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Abstract: To improve the tensile, flexural, and ductility properties of geopolymer composites, amor-
phous metallic fibres (AMF) are used to reinforce these composites, and the behavior of these compos-
ites at elevated temperatures has been assessed in this study. Four types of composites, i.e., cement,
reinforced cement, geopolymer, and reinforced geopolymer composites have been prepared. The
composites have been reinforced using AMF with a fibre volume fraction of 0.75%. The composites
have been assessed for change in mass loss, cracking, compressive strength, and flexural strength
at four elevated temperatures of 200 ◦C, 400 ◦C, 600 ◦C, and 800 ◦C, and conclusions have been
drawn concerning these composites. The results have shown that an increase in temperature has an
adverse effect on these composites, and geopolymer composites exhibit higher performance than their
counterpart cement composites at elevated temperatures. The mass loss and surface cracking were
significantly lower in geopolymer composites, and the fibre reinforcement had a negligible effect on
mass loss. Also, the residual compressive and flexural strength of reinforced geopolymer composites
was significantly higher than that of the reinforced cement composites. In addition, scanning electron
microscopic images also showed that even at higher temperatures, the geopolymer matrix is present
on the AMF fibre, which results in higher residual strength than the cement composites in which a
negligible amount of matrix is present on the fibres.

Keywords: amorphous metallic fibres (AMF); geopolymer concrete; elevated temperature; residual
strength; compressive strength; flexural strength; scanning electron microscope (SEM)

1. Introduction

Concrete, being the most widely used construction material, utilizes ordinary Portland
cement (OPC) as a binder and the production of cement alone is responsible for around
5 to 7% of CO2 emissions worldwide [1]. The huge carbon footprint and large amount of
energy required to produce cement have resulted in serious concerns about its environmen-
tal and economic sustainability, and researchers have started to look for environmentally
friendly and sustainable supplementary cementitious materials (CSM). This quest has
led to the use of cementless geopolymer binders [2], the inorganic polymers which are
rich in silica and alumina and develop binding characteristics when combined with alkali
activators [3]. Out of a wide variety of materials that can replace cement as a binder mate-
rial, fly ash geopolymer is gaining popularity because of its worldwide availability and
excellent binding properties [4]. Also, its production requires 60% less energy and emits
80% less CO2 compared to OPC [5,6]. In addition to being sustainable and environmentally
friendly, it improves the workability, strength, and durability of concrete along with reduc-
ing its drying shrinkage [7–10]. A significant amount of research studies have already been
performed to assess the behavior of fly ash-based geopolymer concretes [11–17].

Even though the geopolymer concretes made with fly ash exhibit superior mechanical
and durability characteristics, there are issues related to the lower tensile strength and
inherent brittleness that impede the large-scale application of geopolymer composites. To
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improve these properties, randomly oriented short fibres of various types, including steel,
carbon, glass, PVA, PE, natural fibres, etc. are used. Out of these fibres, steel fibres are
widely adopted for reinforcing geopolymer composites, and they significantly improve the
mechanical properties of geopolymer concrete. However, the steel fibres are susceptible
to corrosion, especially in the structures built in coastal areas and the structures exposed
to repeated wetting and drying cycles. To address this issue, without compromising the
strength, amorphous metallic fibres (AMF) have been recently introduced to reinforce
cement and geopolymer composites and have already proved to have superior mechanical
properties [18–22]. In addition to improving strength and durability, these fibres are
sustainable and environmentally friendly, as their production results in 20% less CO2
emissions than steel fibres. To further improve the mechanical properties of geopolymer
composites, heat curing is used in which the composite is cured at the temperature ranges
of 60 ◦C–80 ◦C for an initial 24 h. The increased properties in heat curing are achieved due
to a faster geopolymer reaction [23] and lower porosity [24,25].

