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Abstract: Ballistic impact induces multiaxial loading on Kevlar® and polyethylene fibers used
in protective armor systems. The influence of multiaxial loading on fiber failure is not well
understood. Experiments show reduction in the tensile strength of these fibers after axial and
transverse compression. In this paper, we use molecular dynamics (MD) simulations to explain
and develop a fundamental understanding of this experimental observation since the property
reduction mechanism evolves from the atomistic level. An all-atom MD method is used where
bonded and non-bonded atomic interactions are described through a state-of-the-art reactive force
field. Monotonic tension simulations in three principal directions of the models are conducted to
determine the anisotropic elastic and strength properties. Then the models are subjected to multi-axial
loads—axial compression, followed by axial tension and transverse compression, followed by
axial tension. MD simulation results indicate that pre-compression distorts the crystal structure,
inducing preloading of the covalent bonds and resulting in lower tensile properties.
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1. Introduction

High performance polymeric fibers such as Kevlar® and ultra-high molecular weight polyethylene
(UHMWPE) are used in ballistic impact applications [1] due to their superior specific tensile stiffness
and strength. The fiber is highly crystalline with a fibrillar structure. In Kevlar®, fibril diameter is in the
range of 10 to 50 nm for Kevlar® KM2 [2] and the fibrils are connected through a network of hydrogen
bonds and van der Waals and coulombic type non-bonded interactions. The foundational element of
Kevlar® fiber is the crystalline lattice [3]. Based on X-ray diffraction studies, models of the Kevlar®

crystalline structures have been proposed [4–6]. In the crystallites, chain segments are positioned into
the unit cells according to the structure and morphology of the crystallites. In crystallographic terms,
the lattice unit cell as shown in Figure 1 is the smallest entity that contains all the information required
to construct a complete crystal. Figure 2 shows the orthorhombic p-phenylene terephthalamide (PPTA)
crystal structure proposed by Northolt et al. [4,5] and Tashiro et al. [6]. This unit cell contains two
molecular repeating units per crystal lattice, one at the center of the cell and four one-fourth units
at each corner of the cell. This orthorhombic unit cell has dimensions a = 0.787 nm, b = 0.518 nm,
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and c = 1.29 nm [5,6]. In the YZ (bc) lattice plane, hydrogen bonds (dotted blue lines in Figure 3) form
between the neighboring NH and CO end groups due to the close proximity of the chains. While in
the XY (ab) plane, there are no hydrogen bonds between the chains. In the XY (ab) plane, inter-chain
interactions are only non-bonded van der Waals (vdW) and coulombic interactions. In terms of
bonding strength, vdW and coulombic interactions are weaker than hydrogen bond and hydrogen
bonds are weaker than covalent bond that exist between different atoms in the chain. Therefore,
from the mechanical point of view, the crystal is anisotropic. It is stronger in the Z (c) axis, weaker in
the Y (b) axis, and weakest in the X (a) axis.
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Figure 1. Repeating unit of Kevlar® chain. (Atom color: black—carbon, white—hydrogen, red—oxygen,
and blue—nitrogen).
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Figure 2. Kevlar® crystal unit cell. (Atom color: black—carbon, white—hydrogen, red—oxygen,
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Figure 3. Hydrogen bonds (dotted blue lines) in between the adjacent Kevlar® chains.

Figure 4 shows the crystalline lattice unit cell of polyethylene (PE). This orthorhombic unit
cell has dimensions a = 0.74 nm, b = 0.493 nm, and c = 0.2534 nm [7]. Along the X and Y directions,
chains interact with non-bonded van der Waals (vdW) interactions. Like Kevlar®, a structural hierarchy
of sizes also exists in the UHMWPE fibers, with macro-fibrils consisting of bundles of micro-fibrils,
which in turn are composed of bundles of nano-fibrils. Nano-fibrils consist of stacks of crystallites
separated by thin non-crystalline plates, portions of which are spanned by inter-crystalline bridges



