles

Chloroform and
ethanol Sustained release [112]

Moxifloxacin PVP PLGA Acetonitrile and
ethanol

Initial burst, then
sustained drug release [114]

PCL = Poly(ε-caprolactone), PEG= Polyethylene glycol, PLGA = Poly(lactic-co-glycolic acid), PVA = Polyvinyl
alcohol, PVP = Polyvinylpyrrolidone, Fe2O3 = Iron oxide, DCM = Dichloromethane, DMF = Dimethylformamide.
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3.3. Triaxial Electrospinning

Triaxial electrospinning comprises a spinneret with three concentric needles, shown
in Figure 10a,b [115]. Three polymer solutions are transferred through different pumps,
which meet at the end of the spinneret tip. During the triaxial process, the deformation
of a solution happens into a Taylor cone in the presence of an electrostatic field; thus, a
jet emerges from the tip when the surface tension is overcome by the electrostatic force.
Then, the jet experiences instability during bending, followed by solvent evaporation and,
ultimately, dry fibre deposition on the collector wall [116].
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Applications of Triaxial Electrospinning in Drug Delivery

Triaxial electrospinning produces three-layered structure fibrous mats comprising
core, intermediate, and shell layers [117]. The technique of triaxial electrospinning is
important, particularly when adding hygroscopic material to the shell to acquire excellent
biocompatibility. The intermediate hydrophobic layer forces the active molecule from the
core via diffusion from the intermediate layer, which provides a sustained release of the
drug rather than a premature burst release [115,118]. For triaxial electrospinning, novel
carrier vehicles have been investigated to provide a combined delivery of multiple APIs
with different release patterns. The dual release from triaxial fibrous composites containing
functional molecules [115] can be controlled, or the drug release becomes pH-sensitive
from these types of fibres materials [119]. Some of the studies that have been identified
as employing triaxial electrospinning are summarised in the subsequent sections and
tabulated in Table 4.

The triaxial electrospinning of fibrous composites has been investigated as a method
to load different types of drugs along with their different release profiles [120–122]. Triaxial
ES also has the advantage of processing a non-spinnable solution for long enough until one
of the liquids under the processing phase becomes spinnable. For instance, Yang et al. [123]
developed triaxial fibres from a modified triaxial process in which the core liquid contained
a solution of sodium diclofenac and lecithin, while the middle layer contained Eudragit
S100, and the outer layer contained pure ethanol. In this paper, only the middle liquid
was spinnable, which was utilised to obtain triaxial fibres even though the inner fluid was
unspinnable, and the outer liquid was pure solvent. The prepared core-shell fibrous mats
exhibited a pH-responsive drug release in two successive stages in neutral pH. Initially,
dissolution of the shell (ES100) occurred, then release of diclofenac occurred, which led
to the enhanced permeation of the drug from intestinal mucosa. Jouybari et al. [124]
developed triaxial nanofibres to attain a simultaneous release of three chemotherapeutic
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agents. The triaxial nanofibres are composed of chitosan/PVA as the core with 5-FU,
while the intermediate layer contains PLA/chitosan with doxorubicin, and the outer layer
containing PLA and chitosan is loaded with paclitaxel. The triaxial nanofibres exhibited
90% loading efficacy from all three drugs. In vitro studies demonstrated the slowest release
of 5-FU from tri-layer mats due to inner core encapsulation. Moreover, the triaxial fibres
displayed higher cell growth inhibition along with enhanced attachment to breast cancer
cells (MCF-7). In another study, Li et al. [125] developed tri-layered fibrous composites
to provide a time-programmed delivery of multiple anticancer drugs. The tri-axial layers
contained glycerol and doxorubicin (Dox) in the inner core, while PCL and PLLA loaded
with apatinib (multidrug resistance inhibitor) formed the double walls of the fibrous mats.
The rupture of the cavity assured the Dox burst release to reduce the tumour mass, whereas
the slow fibre mat degradation ensured a sustained apatinib release to eliminate the tumour.
Moreover, in vivo studies demonstrated a synergistic effect in which a time-programmed
release of the drug displayed excellent therapeutic effectiveness with no significant toxicity.
Nagiah et al. [126] fabricated triaxial fibres comprising PCL as a core layer, gelatin as an
intermediate layer, and 50:50 PLGA as a sheath layer. The model drugs were incorporated
into the sheath and intermediate layers, i.e., Rhodamine B and Fluorescein isothiocyanate–
Bovine Serum Albumin conjugate, respectively. The TEM images, as shown in Figure 11,
clearly indicate a tri-layer fibrous structure. Interestingly, triaxial fibres not only exhibited
dual release of the drug up to 600 h, but they also exhibited excellent tensile properties
compared to uniaxial and coaxial fibres.
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Figure 11. TEM image of Triaxial electrospun fibre with PCL (core, blue doted line), RhB, BSA-FITC-
gelatin (intermediate, red dotted line) layer and PLGA (50:50) (sheath) (scale bar 2µm). Reproduced
with permission from [126], copyright 2020 Scientific Reports.