Although the strength and durability of AMF reinforced geopolymer concrete are well
established, the behavior of AMF reinforced geopolymer concrete at elevated tempera-
tures is still unexplored. Normally geopolymers composites possess relatively higher fire
resistance than OPC owing to their chemical composition and are preferred as thermal
insulators and heat resistant materials [26–30]. The structural stability and strength of
hydration products in OPC concrete, i.e., calcium silicate hydrate (C-S-H) and calcium
hydroxide (CH), are reduced at higher temperatures. On the other hand, in geopolymer
composites, sodium aluminate silicate gels (N-A-S-H) are produced due to the reaction
between alumino-silicate materials and alkali activators, which sustains the composite’s
strength and stability at higher temperatures [31]. Extensive studies have already been
performed on geopolymer composites made with a range of source materials and alkali
activators [32–37]. The performance of these composites at elevated temperatures can be
further improved by reinforcing them with various organic and inorganic fibres. Through
the comparison of basalt and poly-vinyl alcohol (PVA) fibres, Masi et al. [38] concluded that
basalt fibres are better at sustaining the mechanical properties at elevated temperatures. The
use of basalt fibres reinforced geopolymer concrete at elevated temperatures has also been
recommended by Fiore et al. [39] and Welter et al. [40]. Another alternative is carbon fibres;
their use at elevated temperatures has been tested and recommended by Hosan et al. [41]
and Zhang et al. [42]. Hosan et al. [41] also compared the efficacy of potassium and sodium
based alkali activators and concluded that potassium-based activators are better in terms
of residual compressive strength, volumetric shrinkage, and mass loss.

Since amorphous metallic fibres (AMF) have emerged as an efficient alternative to
the steel fibres to enhance the durability and sustainability of geopolymer composites,
it is imperative to study the behavior of AMF reinforced geopolymer composites at ele-
vated temperatures. To date, no study has been performed on this composite at elevated
temperatures; therefore, an effort has been made in this study to fill this research gap. In
this study, the behavior of unreinforced and AMF reinforced cement and geopolymers
composites at ambient and elevated temperatures of 200 ◦C, 400 ◦C, 600 ◦C, and 800 ◦C
has been studied in terms of mass loss, cracking behavior, compressive strength, flexural
strength, and flexural toughness, and comparisons have been drawn between both types of
composites. In addition, scanning electron microscopic (SEM) analysis has been conducted
to assess the microstructure behavior of these types of composites to explain their behavior
at elevated temperatures.

2. Experimental Program
2.1. Materials

The cement composite samples were prepared using ordinary Portland cement (OPC)
as a binder while Class F fly ash was used as a binder for geopolymer composite. The
chemical compositions of both the OPC and fly ash are given in Table 1. For the fine
aggregates, natural silica sand was used in saturated and surface dried conditions before
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preparing the mixes. Fineness modulus of fine aggregate (natural sand) was 1.8 and the
maximum aggregate size of sand was 1.18 mm. The amorphous metallic fibres (AMF),
as well as the alkali activators used in this research study, are similar to the ones used by
the authors’ other study [35]. The length, width, and thickness of the AMF were 15 mm,
1 mm, and 24 µm, respectively. The tensile strength and elastic modulus of the AMF were
1800 MPa and 140 GPa, respectively [18]. A photo of AMF is shown in Figure 1. The alkali
activator consisted of an 8-M sodium hydroxide (NaOH) solution blended with D-grade
sodium silicate (Na2SO3) solution. The ratio of sodium silicate to sodium hydroxide was
constant at 2.5 in all composites. The ratio of sodium silicate to sodium hydroxide solution
and the molarity of sodium hydroxide used in this study are based on the authors’ previous
study [18], as these are the optimum alkali content for geopolymer concrete.

Table 1. Chemical composition and physical properties of OPC and Class F fly ash in wt.% [18].

Chemical Composition OPC Class F Fly Ash

SiO2 21.10 51.11
Al2O3 5.24 25.56
Fe2O3 3.10 12.48
CaO 64.39 4.3
MgO 1.10 1.45
K2O 0.57 0.7

Na2O 0.23 0.77
SO3 2.52 0.24
LOI 1.22 0.57

Particle size 25–40% ≤ 7 µm 50% of 10 µm
Specific gravity 2.7 2.35–2.4
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Figure 1. Amorphous Metallic Fibres used in this study ([18]). [Reproduced with permission
from publisher].

2.2. Specimen Preparation
2.2.1. Casting and Curing

For preparing the composites, a Hobart mixer with a 10-L capacity was used. The mix
proportions of both the cement and geopolymer composites are given in Table 2. A low
AMF volume fraction of 0.75% is used to reinforce both cement and geopolymer composites.
This volume fraction is selected to ensure uniform dispersion of AMF in the composites
during mixing. For the preparation of cement composites, OPC and sand were dry-mixed
initially for three minutes with a ratio of 1:0.5. After that, AMFs were added, and the
mixing was further continued for another three minutes to allow for uniform dispersion of
fibres. In the end, water was added to the mixture with a w/c ratio of 0.5, and the mixing
was then continued for another five minutes.

