Supplementary Materials: Infrared Imaging of Cotton Fiber Bundles Using a Focal Plane Array Detector and a Single Reflectance Accessory ⁺

Michael Santiago Cintrón, Joseph G. Montalvo, Terri Von Hoven, James E. Rodgers, Doug J. Hinchliffe, Crista Madison, Gregory N. Thyssen and Linghe Zeng

Figure S1. Instrumental setup described in the material section, a Bruker IMAC sampling Chamber equipped with a single reflectance attenuated total reflection (ATR) unit. The Focal Plane Array Detector is not visible.

Figure S2. Infrared spectrum of a rayon fabric as collected with an ATR and focal plane array (FPA) system.

Figure S3. Infrared spectrum of a cotton fiber bundle as collected with a benchtop ATR (solid black line) and the ATR and FPA system (grey dashed line).

Figure S4. Chemical images (IR distribution map) for a cotton fiber bundle at two developmental points are shown: (**a**) 18 DPA and (**b**) mature (60+ DPA). The chemical distribution map was produced with a FTIR instrument equipped with a single reflection ATR accessory and a FPA Mid-IR detector. Spectral data was grouped into defined 8 × 8 pixel areas and normalized to the 1028 cm⁻¹. Map tones reflect the integration intensity of the C–O shoulder band near 986 cm⁻¹. Red and pink tones correspond to high intensity integrations, while dark blue color corresponds to integrations near zero.

© 2016 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).