Ding et al. [127] developed core-shell nanofibres to provide colon-targeted drug deliv-
ery in an extended-release manner. The core-shell Eudragit S100 (ES100)-based nanofibres
were developed, in which a shell layer ES100 (drug-free) was coated intentionally on a core
containing ES100 with aspirin. The developed nanofibrous composites displayed a con-
trolled drug release profile while the drug was freed as an erosion mechanism. The triaxial
nanofibres released a smaller portion of the drug in the initial 2 h, protecting the membranes
of the stomach and showed extended aspirin release with no significant cytotoxicity.
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Table 4. Summarised characteristics of some studies employing triaxial electrospinning for drug
delivery applications.

Drug(s) Core Layer Intermediate
Layer Sheath Layer Drug Release

Characteristics Reference

Lecithin and Diclofenac
sodium

Lecithin and
diclofenac sodium Eudragit S100 Ethanol pH-controlled

drug release [123]

5-fluorouracil,
Doxorubicin and
Paclitaxel

Chitosan/PVA PLA/Chitosan PLA/chitosan Controlled drug
release [124]

Doxorubicin and apatinib Glycerol PLLA and PCL

Initial burst
followed by
sustained drug
release

[125]

Rhodamine B and
Fluorescein
isothiocyanate-Bovine
Serum Albumin conjugate

PCL Gelatin PLGA Dual drug release. [126]

Aspirin Eudragit (ES100)
with Aspirin Eudragit® S100 Ethanol and DMAc Extended drug

release [127]

PVA = Polyvinyl alcohol, PCL = Poly(ε-caprolactone), PLLA = Poly-(L-lactide):, PLA = Polylactic acid, PLGA =
Poly(lactic-co-glycolic acid), DMAc = Dimethylacetamide.

3.4. Side-by-Side Electrospinning

In side-by-side electrospinning, two types of polymer solutions are delivered via
separate nozzles, which are arranged side-by-side. Both capillaries, from their tips, are
connected to a high voltage supply, and the polymer solutions never meet until they reach
the capillary end. During the process, when solutions approach the end of the capillary
tip, a single Taylor cone is produced from a mixture of the non-uniform solutions, which
deposit fibres on the collector wall after solvent evaporation, as shown in Figure 12 [128].
Janus fibres are produced using the side-by-side electrospinning method, comprising two
unlike materials on either side of the fibre. For this type of electrospinning, both polymer
solutions must possess similar conductivity to develop a single Taylor cone and be expelled
in the form of a mixture [129].
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Applications of Side-by-Side Electrospinning in Drug Delivery

The application of side-by-side electrospinning in the development of Janus fibres for
drug delivery is not very frequently employed. Therefore, some of the studies which have
been identified are summarised in subsequent sections and tabulated in Table 5.

Table 5. Summarised characteristics some studies employing side-by-side electrospinning for drug
delivery applications.

Polymer Solution 1 Polymer Solution 2 Solvent(s) Drug Release
Characteristics Reference

Ketoprofen and PVP
K60

Ethylcellulose, Ketoprofen
and PVP k10 Ethanol Biphasic drug release [130]

PVP k10 PVP k90, Helicid DMAc, ethanol Fast-dissolving drug release [131]

PVP and ciprofloxacin Ethylcellulose and silver
nanoparticles Ethanol and acetone Initial burst followed by

sustained drug release [132]

The first study for the use of side-by-side electrospinning was reported in 2016, in
which dual ketoprofen (KET) delivery was achieved through the development of Janus
nanofibres. One side of the fibre was composed of PVP, while the other side had ethyl
cellulose (EC). The images of the Janus fibres are shown in Figure 13. From in vitro release
profile, the PVP side dissolved very fast to unload the dose of KET. At the same time, the
EC side provides sustained release of the remaining drug. In conclusion, the application of
dual strategy gives robust control over the tuning of the two sides to achieve the maximum
therapeutic effect of the APIs [130].
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In another study, Wang with his colleagues developed Janus nanocomposites to im-
prove the oral bioavailability of helicid (a herbal medicine) when administered orally. For
the fabrication of Janus fibres, the one spinning solution comprised PVP with the drug. At
the same time, the other spinning solution contained a non-spinnable solution along with
sodium dodecyl sulphate (a permeation enhancer). The authors successfully spun both
solutions simultaneously through the usage of the eccentric spinneret. The TEM image of
Janus fibre is shown in Figure 14. The fabricated Janus nanofibres displayed rapid dissolu-
tion and an enhanced permeation of helicid on a porcine sublingual mucosa (ex vivo) [131].
In a recent study, nanofibres were developed from PVP and EC polymer matrices through
side-by-side electrospinning, in which ciprofloxacin and silver nanoparticles were added
to the two sides for wound dressing. Application of the Janus strategy allows the burst
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release of ciprofloxacin from the fibres within half an hour. Afterwards, the release of silver
nanoparticles was sustained to maintain antibacterial activity for 72 h, thus resulting in
potent bacterial growth inhibition [132].
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4. Centrifugal Spinning

Centrifugal spinning, also known as rotary jet or rotary spinning, is an effective
method for generating micro- to nanofibres with well-defined structures at low cost and
high speed [133]. The technique utilizes centrifugal force to eject polymer jets into fibres
instead of electrostatic force so that both conductive and nonconductive polymers can be
spun in solution or melts [134]. In the centrifugal spinning process, polymer solutions and
emulsions can be added to develop fibres.