For the preparation of geopolymer composites, alkali activators were prepared 24 h
prior to mix to allow for the heat dissipation caused by the chemical reaction between
sodium hydroxide (NaOH) and sodium silicate (Na2SO3) solutions. For the sample prepa-
ration, similar to the cement composite samples, class F fly ash was first mixed with the
silica sand for two minutes followed by the slow addition of alkali activators with a binder
to alkali activator ratio of 1:0.5. This mixing was continued for three minutes followed by
the addition of AMF to the wet mix and the mixing was then continued until the fibres
were all well dispersed.
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Table 2. Mix proportions of cement and geopolymer composites.

Composite
Binder Sand Alkali Activator (Weight)

Water (Weight) AMF (Volume)
Cement Fly Ash NaOH Na2SiO3

CC 1 - 0.5 - - 0.5 -
AMF-CC 1 - 0.5 - - 0.5 0.75%

GC - 1 0.5 0.15 0.35 - -
AMF-GC - 1 0.5 0.15 0.35 - 0.75%

After the mixing, the composites were cast in respective molds for compression and
flexural strength tests followed by their compaction and removal of air voids by placing
them on vibrating tables for about 1–2 min. The cement composite molds were then cured
at room temperature (28 ◦C ± 3 ◦C), whereas the geopolymer composite molds were first
cured in the oven at 70 ◦C for 24 h. After 24 h of curing and demolding, the cement
composite samples were cured in water and the geopolymer composite samples were cured
at room temperature (28 ◦C ± 3 ◦C) for 28 days.

2.2.2. Exposure to Elevated Temperatures

After 28 days of curing and drying of the composites, all specimens were heated
at designated elevated temperatures in the electric kiln with a maximum temperature
rating of 1200 ◦C. The samples were heated to four different temperature ranges of 200 ◦C,
400 ◦C, 600 ◦C, and 800 ◦C. The heating rate for all the samples was kept at 5 ◦C per
minute, as recommended by RILEM [43], until the desired temperature was attained. For
measuring the ambient temperature in the kiln and temperature on the surface of the
samples, two “type K” thermocouples were used which were connected to the data logger.
After attaining the desired temperature, the samples were kept in the kiln for an additional
120 min to ensure that the core temperature also attained the desired temperature. After
heating, the samples were left inside the kiln, as shown in Figure 2, overnight to cool in
ambient temperature inside the laboratory and then weighed to determine any weight loss.
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Overall, four different types of specimens were cast which were unreinforced cement
composite (CC), AMF reinforced cement composite (AMF-CC), unreinforced geopolymer
composite (GC), and AMF reinforced geopolymer composite (AMF-GC). For each type
of composite, three specimens were cast for each temperature of ambient, 200 ◦C, 400 ◦C,
600 ◦C, and 800 ◦C.

2.3. Experimental Test-Setup

For the compressive strength tests, 50 mm cubes were prepared according to Australian
standard AS1012.9:20210 [44], and for the flexural strength tests, plate specimens with
400 × 40 × 15 mm dimensions were prepared. Thin plate specimens are widely used by
various researchers in short fibre reinforced cementitious composites. The specimen size
used in flexural specimens in this study is very similar to that used by others, including
the authors in a previous study [18]. The compression strength test was conducted as per
AS 1012.9:2014 [44] using a 300 kN capacity Shimadzu universal testing machine, and the
flexural strength test was conducted on a 50 kN capacity universal testing machine. For the
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flexural strength test, 3-point loading with a central point load was applied on the plate
specimens with a clear span of 300 mm and a loading rate of 0.5 mm/min. A linear voltage
displacement transducer (LVDT) was placed at the center of the plate specimen to measure
the deflections in the flexural test.