Fibers 2017, 5, 7 3 of 16

giving a shish-kebab structure [8]. Studies show that the key morphological features of the structures
of the UHMWPE fiber at different length scales depend on the process history [9].
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Predicting fiber failure is a key to predict the ballistic impact performance of textile fabric armor
systems. However, fiber failure within a yarn and a fabric during impact is a very complicated
multiscale problem. Projectile-fiber contact induces multiaxial loading [10–12] on fibers that includes
axial tension, axial compression (AC), transverse compression (TC), and transverse shear. Post-failure
investigation of impacted fabrics indicates transverse permanent deformation (flattening) of fibers [13].
There is some evidence in the literature indicating the presence of bending of fibers [14] and
compressive kink bands in polymer composites under ballistic impact [15]. In addition, fiber-level
models predict flexural wave-induced curvature resulting in compressive kinking of fibers [11].
The UHMWPE Dyneema SK 76 fibers display a strain rate dependent modulus and strength behavior
in high strain rate axial tension [16], whereas the longitudinal properties of Kevlar® KM2 fibers are
insensitive to strain rates [17]. Under quasi-static transverse compression both Dyneema SK76 [18]
and Kevlar® KM2 [19] exhibit nonlinear inelastic behavior. For a detailed literature survey on the
experimental work of the materials used in this study the reader is referred to [1]. The effect of AC
and TC deformation modes on the fiber tensile failure strength has not been studied extensively.
There are few atomistic simulations studies [20–25] that focused on the elastic and strength properties
of Kevlar® and PE crystal. Rutledge et al. [20] have determined the elastic properties of Kevlar® crystal
through atomistic simulations. Grujicic et al. [21,22] studied the properties of Kevlar® filament using
non-reactive force field COMPASS (Condensed-phase Optimized Molecular Potentials for Atomistic
Simulation Studies) [26]. In one study [21], they investigated the effects of microstructural and
topological defects such as chain ends, inorganic-solvent impurities, chain misalignments, and sheet
stacking faults on the strength, ductility, and stiffness of PPTA filament. In another study [22],
they investigated the effect of prior AC and torsion on the axial tensile properties of Kevlar® filament.
They reported that the tensile properties were unchanged under small amounts of pre-compression
(~5% strain). Recently, Yilmaz et al. [23] and Mercer et al. [24] have studied the anisotropic elastic and
strength properties of Kevlar® crystal using reactive force field ReaxFF [27]. O’Connor et al. [25] have
studied the effects of chain ends on the elastic and strength properties of PE crystal using a modified
version of reactive force field AIREBO (Adaptive Intermolecular Reactive Empirical Bond Order) [28].

The goal of this paper is to gain insights into the effect of AC and TC on the residual tensile
strength of Kevlar® KM2 and PE fiber. Experimental observations of individual single fiber quasi-static
(QS) response due to AC and TC and the effect of AC and TC on tensile fiber failure are first
summarized. An all-atom MD model of Kevlar® and PE is developed to better understand the
experimental observations and the associated mechanisms at the atomistic-scale. The effect of AC and
TC on the tensile response of the crystalline structure is studied with the MD model. Open source
molecular dynamics code LAMMPS [29] is used for all molecular dynamics simulations and VMD
(Visual Molecular Dynamics) [30] is used for model visualization. Reactive force field ReaxFF [27] is
used for Kevlar® modeling and AIREBO [28] is used for PE modeling.
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2. Experimental Observations