4.1. Brief History of Centrifugal Spinning

Centrifugal spinning is not an entirely new technology to the industry. For instance,
this technique has been extensively utilised in the production of glass fibres (also known as
fibreglass or glass wool) for over half a century [135]. However, the use of this technique to
prepare polymeric fibres, particularly polymer nanofibres, is comparatively new. In the 1990s,
some big firms, such as BASF Aktiengesellschaft, Owens Corning Fiberglas, and AkzoNobel
NV, tried to develop polymer fibres through the centrifugal spinning method. After that,
many patents were published discussing spinning heads capable of spinning fibres from
polymers. Moreover, the FibeRio Technology Corporation has successfully commercialised
a centrifugal spinning system intended for large-scale production [136]. After the rapid
popularity and development of centrifugal spinning in the commercial sector, centrifugal
spinning also engrossed the interest of academia. In 2008, Weitz and colleagues [137] reported
that a 5% solution of poly (methyl methacrylate) (PMMA), after being poured into the middle
of a spinning head at 3000 rpm, could develop nanofibres of 25 nm in diameter in a few
seconds (Figure 15). It is also reported that the fibre-forming process relies on the competition
between the solution’s surface tension and centrifugal force.

Lozano and colleagues in 2010, [138] designed a multiple spinning head, which al-
lowed a rotation speed from 3000 to 5000 rpm and produced PEO nanofibres up to 300 nm
in diameter. Since 2010, researchers have reported many studies and many polymer
solutions have been utilised to develop nanofibres. In 2013, Lu et al. [139] proposed a
comprehensive relationship between operational conditions and nanofibre morphology.
Numerous academic researchers have published their work employing the centrifugal
spinning technique for different applications, including biological materials, energy storage,
and photocatalysis [140–143].
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Figure 15. Spinning process and SEM images of the polymethylmethacrylate nanofibre. Reproduced
with permission from [137], copyright 2008 American Chemical Society.

4.2. Basic Centrifugal Spinning Mechanism

The basic bench-top centrifugal spinning device is shown in Figure 16 [144]. During
the centrifugal spinning process, the solution is fed into the spinning rotating head, which
contains several nozzles around the sidewall. As the rotation speed increases to attain a
critical value, centrifugal force surpasses the spinning fluid’s surface tension; thus, a jet of
liquid is emitted from the orifice. At this stage, the liquid jet elongates the solvent, which
evaporates simultaneously, until the resultant reaches out towards the collector wall in the
form of fibres [135].
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4.3. Effect of Processing Parameters for Fibre Morphology and Diameter

The resultant structure and morphology of nanofibres is affected by a number of
aspects of the centrifugal spinning process [145]. Two significant material parameters
should be considered during the nanofibre production process, such as the solution’s
viscosity and surface tension. Besides those, equipment parameters, for instance, the
spinneret diameter, and the distance between the collector and the spinneret should also be
considered [146]. The process parameters in the centrifugal spinning process, which are
critically important, are discussed in the following sections and summarised in Table 6.
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Table 6. Effect of different Parameters on centrifugal spinning process [138,147].

Processing parameters

Centrifugal force Increase in centrifugal force leads to jet breaking and
the formation of beads.

Spinneret angular velocity Lower angular velocity beads on fibre.

Orifice radius Decrease in orifice diameter leads to a decrease in
fibre diameter and fewer beads on fibres.

Distance from spinneret to collector
wall

Increase in the distance leads to the breaking of fibre.
Decrease in distance leads to increase in fibre
diameter.

Rate of solvent evaporation
Low rate of solvent evaporation leads to collection of
fibres in the form of thin film around the collector.

High rate of evaporation leads to suppression of jet
elongation, increase in fibre diameter.

Temperature of spinneret for meltspun
applications

Increase in Temperature cause burning of polymer.

Decrease in temperature leads to an increase in fibre
diameter or no jet formation.

Solution parameters

Viscoelasticity Increase in viscosity leads to no jet formation
Decrease in viscosity leads to beads Formation.

Concentration of solution This relates to viscosity of solution which needs to
exceed the critical value to attain chain enlargement.

Surface tension Decrease in surface tension leads to production of
bead fibres

4.4. Viscosity and Surface Tension of the Spinning Solution

In centrifugal spinning, the spinning solution’s surface tension and viscosity are
considered critical parameters for good fibre formation. The surface tension has a significant
role in the development of nanofibre because it is considered the essential force to shrink
the surface area of the jet [139]. During the spinning process, the surface tension must be
controlled via the centrifugal force to generate a Taylor cone from the spinning solution at
the end of the orifice. The surface tension also reduces the surface energy of the solution
to avoid droplet formation. The viscosity of the spinning solution is another crucial
parameter [148] that also affects the fabrication of nanofibres during centrifugal spinning. If
the solution viscosity is too high, the applied forces may not be strong enough to generate
a jet. In contrast, the jet will break into droplets or beads if the solution viscosity is very
low [149]. The most convenient and reasonable way to monitor the viscosity of the polymer
solution is by adjusting the concentration of the polymeric solution [139].

4.5. Spinneret Speed

The speed of the spinneret is also considered a critical parameter for determining
the production of nanofibres. During centrifugal spinning, when the speed is low, the
centrifugal force cannot overcome the surface tension of the solution, and the solution
will be stuck in the spinneret. So, the speed of the spinneret should be appropriate. In a
certain range, the diameter of fibres decreases with an increase in spinneret speed. When
the rotational speed when reaches a critical limit, the production of fibres will disconnect,
resulting in the formation of a lot of beads [139].