3. Results and Discussions
3.1. Post-Heating Physical Properties

When exposed to elevated temperatures, both the cement and geopolymer composites
exhibited mass loss. The mass of the cube samples before and after heating were measured,
and the average values are presented in Figure 3. From this table, it can be seen that an
increase in the exposure temperature leads to greater mass loss, and the maximum mass loss
was observed in samples heated to 800 ◦C. Overall, the mass loss in geopolymer composites
was lower than that of the cement composites, especially at 800 ◦C where the average
mass loss in geopolymer composites was 11% versus 23% in cement composites. The mass
loss of 11% in the geopolymer composites is similar to the results of Hosan et al. [41], who
obtained similar values for un-reinforced geopolymer composites.
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The cracking behavior of the cement and geopolymer composites at ambient and
elevated temperatures is presented in Figure 4. For both the unreinforced and reinforced
cement composites (Figure 4a), there was no significant cracking at 200 ◦C and 400 ◦C.
However, on further increasing the temperature, cracks started appearing on the surface.
For the unreinforced cement composites at 600 ◦C, a significant number of cracks can be
seen on the surface, whereas only a small number of cracks can be seen on reinforced
cement composite specimens. For the geopolymer composites (Figure 4b), on the other
hand, none of the specimens cracked which is also exhibited by small amounts of mass loss
in these samples (Figure 3).

Also, the color of the specimens changed to slightly reddish at elevated temperatures.
For the cement composites, this color change started appearing at 400 ◦C while for the
geopolymer composites, this color shift started occurring at 600 ◦C. The cracking behav-
ior observed is similar to the behavior observed by Lu and Anson [45] and Shaikh and
Hosan [46]. For the cement composites, Lu and Anson [45] found that the unreinforced ce-
ment composites started cracking at 400 ◦C while the reinforced cement composites started
cracking at 600 ◦C and the cracking became severe with the further increase to 800 ◦C.
Shaikh and Hosan [46] also observed that the cracking in steel fibre reinforced cement
composites (SFRC) started occurring at 600 ◦C and became severe at 800 ◦C while the steel
fibre reinforced geopolymer composite showed no sign of cracking up until 800 ◦C.
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3.2. Residual Compressive Strength

The compressive strength test results of both cement and geopolymer composites
reinforced by amorphous metallic fibres are presented in Figure 5. At the initial rise in
temperature from 28 ◦C to 200 ◦C, cement and geopolymer composites exhibited different
behavior as the strength of reinforced cement composites reduced from 66 MPa to 58 MPa
while the strength of reinforced geopolymer composites increased from 69 MPa to 76 MPa.
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However, after 200 ◦C, both composites exhibited similar behavior as their strength reduced
with the increase in temperature. The compressive strength of the reinforced cement
composites was reduced to 50 MPa, 29 MPa, and 29 MPa at 400 ◦C, 600 ◦C, and 800 ◦C
respectively. The corresponding reduced compressive strengths of reinforced geopolymer
composites were 51 MPa, 36 MPa, and 31 MPa, respectively. The percentage reduction
in compressive strength of both the samples is presented Figure 6 which also shows an
initial increase in compressive strength of geopolymer concrete (by 10%) at 200 ◦C and then
further reduction by 26%, 50% and 56% at 400 ◦C, 600 ◦C, and 800 ◦C respectively.
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Similar results in the reduction of residual compressive strength of fibre-reinforced
cement and geopolymer composites at elevated temperatures have been obtained by
previous researchers. As the composite is heated, cracks begin to appear and expand
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gradually due to a number of reasons including hydration and dehydration of C-S-H in the
matrix, thermal incompatibility of aggregates and cement, and pore pressure generated by
water in the pores [47,48]. The addition of fibres bridges the cracks and the high melting
point of fibres can result in a good performance at elevated temperatures [49]. For the
SFRCs, Poon et al. [50] reported residual strengths of 50% and 25% at 600 ◦C, and 800 ◦C
respectively. In another study, Chen and Liu [51] reported residual strengths of 90%, 60%,
and 38% at the temperatures of 400 ◦C, 600 ◦C, and 800 ◦C respectively. Bezerra et al. [52]
also reported 59% residual strength of SFRC at the temperature of 500 ◦C. A comparison of
SFRC results at similar elevated temperatures to that of the present study is presented in
Table 3. From this table, it can be seen that AMF reinforced cement composite possesses
good residual strength at elevated temperatures which is comparable to that of the SFRCs.
This table also indicates that the SFRCs with higher fibre ratios possess higher residual
strength which is consistent with the conclusion of Chen et al. [53] that the increase in fibre
ratio has a direct relation with the residual strength. Another interesting observation is the
residual strength of AMF reinforced concrete at the temperature of 800 ◦C, where it still has
44% residual compressive strength which is higher than that of the corresponding SFRCs
except Ismail et al. [54], who used high strength concrete.

Table 3. Comparison of residual compressive strengths of steel fibre reinforced composites at
elevated temperatures.