The effect of AC and TC on the residual tensile strength of Kevlar® KM2 fibers is summarized
in this section. The curvature predicted by the fiber-level impact model [11] is physically induced
by wrapping single Kevlar® KM2 fibers around a Boron fiber of radius 55 µm. AC induces the
formation of kink bands in the fiber, as shown in Figure 5a. A kink band density of 70 kinks per
mm and a kink band angle of 60◦ measured from the fiber axis are observed. The axial compressive
strains are inversely proportional to the wrapping radius Rm. Therefore, a smaller wrapping radius
(higher curvature) results in higher axial compressive strains and, hence, higher kink band density [31].
The QS mean tensile strength of the kinked fibers is found to be 7% lower than the baseline fibers.
The statistical analysis using a 3-parameter Weibull model indicates a higher probability of fiber failure
for kinked fibers at a given tensile strength, as shown by the cumulative distribution function (CDF)
in Figure 5b. The probability density function (PDF) and cumulative distribution function (CDF) are
given in Equations (1) and (2).

f (σ) =
m
σ0

(
σ− γ

σ0

)m−1
e−(

σ−γ
σ0

)
m

(1)

F(σ) = 1− exp
(
−
(

σ− γ

σ0

)m)
(2)

where σ0 is the scale parameter, m is the shape parameter, and γ is the location parameter of the
Weibull distribution. The scale and shaper parameters determined by fitting the tensile strength data
to the Weibull distribution are shown in Table 1.

Table 1. Weibull parameters.

Fiber Types Scale Parameter (σ0) Shape Parameter (m) Location Parameter (γ)

Baseline fibers 5.31 12.54 −1.24
Kinked fibers 4.55 8.20 −0.69

Post-failure investigation of the failed fibers indicates significant deformation and fibrillation
around the kink bands, as shown in Figure 5c. In general, fibrillation is found to be the failure mode
for both kinked and baseline fibers, as shown in Figure 5d.
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Figure 5. Effect of axial compression (AC) (a) kink bands [1] (Reproduced with permission
from [1], SAGE, 2016); (b) cumulative distribution function (CDF); (c) fibrillation around kink bands;
and (d) fibrillated fiber failure.

Upon transverse impact, fibers are subjected to transverse compressive deformation that is
sufficient to cause permanent deformation and fibrillation during short time scales [1,32]. The fibers
exhibit a nonlinear inelastic response in transverse compression [19]. TC induces permanent
deformation and growth of the fiber in the direction perpendicular to the loading direction, as shown
in Figure 6a. To understand the effect of TC on residual tensile strength, single fibers compressed at
different nominal strains are tested in axial tension. The compressed fibers of 12.7 mm gage length are
then tested in axial tension in an Instron micro tester according to ASTM D 3822-01. A 5N load cell
and a rate of 0.1 in/min are used to test all the fibers. A total of 25 samples each are tested for different
levels of TC. The fibers subjected to a 60% nominal TC strains showed a 20% reduction in the average
tensile strength compared to baseline fibers. This reduction in the tensile strength may be attributed to
the damage induced by TC. The residual tensile strength data is fitted using a Weibull distribution,
and the CDF plots are shown in Figure 6b. The CDF of the compressed fibers shifts to the left with
increasing levels of applied compressive strains. Therefore, there is a higher probability of failure for
compressed fibers at a given tensile strength.
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(Reproduced with permission from [19], Elsevier, 2016).

Similar to Kevlar® KM2, UHMWPE Dyneema SK76 fibers exhibit a nonlinear inelastic behavior
in TC. The compressive elastic modulus of Dyneema SK76 is higher than Kevlar® KM2. However,
the yield stress of Dyneema SK76 fibers is lower and the response is compliant (exhibit higher growth
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in the compressed width under TC) compared to Kevlar® KM2 fibers [18]. The atomic force microscopy
(AFM) images of a compressed fiber surface indicate a higher degree of fibrillation in the UHMWPE
fibers compared to Kevlar® KM2 fibers, as shown in Figure 7. This observation may be attributed to
the weaker inter-fibrillar interactions in UHMWPE fibers.
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strain and (b) Dyneema SK76 at 71% nominal strain [18]. (Reproduced with permission from [18],
Elsevier, 2017).