4.6. Collection Distance from the Spinneret

The distance between the spinneret and the collector is considered another important
parameter because when the distance of the collector changes, the morphology of the
nanofibres is not changed, but the nanofibres break more and twist. The distance between
the collector and spinneret should decrease when the viscosity of the solution increases.
However, if the distance is too short, the fibre will not be allowed to stretch enough; thus,



Fibers 2023, 11, 21 19 of 37

the diameter of the fibre will be larger. For centrifugal spinning, the optimal collection
distance is usually 30–80 cm [150].

4.7. Diameter of the Orifice

The diameter of the orifice determines the solution’s flow and the initial diameter of
the fibre directly. When the diameter of the orifice is too large, droplet formation happens as
a result. When the diameter of the orifice is adequately small, it will result in the formation
of nanofibres. Some studies have determined that reducing the orifice diameter decreases
the final diameter of the collected nanofibres [151].

4.8. Applications of Centrifugal Spinning in Drug Delivery

Centrifugally spun nanofibres possess a high porosity and surface area; therefore,
they have become promising for various applications. In the context of drug delivery, this
technique has also gained much attention in the last decade. For instance, Mary et al. [133]
developed centrifugally spun PCL/PVP fibres containing tetracycline. The developed fibres
were highly aligned with a diameter in the micron range. By varying the concentration of
PCL/PVP in the fibres, the drug release can be tuned, and the prepared fibres demonstrated
an effective inhibition of bacterial growth. Some of the applications of centrifugal spinning
are discussed in subsequent sections and tabulated in Table 7.

The centrifugal spinning technique has also been exploited to develop orodispersible
tablets after the compression of microfibres. The SEM images of carvedilol-loaded rotary
spun microfibres are shown in Figure 17. The in vitro dissolution of a poorly soluble drug
(carvedilol) was enhanced significantly compared to tablets made from a physical mixture
containing the pure drug and hydroxypropyl cellulose. The physical mixture displayed
incomplete and pH-dependent drug release profiles [152].
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To increase the oral bioavailability and solubility of an antipsychotic agent and NSAID
(olanzapine and piroxicam, respectively), Marano et al. [153] reported the fabrication of
drug-loaded sucrose fibres through the solvent-free method of centrifugal spinning. The
fabricated fibres were 10–15 µm in diameter, along with enhanced in vitro dissolution
performance of the drugs. Another solvent-less study via in-house device was reported
by Yang et al. [154], who developed fibrous films of five different drugs (ibuprofen, In-
domethacin, tinidazole, nifedipine, and metoprolol tartrate) were developed. The films
displayed high drug loadings, highly aligned film structure and orientation with modulable
drug release profiles. The centrifugal spinning process enables the development of fibrous
structures exhibiting the controlled release of drugs. For instance, Wang et al. [155] reported
the development of a PVP fibre loaded with an antibiotic (tetracycline hydrochloride). Upon
optimisation of the process, it was possible to obtain fibrous structures with a sustained
release of antibiotics. The yielded fibres were in the nanometric range with a slow drug
release profile along with good antimicrobial activity. Li et al. [156] fabricated centrifugally
spun drug-loaded starch/PEO fibres to improve the solubility and bioavailability of poorly
soluble drugs (Ibuprofen and ketoprofen). In vitro dissolution profile displayed more than
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75% of the drug in the dissolution medium without the initial burst release of the drug. The
ibuprofen-loaded fibres displayed sustained drug release over a period of 24 h; however,
fibres loaded with ketoprofen did not release the drug for more than 48 h.

Centrifugally spun fibres have found great potential in wound healing due to their high
surface area. Therefore, Cremar et al. [157] developed chitosan-based fibrous mats loaded
with silver/cinnamaldehyde to provide enhanced antibacterial activity against S. aureus.
From disk diffusion and cell viability methods, fibrous mats can be used successfully in
wound healing due to enhanced antimicrobial activity as shown in Figure 18.
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Figure 18. Antibacterial activity of fibrous mats (a) chitosan 0.2% wt with silver nanoparticles and
(b) chitosan 0.8% wt with cinnamaldehyde when both were exposed to Staphylococcus aureus. The
inhibition zone is evident around the mat with both composites. Reproduced with permission
from [157]. Copyright 2018 NMJ.

In another study, centrifugally spun fibres were fabricated for wound dressings. The
ciprofloxacin loaded PLA/gelatin nanofibres displayed good antimicrobial activity with
sustained release of drug up to 1 h (in vitro) [158]. In the same year, Aydogdu et al. [159]
successfully developed bacterial cellulose fibres containing a blend of PCL/PLA as an
adequate carrier for wound healing. The prepared scaffolds had an exceptional tensile
strength and mechanical properties, with the diameter in the range of 5.0–18.5 µm. When
researchers use the 70:30 PLA/PCL blend, they can produce fibrous mats like a bandage,
which can be used as a potential candidate in wound healing, as shown in Figure 19.
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Figure 19. Bandage-like fibrous scaffold fabrication (a) simple centrifugal spinning system (b) image
of the prepared sample as wrapped around an arm. Reproduced with permission from [159],
copyright 2019 MDPI.