Study Fibre Content Strength
Temperature (◦C)

Ambient 200 400 600 800

Present study 0.75%
Compressive strength (MPa) 66 58 50 29 29

Residual strength (%) 88 76 44 44

Shaikh and Hosan [46] 0.75%
Compressive strength (MPa) 48 42 40 27 20

Residual strength (%) 88 83 56 42

Lau and Anson [45] 1%

Compressive strength (MPa) 45 34 30 20 12
Residual strength (%) 76 67 44 27

Compressive strength (MPa) 60 48 40 33 17
Residual strength (%) 80 67 55 28

Colombo et al. [55] 2%
Compressive strength (MPa) 75 62 59 47 -

Residual strength (%) 83 78 63 -

Li et al. [56]
1%

Compressive strength (MPa) 40 38 48 29 8
Residual strength (%) 95 120 73 20

2%
Compressive strength (MPa) 37 36 40 34 7

Residual strength (%) 97 108 92 19

Ismail et al. [54] 0.50%
Compressive strength (MPa) 52 49 50 42 38

Residual strength (%) 95 97 81 74

For the steel reinforced geopolymer composite, Shaikh and Hosan [46] evaluated the
compressive strength of sodium activator-based geopolymer composites reinforced with
the same steel fibres ratio of 0.75%. They obtained the residual compressive strength of
128%, 111%, 89%, and 59% at the temperatures of 200 ◦C, 400 ◦C, 600 ◦C, and 800 ◦C
respectively. These values are relatively higher than those achieved for AMF reinforced
geopolymer composites reported in this study which are probably due to added advantage
of geopolymer composites with steel fibres. Since the number of research studies on AMF
reinforced geopolymer composites is not enough, therefore, more experimental data is
required to reach any conclusion.

3.3. Residual Flexural Strength

Load and mid-span deflection behaviour of the unreinforced and AMF reinforced
cement and geopolymer composites are presented in Figures 7 and 8, respectively. At the
same temperature for all composites, it can be seen that the flexural load capacity increases
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when the composites are reinforced with AMFs and the ductility of the specimens also
improves significantly as exhibited by the plateau of load-displacement curves after the
initiation of cracks. The average load capacities of cement composites at ambient, 200 ◦C,
and 400 ◦C are improved by 90%, 67%, and 90% respectively when reinforced with AMF.
Similarly, the average load capacities of geopolymer composites at ambient, 200 ◦C, 400 ◦C,
600 ◦C, and 800 ◦C are improved by 7%, 8%, 49%, 122%, and 102% respectively when
reinforced with AMF.
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The improvement in ductility of the composites with AMF reinforcement is attributed
to the friction bond between AMF fibres and the matrix of the composites. After the
formation of the first crack under bending deformation, if the friction between AMF fibres
and the matrix is greater than the applied load, then more cracks are formed and the
specimen keeps on resisting more loads with increased deformations. This resistance of
higher loads with higher deformations leads to deflection hardening behavior and the
ductility of the member is significantly improved.
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For the cement composites, the increase in temperature has adverse effects on the load
capacity of the members as the load capacity decreased with the increase in temperature
(Figure 7). Also, the cement composites which were heated at temperatures higher than
400 ◦C could not be tested as the specimens completely deteriorated. The average load
capacities were reduced by 17% and 24% at 200 ◦C and 400 ◦C respectively. The correspond-
ing decrease in load capacities of reinforced cement composites was 26% and 24%. Similar
behavior was observed in geopolymer composites as the load capacity decreased with
increasing temperature except at 400 ◦C (Figure 8e,f) at which there was an increase in the
capacity as compared to the capacity at 200 ◦C (Figure 8c,d). The average load capacities
of the unreinforced geopolymer composites were reduced by 19%, 40%, 80%, and 82%
at 200 ◦C, 400 ◦C, 600 ◦C, and 800 ◦C respectively. The corresponding decrease in load
capacities of AMF reinforced geopolymer composites were 17%, 14%, 56%, and 64% respec-
tively. Significant reduction in the ductility was observed in the geopolymer composites
at elevated temperatures as the deformation at higher loads reduced drastically even as
compared to the ones for cement composite at 400 ◦C (Figure 7e,f). Both the unreinforced
and reinforced geopolymer composites exhibited brittle failure at 600 ◦C (Figure 8g,h) and
800 ◦C (Figure 8i,j). Similar behavior of reduced deformations at peak loads for geopolymer
composites was observed by Shaikh et al. [18] in heat-cured geopolymer composites as
compared to cement composites.