3. Molecular Simulations Details

3.1. Model Development

The Kevlar® and PE models are constructed by replicating the corresponding unit cell in the X, Y,
and Z directions. Figure 8 shows a three-dimensional view of the Kevlar® and PE models. The chains
are aligned along the Z-axis. The dimensions of the Kevlar® model are 4.722× 5.180× 5.160 nm, and it
has 13,440 atoms. The PE model has dimensions 5.180 × 4.930 × 5.068 nm, and it has 16,800 atoms.
All models are equilibrated before applying mechanical loads.
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3.2. Force Field

For MD simulations, the choice of the right force field is critical since the properties of the
analyzed materials are very sensitive to the force field being used in the MD simulations. We have
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used reactive force fields to model the bonded and non-bonded interactions so that, under large
deformation, bonds can rupture. For Kevlar®, state-of-the-art reactive force field ReaxFF [33] is used.
A full description of all ReaxFF potential functions can be found elsewhere [34]. ReaxFF has different
versions dedicated to different materials ranging between polymer, metals, glass, and ceramics [35].
ReaxFF parameter sets developed by Liu et al. [27] for polymer and energetic materials are used for
Kevlar®. Mercer et al. [24] have used Liu parameters in Kevlar® modeling, and they have shown
that this parameter set predicts well the structure and mechanical properties of Kevlar®. For PE,
widely used reactive force field AIREBO [28] is used. Equation (3) shows the functional form of
the AIREBO force field consisting of three terms. The first term EREBO

ij represents the short range

(r < 0.2 nm) two-body (bond) and three-body (angle) bonded interactions. The second term ELJ
ij

represents the two-body non-bonded pair interaction. This term adds long range (0.2 nm < r < cutoff)
interaction using a form similar to the 12-6 Lennard-Jones potential. The third term is the bonded
four-body (torsion) bonded interaction. Detailed formulae for the AIREBO potentials and parameters
values can be found elsewhere [28,29]. The cut-off function embedded in the switching function in
the REBO term introduces a dramatic increase in the interatomic force near the bond breaking length.
To avoid this overestimation, we use an inner cut-off radius of 0.2 nm for C–C interaction [36–38].

E =
1
2 ∑

i
∑
j 6=i

[
EREBO

ij + ELJ
ij + ∑

k 6=i,j
∑

l 6=i,j,k
Etors

ijkl

]
(3)

3.3. Simulations Conditions

Before applying a mechanical load, the models created in Section 3.1 are relaxed at 1 atmospheric
pressure with an NPT (isothermal-isobaric) ensemble to get the stable equilibrium structure.
The Kevlar® model is first heated at 500 K for 20 ps. Next it is cooled down to 300 K within
50 ps and then further relaxed at 300 K for 100 ps. The PE model is relaxed at 300 K for 400 ps
with an NPT ensemble. To apply a normal load, the models are subjected to uniform strain. For that,
the solution domain is linearly expanded (for tension) and contracted (for compression) with a constant
strain/displacement rate by scaling the coordinates of all atoms along the corresponding direction
at every time step followed by MD time integration [39]. To mimic the plane-stress condition,
movements in other directions (i.e., transverse to the loading direction) due to Poisson’s effect are
allowed (i.e., zero net force in these directions) [39]. MD simulations for loading are conducted using
an NPT ensemble at 300 K and 1 atmospheric pressure. The time step used in the MD time integration
is 0.1 fs, and strain rate used in the mechanical loading is 109 s−1. Periodic boundary conditions are
used in all simulations. Temperature and pressure are controlled by using Nose-Hoover thermostat
and barostate in LAMMPS.

Stress is calculated using the classic definition of virial stress [40,41].