Centrifugal spinning has also found great interest in recent years as a method for
tissue engineering. For instance, in 2017, centrifugal spinning was used to develop platelet-
functionalised 3D poly-ε-caprolactone scaffolds to deliver growth factors. The proposed
scaffolds, upon biological evaluation on MG-63 cells, displayed enhanced metabolic ac-
tivity, alkaline phosphatase activity, and cell proliferation compared to scaffolds that are
nonfunctionalized. Moreover, increasing the concentration of platelets in the scaffolds
leads to increased cell response due to dose dependency [160]. In another study, 3D fibrous
scaffolds were formulated through emulsion centrifugal spinning. The poly-ε-caprolactone
scaffolds containing growth factors (TGF-β, IGF, and bFGF) enhanced cell proliferation
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and chondrogenic differentiation. Thus, the prepared scaffolds can be used as a potential
candidate for tissue engineering [161]. In a recent study, force spinning was employed to
develop pH-controlled doxorubicin-loaded nanofibres. When functionalised with carbon
nano-onions, PCL fibres exhibited a pH-responsive drug release over 15 days: an 87% drug
release at pH 6.5 and a 99% drug release at pH 5.0. Thus, from these findings, centrifu-
gally, spin fibrous composites were capable of releasing the drug in a sustained release
manner [162].

Table 7. Some of the examples of centrifugal spinning in drug delivery applications.

Drug(s) Polymer/Carrier Solvent(s) Drug Release
Characteristics Reference

Tetracycline PVP/PCL Chloroform/ethanol
Rapid drug release

followed by sustained
drug release

[133]

Carvedilol Hydroxypropyl
cellulose Ethanol Rapid drug release [152]

Olanzapine and
piroxicam Sucrose - Fast disintegrating

drug release [153]

Ibuprofen,
Indomethacin,

tinidazole, nifedipine
and metoprolol tartrate

Eudragit® EPO,
Eudragit® RS

Polyethylene glycol,
Soluplus®

- Modulable drug release [154]

Tetracycline hydrogen
chloride PVP Ethanol

Faster drug release
followed by controlled

drug release
[155]

Platelet PCL Chloroform and ethanol Dose dependant drug
release [160]

Ibuprofen and
Ketoprofen PEO Water/sodium hydroxide

Fast drug release
without initial burst,
then sustained drug

release

[156]

Cinnamaldehyde or
silver Chitosan Trifluoroacetic/dichloromethane - [157]

Ciprofloxacin PLA/GE HFP
Initial burst release of

drug followed by
sustained drug release

[158]

Bacterial cellulose PLA/PCL Chloroform - [159]

TGF-β, IGF and bFGF PCL Ethanol and chloroform Prolonged drug release [161]

Doxorubicin PCL/PMPMA-CNOs Trifluoroacetic acid Sustained drug release [162]

TGF-β = Transforming growth factor, IGF = Insulin-like growth factor, bFGF = basic fibroblast growth factor,
PVP = Polyvinylpyrrolidone, PCL = Poly(ε-caprolactone), PEO = Poly (ethylene oxide), PLA/GE = Poly(lactic
acid)/gelatin, HFP =1,1,1,3,3,3-hexafluoro-2-propanol.

5. Solution and Melt Blowing Spinning

Solution-blowing spinning (SBS) is a new technique to produce polymeric
micro/nanofibres from a polymer solution in a process that combines the principle of
electrospinning and melt blowing [163]. Solution-blowing spinning necessitates a simple
apparatus, homogenous polymer solution in a volatile solvent and a high-velocity gas
source [164]. For the spinning device, a specialised nozzle is attached, having an inner
nozzle for the pumping of the polymer solution and outer concentric nozzle that to supply
pressurised air. During SBS, the streams of the solution are stretched into ultrafine jets
under the flow of a high gas velocity from the outer nozzle. Then, the jet is solidified into
nanofibres after the evaporation of the solvent Figure 20a,b [165,166].
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5.1. Factors Affecting Solution Blowing and Melt Blowing Spinning

The parameters governing the solution-blowing method have been determined by
many researchers. The jet attenuation of the polymer is affected by the number of events
during solution blowing, including stretching, instability during bending, flapping motion,
and solvent evaporation. In addition, polymer concentration and type also impart a direct
morphological effect on the fibre. The injection rate of the solution, the pressure of the
gas flow, the protrusion length of the inner nozzle, and the distance from the nozzle to
the collector are some of the additional parameters that are important in solution blowing.
Table 8 summarises the core parameters that affect the process of fibre formation when
employing this technique [167].

Table 8. Factors affecting the solution-blowing process [147].

Parameters Effect on Fibre Morphology

Solution parameters

Viscosity Increase in viscosity low beads formation but increase in fibre diameter.

Polymer concentration
Polymer concentration is more than 15 wt%, fibre diameter increases.

Low molecular concentration leads to no sufficient chain entanglement thus
cause beads on fibre.

Molecular weight
Increase leads to decrease in beads formation
Decrease leads to increase in number of beads.Surface tension

Vapour pressure
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Table 8. Cont.

Parameters Effect on Fibre Morphology

Process parameters

Air pressure

Cause great effect on the web uniformity.

Decrease in air pressures cause droplets on fibres.

No direct influence on diameter of fibre

Distance between nozzle
to collector

The optimum working distance is 30 cm.
When the distance is short thin film of nanofibre is generated around the collector due to
insufficient solvent evaporation.

Flow rate of solution Increase in flow rate cause increase in fibre diameters with greater polymer droplets.