The flexural strengths and change in flexural strengths of reinforced cement and rein-
forced geopolymer composites at elevated temperatures are presented in Figures 9 and 10,
respectively. At the ambient temperature, reinforced cement composites had a slightly
higher flexural strength than their counterpart geopolymer composites. When the temper-
ature was increased to 200 ◦C (Figure 9), the flexural strength of the cement composites
reduced from 10.8 MPa to 7.90 MPa, and the flexural strength of the reinforced geopolymer
composites reduced from 10.2 MPa to 8.6 MPa, surpassing the flexural strength of cement
composite. As the temperature increased to 400 ◦C, the flexural strength of both the cement
and geopolymer composites slightly improved to 8.1 MPa and 8.8 MPa respectively. The
cement composites beyond 400 ◦C could not be tested and the flexural strength of geopoly-
mer composites was reduced to 4.4 MPa and 3.6 MPa at 600 ◦C and 800 ◦C respectively.
The residual strength of the cement composites at 200 ◦C and 400 ◦C was 74% and 76%
respectively whereas the residual strength of the geopolymer composites at 200 ◦C, 400 ◦C,
600 ◦C, and 800 ◦C was 84%, 86%, 44%, and 36% respectively (Figure 10).
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Figure 10. Change in flexural strength of AMF reinforced cement and geopolymer concrete at
elevated temperature.

A comparison of residual flexural strength of AMF reinforced cement composites with
SFRCs at similar elevated temperatures is given in Table 4. For all the composites, it can
be seen that the residual flexural strength decreases with an increase in temperatures, and
the composites with higher fibre ratios possess higher residual strengths at the elevated
temperature of 200 ◦C. Interestingly, at 400 ◦C, the residual flexural strength of AMF-
CC with a lower fibre ratio was higher than the other SF-GC with higher fibre ratios. A
similar decrease in the residual flexural strength at different elevated temperatures was
also evaluated by Pliya et al. [57], Choumanidis et al. [58], and Jameran et al. [59]. At
temperatures higher than 400 ◦C, the AMF-CC could not be tested whereas the SFRCs with
higher steel fibre ratio possess relatively good strength even at higher temperatures. To
draw the comparison at these temperatures, further research is needed with higher ratios
of AMF in composites.
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Table 4. Comparison of residual flexural strengths of steel fibre reinforced composites at
elevated temperatures.

Study Fibre Content Strength
Temperature (◦C)

Ambient 200 400 600 800

Present study 0.75%
Flexural strength (MPa) 10.8 7.9 8.1 - -
Residual strength (%) 73 75 - -

Lau and Anson [45] 1%

Flexural strength (MPa) 6 5 3 1.2 0.1
Residual strength (%) 83 50 20 2

Flexural strength (MPa) 8 7 4 2.8 1
Residual strength (%) 88 50 35 13

Colombo et al. [55] 2%
Flexural strength (MPa) 4 3 2 2 -
Residual strength (%) 84 45 39 -

The toughness of the reinforced cement and geopolymer composites was also cal-
culated and the average results are presented in Figure 11. Toughness is an important
parameter to assess the energy absorption capacity of a member and is calculated by the
area under the load-deflection curve up to a given deflection. In Figure 11 the toughness
presented has been calculated using the area under the load-deflection curves until the
point of peak load and the values given are the average of 3 specimens. Overall, the
toughness of AMF reinforced geopolymer composites was higher than that of the cement
composites and these toughness values increased up to 400 ◦C. The toughness increased
slightly for cement composites whereas there was a sudden jump in the toughness of rein-
forced geopolymer composites at 400 ◦C as the toughness increased by 230% as compared
to the toughness at ambient temperature. After 400 ◦C, there was a sharp decrease in the
toughness of reinforced geopolymer composite, however, the toughness at 800 ◦C was still
higher in reinforced geopolymer composite than the toughness at ambient temperature.
The toughness results are also consistent with previous research studied on fracture tough-
ness and fracture energy [60,61], which found that the fracture energy of the composites
increases gradually as the temperature increases from 25 ◦C to 400 ◦C. As compared to the
sharp crack development at room temperature, the crack development and propagation at
higher temperatures are quite complex and this complexity is exacerbated by the inclusion
of fibres [49].