σV
ij = − 1

V

N

∑
α=1

[
mαvα

i vα
j +

1
2 ∑

β 6= α

rαβ
ij f αβ

ij

]
(4)

where V is the model volume, N is the number of atoms in the model, m is the mass of atom, v is
the velocity of atom, r is the inter-atomic distance, and f is the inter-atomic force. The subscripts i
and j stand for the values of the X, Y, and Z directions. The above virial stress corresponds to true
stress. Engineering stress is determined by scaling the virial true stress with the initial cross-section
area (i.e., area at the starting of load) of the model. Engineering stress and strain are defined using the
following formula.

σ =
σV

ij × A

A0
(5a)

ε =
L− L0

L0
(5b)
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where A is the instantaneous cross-section area, A0 is the initial cross-section area, L0 is the initial gage
length, L is the current gage length, σ is the engineering stress, and ε is the engineering strain.

4. Results and Discussion

4.1. Mechanical Properties of the Virgin Crystals

The densities of the relaxed Kevlar® and PE models predicted by ReaxFF and AIREBO force
fields are 1.56 g/cc and 0.95 g/cc, which are in very good agreement with the experimental density of
1.48 g/cc for Kevlar® [3] and 0.91–0.97 g/cc for PE [8]. Figure 9 shows the tensile stress-strain responses
of the Kevlar® and PE in the fiber direction (Z-direction) loading. Tensile stress-strain responses in
the transverse direction loading are shown in Figure 10. The strength values are determined from the
peak value of the stress-strain curves. To determine the modulus, linear regression of the stress-strain
curves is performed in the strain range 0 < ε < 0.01.
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Figure 9. Variations of stress with strain for Kevlar® and PE in Z-direction (axial) tensile loading.
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Tensile modulus and strength values obtained from the stress-strain responses are presented in
Table 2. MD simulations results shows that Kevlar® has higher tensile modulus and tensile strength
than PE, consistent with experimental observations [16,42]. While PE is isotropic in the transverse
directions (i.e., in the X and Y directions), Kevlar® is anisotropic in the transverse directions. This is
due to the presence of hydrogen bonds in one transverse direction (here in Y direction) in Kevlar®.
The Z-direction (i.e., axial) tensile modulus and X-direction tensile modulus of Kevlar® obtained
from the present simulation are in good agreement with previous simulation values of 303 GPa and
13 GPa, respectively, obtained by Rutledge et al. [20] in their atomistic simulations. The axial modulus
obtained from the present simulation is very close to that (=320 GPa) reported by Mercer et al. [24]
using ReaxFF. However, simulation modulus and strength values are much higher than the upper
bound of the experimental modulus (~200 GPa) and strength (~4.0 GPa) values obtained for Kevlar®

fibers [3]. This could be attributed to the low strain rate used in the experiments as well as other factors
associated with the experimental fibers including the random orientation of crystals and different
microstructural and topological defects. For PE, the axial modulus of 257 GPa in the Z-direction
obtained from the present simulation is comparable with the experimental and simulation results,
which are in the range of 235–300 GPa, reported in the literature [25,43–45]. The axial modulus of PE
reported by O’Connor et al. [25] from MD simulation is 258 GPa, which is in excellent agreement with
the present simulation value.

Table 2. Tensile modulus and strength data of Kevlar® and PE crytal.

Models
Modulus (GPa) Strength (GPa)

X-Direction Y-Direction Z-Direction X-Direction Y-Direction Z-Direction

Kevlar® 12.0 74.0 325.0 0.80 1.19 31.90
PE 6.4 6.7 257.0 0.23 0.28 15.90

Figures 11–14 show the snapshots of damage for Kevlar® and PE under transverse and axial
tension. In transverse tension, non-bonded interaction and hydrogen bonding interaction (in the case
of Kevlar®) become weaker with large strain. As a result, chains separate and rotate, and the cystal
loses its structural integrity. Under axial tension, damage initiates through covalent bond breakages
(Figures 12b and 14).
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Figure 14. Chain breakage in PE under Z-tension.