System parameters Nozzle diameter and
geometry

Decrease in nozzle diameter decreases fibre diameter.
Nozzle geometry lowers the pressure around inner nozzle, which helps in drawing of
polymer solution in cone shape

Ambient conditions
Temperature
Humidity
Atmospheric pressure

Increase in temperature leads to decrease in fibre diameter.
Increase in humidity small spherical pores appear further increase in humidity the pores
will be connected.
When humidity is very low, solvent evaporation occurs fast.
The air flow above the needle, increase evaporation rate resulting in larger fibre diameter.

5.2. Applications of Solution- and Melt-Blowing in Drug Delivery

The solution-blowing method is independent of solvent limitations and electrostatic
constraints, so voltage-sensitive polymers can be used without difficulty. These charac-
teristics are causing solution-blowing applications ultimately to be extended from energy
to filtration products. In terms of drug delivery, since its first report in 2009 [168], fewer
studies have been reported in terms of drug delivery using solution-blowing. The first
study was reported by Oliveira and co-workers [169], who prepared PLA fibres which are
loaded with the hormone progesterone to provide controlled delivery of drugs in livestock.
Initially, fibres were developed from the solutions containing PLA 6% wt and progesterone
between 0 and 8% w/w, as shown in Figure 21a. In terms of drug release, nanofibres obeyed
first-order kinetics, which could potentially be used in controlled drug delivery to control
the reproductive cycle in livestock animals (Figure 21b). Some other studies have been
discussed in succeeding sections and tabulated in Table 9 employing SBS in drug delivery.
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Figure 21. Fibres loaded with progesterone. (a) SEM images of fibres with 6% wt PLA solution
containing acetone: chloroform solvent with progesterone 4% w/w (b) Progesterone release profiles
from fibres prepared from solutions containing PLA 6% w/v and 2, 4, or 8%. Reproduced with
permission from [169], copyright 2013 Elsevier.
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Table 9. Some examples of solution-blowing spinning in drug delivery applications.

Drug(s) Polymer(s) Solvent(s) Type of Drug Delivery Reference

Progesterone PLA Chloroform and acetone First-order release kinetics [160]

Diclofenac sodium PHBV Hexafluoro isopropanol Initial burst release followed by controlled
drug delivery [170]

Copaiba oil PLA/PVP Chloroform/Acetone Controlled drug delivery [171]

Carvedilol PVPVA64 PEG Fast drug delivery [172]

PLA = Poly(lactic acid), PHBV = Poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PVP Polyvinylpyrrolidone,
PVPVA64 = Vinylpyrrolidone-vinyl acetate, PEG = Polyethylene glycol.

A study reported a comparison between fibres of PHBV loaded with a drug (sodium
diclofenac) prepared with ES and the solution-blowing method. With ES, the drug-loaded
fibres had larger diameters compared to the SB fibres. The release profile of the drug
was dependent on temperature and drug concentration present within the fibres in both
cases [170]. The solution-blowing technique has also been explored to develop fibres from
Copaiba oil (CO) obtained from Copaifera sp., a medicinal plant often used to provide
antimicrobial activity. The composites were constructed from a polymeric blend (PVP and
PLA) with a diameter of around 1µm, as shown in Figure 22a. An increased content of
PVP in fibres displayed higher antimicrobial activity against Staphylococcus aureus with a
controlled release of the drug, as shown in Figure 22b [171].
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6. Pressurised Gyration

The pressurised gyration (PG)-based hybrid system was first reported in 2013, com-
bining the features of centrifugal spinning and solution-blowing to produce fibres at a
large scale with greater control over the final product morphology. The gyration set-up, as
shown in Figure 23, essentially contains an aluminium rotary vessel, which is surrounded
by pinhole orifices for ejection. The top side of the vessel is connected to a gas inlet for
producing pressures of up to 3 × 105 Pa while the bottom part is directly connected with
the motor, to rotate the vessel and speed controller rotate the vessel up to 36,000 rpm [173].
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6.1. Mechanism of Pressurised Gyration

The PG technique is operated using the Rayleigh–Taylor instability of the chosen
polymer solution. The polymer solution is fed into an aluminium rotary vessel, and during
the gyration process, when the centrifugal force surpasses the solutions’ surface tension, a
jet of liquid is ejected from each pinhole orifice present around the vessel. Fibre formation
happens when the polymer jet stretches continuously due to the centrifugal force and the
pressure differences arising from the gas inlet near the orifice. During the jetting stage, the
solvent evaporates gradually; as a result, fibres are formed around the collector walls in a
solid state [173].

6.2. System Parameters of Pressurised Gyration

The formation of fibres mainly depends on the solution properties and processing
parameters of the technique. The properties of the solution govern spinnability and ul-
timately affect the fibre formation process. The applied gas and rotational speed of the
vessel are considered critical processing parameters, which produce a marked effect on the
morphology of the fibres. In addition, variation in collection distance and environmental
conditions also alters the structure of the fibres [173]. Table 10 summarises the parameters
of PG on the fibre surface and/or diameter.

Table 10. Factors affecting the pressurised gyration process [173].

Parameters Effect on Fibre Morphology

Process parameters
Increase in Working pressure Decrease in the fibre diameter.

Increase in spinneret rotating speed Decrease in the fibre diameter.