Fibers 2023, 11, x FOR PEER REVIEW 14 of 19 
 

draw the comparison at these temperatures, further research is needed with higher ratios 
of AMF in composites. 

Table 4. Comparison of residual flexural strengths of steel fibre reinforced composites at elevated 
temperatures. 

Study Fibre Content Strength 
Temperature (°C) 

Ambient 200 400 600 800 

Present study 0.75% 
Flexural strength (MPa) 10.8 7.9 8.1 - - 
Residual strength (%)  73 75 - - 

Lau and Anson 
[45] 1% 

Flexural strength (MPa) 6 5 3 1.2 0.1 
Residual strength (%)  83 50 20 2 

Flexural strength (MPa) 8 7 4 2.8 1 
Residual strength (%)  88 50 35 13 

Colombo et al. [55] 2% Flexural strength (MPa) 4 3 2 2 - 
Residual strength (%)  84 45 39 - 

The toughness of the reinforced cement and geopolymer composites was also calcu-
lated and the average results are presented in Figure 11. Toughness is an important pa-
rameter to assess the energy absorption capacity of a member and is calculated by the area 
under the load-deflection curve up to a given deflection. In Figure 11 the toughness pre-
sented has been calculated using the area under the load-deflection curves until the point 
of peak load and the values given are the average of 3 specimens. Overall, the toughness 
of AMF reinforced geopolymer composites was higher than that of the cement composites 
and these toughness values increased up to 400 °C. The toughness increased slightly for 
cement composites whereas there was a sudden jump in the toughness of reinforced geo-
polymer composites at 400 °C as the toughness increased by 230% as compared to the 
toughness at ambient temperature. After 400 °C, there was a sharp decrease in the tough-
ness of reinforced geopolymer composite, however, the toughness at 800 °C was still 
higher in reinforced geopolymer composite than the toughness at ambient temperature. 
The toughness results are also consistent with previous research studied on fracture 
toughness and fracture energy [60,61], which found that the fracture energy of the com-
posites increases gradually as the temperature increases from 25 °C to 400 °C. As com-
pared to the sharp crack development at room temperature, the crack development and 
propagation at higher temperatures are quite complex and this complexity is exacerbated 
by the inclusion of fibres [49]. 

 

Figure 11. Toughness of AMF reinforced cement and geopolymer concrete at elevated temperature.



Fibers 2023, 11, 31 14 of 18

3.4. Microstructure Analysis of Cement and Geopolymer Composites

The scanning electron microscope (SEM) images of reinforced cement composites and
geopolymer composites are presented in Figures 12 and 13, respectively. For the AMF fibres at
ambient temperatures in the cement composite (Figure 12a) and in the geopolymer composite
(Figure 13a), it can be seen that the surface of the fibre is relatively rough and the matrix is also
present on the surface of the fibre. For the cement composite (this matrix is smaller in amount
than the geopolymer composite which explains the reason for the higher compressive and
flexural strengths of geopolymer composites than the cement composites. As the temperature
increases, the amount of matrix on the fibres decreases. For the cement composites at 800 ◦C
(Figure 12b), it can be seen that the amount of matrix on the fibres is negligible which resulted
in significant cracking in lower residual flexural strength of reinforced composites. However,
for the reinforced geopolymer composite at 800 ◦C, the surface of the fibre is relatively rough
than that of the cement composite and a higher amount of geopolymer matrix is present on
the surface of the fibre. This rough surface of the fibre and higher amount of matrix explains
the reason for negligible cracking in the geopolymer composite specimens and higher residual
compressive and flexural strength of these composites.
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It has been well established that the increase in temperature negatively affects the
properties of composites, however, geopolymer-based composites perform better than
cement-based composites [62,63]. The C-S-H and CH products in cement composites are
affected more at higher temperatures along with an increase in the porosity of the cement
composites [45] which results in faster degradation of matrix-fibre bond and reduction
of fibre efficiency [64]. For the geopolymer composites, the (N-A-S-H) gel has higher
stability at elevated temperatures and the presence of mullite, a stable crystalline phase of
Al2O3-SiO2 which possesses high thermal stability, also contributes to superior mechanical
properties at elevated temperatures [41]. Shaikh and Hosan [46] conducted SEM image
analysis of steel fibres in cement and geopolymer composites and found that the steel
fibres in the cement composites showed surface layers peeling at 600 ◦C whereas no such
deterioration of the same fibres was observed in geopolymer composites even at 800 ◦C.
Therefore, the embedment of fibres in the geopolymer composites helps in the retention of
fibre properties even at elevated temperatures.
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4. Conclusions

In this research study, experimental tests were conducted on unreinforced and amor-
phous metallic fibre (AMF) reinforced cement and geopolymer composites to assess their
residual behavior after exposed to elevated temperatures. The following conclusions are
drawn based on the research study:

• The average mass loss in unreinforced and AMF reinforced cement composites was
higher than their geopolymer counterparts at all elevated temperatures.

• Cracking was negligible in both the AMF reinforced cement and geopolymer compos-
ites up to 400 ◦C. At 600 ◦C and 800 ◦C temperatures the AMF reinforced geopolymer
composites exhibited no cracking.

• The compressive strength of AMF reinforced geopolymer composites was higher than
that of cement composites at all temperature levels. The residual compressive strength
of reinforced cement composites at 200 ◦C, 400 ◦C, 600 ◦C, and 800 ◦C was 88%, 76%,
44%, and 45% to that of the strength at ambient temperature. The corresponding
residual strength of reinforced geopolymer composites was 110%, 74%, 49%, 45%.

• Similar to the compressive strength, the flexural strength of the composites also re-
duced with increasing temperature and the flexural strength of the AMF reinforced
geopolymer composites was higher than that of cement composites at all elevated
temperatures. The residual flexural strengths of AMF reinforced cement composites at
200 ◦C, 400 ◦C, 600 ◦C were 76%, 78% respectively, while the residual flexural strengths
of AMF reinforced geopolymer composites at 200 ◦C, 400 ◦C, 600 ◦C, and 800 ◦C were
80%, 81%, 43%, and 45% to that of the strength at ambient temperature.

• Scanning electron microscopic images also showed increased deterioration of cement
composites at higher temperatures than the geopolymer composites. At the tem-
perature of 800 ◦C, a negligible amount of cement matrix was present on the fibres
which results in significant cracking and lower residual strengths than the geopolymer
composites in which a higher amount of geopolymer matrix was still present on the
fibres. The superior fire resisting properties of the geopolymer matrix also help in the
retention of the fibre integrity at elevated temperatures.
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60. Nielsen, C.V.; Biéanić, N. Residual fracture energy of high-performance and normal concrete subject to high temperatures. Mater.
Struct. 2003, 36, 515–521. [CrossRef]

61. Menou, A.; Mounajed, G.; Boussa, H.; Pineaud, A.; Carre, H. Residual fracture energy of cement paste, mortar and concrete
subject to high temperature. Theor. Appl. Fract. Mech. 2006, 45, 64–71. [CrossRef]

62. Lahoti, M.; Tan, K.H.; Yang, E.-H. A critical review of geopolymer properties for structural fire-resistance applications. Constr.
Build. Mater. 2019, 221, 514–526. [CrossRef]

63. Amran, M.; Huang, S.-S.; Debbarma, S.; Rashid, R.S.M. Fire resistance of geopolymer concrete: A critical review. Constr. Build.
Mater. 2022, 324, 126722. [CrossRef]

64. Ahmad, S.; Rasul, M.; Adekunle, S.K.; Al-Dulaijan, S.U.; Maslehuddin, M.; Ali, S.I. Mechanical properties of steel fibre-reinforced
UHPC mixtures exposed to elevated temperature: Effects of exposure duration and fibre content. Compos. Part B Eng. 2019, 168,
291–301. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.conbuildmat.2019.03.138
http://doi.org/10.1016/j.conbuildmat.2010.11.064
http://doi.org/10.1016/j.conbuildmat.2016.10.089
http://doi.org/10.1016/j.proeng.2015.11.146
http://doi.org/10.1007/BF02480828
http://doi.org/10.1016/j.tafmec.2005.11.007
http://doi.org/10.1016/j.conbuildmat.2019.06.076
http://doi.org/10.1016/j.conbuildmat.2022.126722
http://doi.org/10.1016/j.compositesb.2018.12.083

	Introduction 
	Experimental Program 
	Materials 
	Specimen Preparation 
	Casting and Curing 
	Exposure to Elevated Temperatures 

	Experimental Test-Setup 

	Results and Discussions 
	Post-Heating Physical Properties 
	Residual Compressive Strength 
	Residual Flexural Strength 
	Microstructure Analysis of Cement and Geopolymer Composites 

	Conclusions 
	References