Solution parameters

Increase in Polymer molecular Increase in the fibre diameter.

Increase in polymer concentration Increase in the fibre diameter.

Increase in Solvent volatility
Decrease in the fibre diameter.

Increase in the pore size of fibre.

System parameters Increase in size of orifice Increase in the diameter of fibre.

Ambient
Increase in Temperature No direct effect.

Increase in relative Humidity Cause decrease in the fibre uniformity.
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6.3. Applications of Pressurised Gyration in Drug Delivery

The process of PG provides an attractive manufacturing route for the development of
fibres with low diameters, which have demonstrated great potential in drug delivery. The
PG technique overcomes major challenges in manufacturing large-scale micro/nanofibrous
drug delivery systems, thus providing the production rate in kilograms per hour. In the
following paragraphs, the applications of PG in drug delivery have been summarised and
tabulated in Table 11.

The process of PG has been used to develop fibres of a poorly soluble drug (ibuprofen)
to enhance its dissolution performance. After PG, the PVP fibres alone had diameters in the
nanoscale, whereas, after the inclusion of the drug, the fibres were found in the microscale
range. The amorphous drug–polymer composites had an accelerated dissolution profile
under sink conditions, while non-sink conditions displayed supersaturation [174]. Brako
et al. [175] employed PG to prepare a progesterone-loaded nanofibre from a bioadhesive
polymer for vaginal therapy. The SEM images and diameter of drug-loaded fibres with
5 wt% of a drug is shown in Figure 24a,b. The hydrophobic drug, after dispersion into
hydrophilic polymeric nanofibres (PEO and CMC), displayed a comparable dissolution pro-
file with commercially available Cyclogest (progesterone pessary), as shown in Figure 24c,
but nevertheless, the release was observed over 4 h. In conclusion, the PG technique has
provided a successful loading of a poorly soluble drug along with suitable release char-
acteristics and morphological properties. The prepared progesterone-loaded fibres have
proved to be a promising candidate for drug delivery into the membrane of the vaginal
mucosa. More recently, progesterone-loaded poly(lactic) acid polymeric scaffolds were
fabricated using both ES and PG techniques to facilitate intra-vaginal therapy. The loaded
drug patches obtained from both methods had similar thermal and release characteristics.
However, patches attained using ES were more uniformly arranged with smaller fibre
diameters in contrast to PG. However, PG provided superior tensile strength in patches
and a high production yield compared to ES [176].
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Figure 24. SEM images of (a) progesterone-loaded PEO fibres (produced from a solution containing
5% wt. progesterone and 15% wt. PEO), (b) progesterone-loaded PEO/CMC fibres (produced from a
solution containing 5% wt. progesterone, 13.75% wt. PEO and 1.25% wt. CMC), and (c) Progesterone
loaded PEO and PEO/CMC fibres and Cyclogest release profiles in stimulated vaginal fluid [175],
copyright 2018 Elsevier.

In another study, PG and ES were compared by Ahmed et al. [177] in delivering
antifungal agents itraconazole (ITZ) and amphotericin B (AMB) through four spinning
polymers PVP, PMMA, PNIPAM, and PVDF. The researchers found that the average
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diameter of the fibre was different due to the different types of polymer and methods used.
For drug loading, both ITZ and AMB, PVP was selected as an optimal polymer for fibre
production. In vitro dissolution studies displayed a successful release of drugs from both
types of fibres, with a burst drug release within 15 min from the electrospun fibres. Whereas
fibres obtained from PG displayed accelerated dissolution followed by drug release within
5 min and complete drug release in 1 h, as shown in Figure 25.
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The use of pressurised gyration in the development of drug-loaded bandages is also
found to be very productive in wound healing. For instance, Cinnamon-loaded PCL
fibres were engineered and prepared to provide antifungal activity. When fibres were
exposed to fungus (Candida albicans), no survival was observed after 48 h of treatment.
Moreover, after three weeks of the following treatment, no fungal regrowth was seen, thus
showing cinnamon efficacy when explored as an antifungal agent [178]. In recent years,
the loading of actives to proliferate cells for wound healing has also become an exciting
point of interest for researchers. Therefore, in a recent study, pioglitazone hydrochloride
(PHR), an insulin-sensitising agent, was loaded into fibrous mats of PVP and PVP/PCL to
attain a burst release and a sustained drug release, respectively. From in vitro and in vivo
tests, a blend of PCL and PVP in PHR-loaded fibrous mats showed increased activity
of epidermal regeneration and fibroblast proliferation, as shown in Figure 26. However,
complete oedema improvement and hair follicle formation was only observed in sustained
release preparations [179]. More recently, the same researchers developed a combination of
pioglitazone with oral antidiabetic (glibenclamide and metformin) nanofibrous scaffolds to
accelerate wound healing topically. The triple combination of drugs significantly enhanced
epidermal regeneration, i.e., growth of hair follicles was seen within two weeks. Moreover,
due to the increased wettability and hydrophilicity of the prepared scaffolds, it was possible
to develop sustained release matrices with increased drug bioavailability whilst the dose
frequency was reduced [180].

The potential for pressurised gyration in wound healing had also seen great impor-
tance when Altun et al. [181] first reported fibres from a blend of bacterial cellulose and
PMMA. The produced fibres had an average fibre diameter in the 1.66 to 6.8 µm range. The
formulated nanofibres showed no toxicity but enhanced biocompatibility.
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Figure 26. (A) Appearance of wound healing from days 0, 3, 7, and 14 after surgical incision:
(A) control group, (B) pure PVP/PCL fibre group, (C) PHR-loaded PVP (12%) fibre group, and
(D) PHR-loaded PVP/PCL (12%) fibre group (scale bar = 1 mm). Reproduced with permission
from [179], copyright 2020 The Royal Society.

Table 11. Studies in which pressurised gyration has been employed for drug delivery applications.

Drug(s) Polymer(s) Solvent(s) Drug Release Characteristics Reference

Ibuprofen PVP Ethanol Fast drug release [174]

Progesterone PEO and CMC Ethanol Zero-order drug release [175]

Progesterone PLA Chloroform Initial burst release followed
by sustained drug release [176]

Itraconazole and
amphotericin B

PVP, PMMA, PNIPAM,
and PVDF

Ethanol, dichloromethane,
acetone, chloroform,
dimethylformamide

Fast drug release [177]

Cinnamon PCL Chloroform - [178]

Pioglitazone
hydrochloride PCL and PVP Ethanol

Depends on the polymer
concentration in the fibres.

Some showed burst release,
while one formulation showed

sustained drug release

[179]

Pioglitazone
Glibenclamide
Metformin

PVP/PCL Chloroform and methanol Initial burst followed by
sustained drug release [180]

PVP = Polyvinylpyrrolidone; PEO = Poly (ethylene oxide); CMC = Carboxymethyl cellulose; PMMA = Poly
methyl methacrylate; PNIPAM = poly (N-isopropyl acrylamide); PVDF = Polyvinylidene fluoride.

7. Other Techniques

In addition to the techniques discussed already, there are some techniques that have
emerged to show the potential to develop nanofibres for drug delivery applications (Table 12).
Additional details on the principle of these techniques can be obtained from the recent
reviews reported by Qi and Craig [182], Luo et al. [183] for electrospraying, Brown et al. [184]
for melt electrospinning, and Cheng et al. [185] for microfluidic spinning.
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Table 12. Less commonly employed techniques for drug delivery applications.

Technique Drugs Polymers Solvent(s)/
Excipients

Drug Release
Characteristics Reference

Electrospraying

IGF-1 (growth
factor)

PLGA and
poly(urethane-
urea)

DMSO
Initial burst release followed
by slow and subsequently
fast drug release

[186]

Protein bovine
serum
albumin

PCL and PLGA Chloroform Sustained drug release [187]

Rhodamine B PLA/PEO DCM and DMF Zero-order drug release [188]

Melt
electrospinning

Carvedilol Eudragit - Fast drug release [189]

Carvedilol Eudragit E

Triacetin, Tween
80, and
polyethylene
glycol 1500

Fast drug release [190]

Curcumin PCL DCM/ethanol Slow drug release without
initial burst phase [191]

Electro blowing
Diclofenac Sodium HPβCD Ethanol Fast drug release [192]

Itraconazole Eudragit E DCM/methanol Fast drug release [193]

Microfluidic
spinning Ampicillin Alginate IPA sheath Extended drug release [194]

8. Conclusions

In this review, we have discussed the development of nanofibres using different
spinning techniques and their applications in drug delivery. The nanofibres produced from
monoaxial electrospinning can provide rapid and extended drug release and can target drug
delivery in response to pH conditions. Coaxial electrospinning can prepare multifunctional
materials. Triaxial spinning offers complicated nano- and microscale architectures with
enhanced functional performance, while side-by-side electrospinning was used in the
development of Janus fibres for drug delivery. Nanofibres obtained from centrifugal
spinning have also been employed in drug delivery along with different carriers, especially
polymers. Solution-blowing spinning provides micro–nano scale fibres, while pressurised
gyration can generate a large number of homogenous fibres with greater control over final
product morphology. Some less well-reported manufacturing techniques have also been
discussed. Overall, this review has highlighted the importance, versatility, and adaptability
of nanofibres in developing medicines with varied drug release kinetics. Several issues
still exist and need to be addressed for their full commercial realisation, such as the drug
loading, the initial burst effect, the residual organic solvent, the stability of active agents,
and the combined usage of new or existing biocompatible polymers.

9. Challenges and Future Outlook

The emergence of different nanofibre production strategies has led to a substantial
breakthrough in developing various platforms for drug delivery technologies. These tech-
nologies have made extensive progress in recent years, but not without limitations. Despite
noteworthy innovations, many remain in the proof-of-concept stages due to challenges
associated with their biopharmaceutical performance. The leading research in electrospin-
ning centrifugal spinning, solution-blowing, and pressurized gyration are moving slowly
towards large-scale production, with some systems already being used at the industrial
level (e.g., NanoSpinner416n, FibeRio® Technology). Although these innovative techniques
have shown great potential in developing uniform and continuous fibres, the challenge
remains to ensure the production of fibres with the desired mechanical, chemical, and mor-
phological properties, especially during large-scale production. The complex, multifaceted
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instrument-related parameters and factors associated with the working solution impact or
compromise fibre production. Therefore, optimisation of working conditions and solutions
is essential. More importantly, maybe because of these reasons, nanofibres’ applications are
limited to the laboratory scale, necessitating the need for more in-depth pre-clinical and
clinical evaluation to help the translation process of these products to market.
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