4.2. Mechanical Properties of the Pre-Compressed Crystals

To identify the effects of AC and TC on the axial tensile modulus and strength, Kevlar® and
PE models are at first subjected to 25% axial and transverse compressive strain. This strain level
is far beyond the elastic limit as indicted by the compressive stress-strain response (not reported
here). Depending on the projectile radius and multiaxial loading angle, experimental ballistic fibers
experience more than 18% AC strain [46]. During TC, the fibers are subjected to strains as high as
77% [19]. To have consistency with the experimental strain range, we chose 25% strain in both the AC
and TC cases. The deformed models are relaxed for 60 ps for Kevlar® and 400 ps for PE to achieve
an equilibrium state. Then the models are subjected to axial tension. Figure 15 shows the tensile
stress-strain responses of the pre-compressed models along with the virgin models. Axially compressed
PE crystal is more compliant (Figure 15b), and it starts to pick up load when the crystal chains become
straight from their kinked form. Pre-compression reduces tensile modulus and strength leading to
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reduction factors up to 4% and 9% respectively for Kevlar®. For PE, significant reduction in the
modulus and strength are observed in AC compared to TC loading. Tensile modulus and strength
exhibit reduction factors of 19% and 12%, respectively, when the axially compressed crystal is subjected
to an axial tensile load. To gain more insight into this reduction mechanism, we have analyzed the
deformed crystal structure (Figures 16–19). AC and TC change the crystal morphology by distorting
the crystal structure through hydrogen bond breakages (in Kevlar®), weakening the non-bonded
interactions and chain rotation. The model loses its structural integrity through the chain separation,
which is analogous to fibrillation (i.e., splitting of fibers) observed in the fibers. Some distortions are
recovered during relaxation following the compression. However, a sufficient amount of distortion
remains in the structure (e.g., Figures 16c and 19c). Pre-compression changes the energetics of the
crystal structure. Significant change in the bonded and non-bonded interactions during compression
results in covalent bond elongation and contraction (Figure 20). Elongated bonds in the pre-compressed
crystal fail earlier (Figure 21) at lower tensile loads. As result, the mechanical performance of the
models with pre-compression decrease can be quantified by reduction factors. The percent reduction
in the axial tensile strength allows for comparison to experimental results [46]. It should be mentioned
that, unlike perfect crystal, experimental fibers have other sorts of defects that could influence the
failure strength and reduction factors under pre-compression.
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Figure 15. Effects of pre-compression on the axial tensile stress-strain response for (a) Kevlar® and
(b) PE.
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Figure 20. Effects of pre-compression on the distribution of key bond length in (a) Kevlar® and (b) PE.
(µ = mean, SD = standard deviation).
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Figure 21. Variation of the number of broken bonds with strain during tensile loading of virgin and
pre-compressed Kevlar® crystal.

5. Conclusions

All-atoms molecular dynamics (MD) simulations of Kevlar® and PE are carried out to understand
the tensile property reduction mechanism under multi-axial loadings. Anisotropic properties predicted
by the present simulations indicate that Kevlar® is stronger than PE. PE is found to be transversely
isotropic, while Kevlar® is transversely anisotropic due to the presence of hydrogen bonds in one
transverse direction. For multi-axial loadings, the models are first subjected to axial compression
(AC) and transverse compression (TC) by 25% strain. The compressed models are relaxed to get
an equilibrated structure, and then these are subjected to axial tension up to fracture. AC and TC
change the crystal morphology by distorting the crystal structure through hydrogen bond breakages
(in Kevlar®), weakening the non-bonded interactions and chain rotation. Though some distortions
are recovered during relaxation following the compression, a sufficient amount of distortion remains
in the structure, which reduces mechanical performance. Pre-compression reduces tensile modulus
and tensile strength up to 4% and 9%, respectively, for Kevlar® and up to 19% and 12%, respectively,
for PE. Experimentally, a reduction in the tensile failure strength of 7% is observed for Kevlar® KM2
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fibers due to prior AC, whereas Kevlar® KM2 fibers subjected to a 60% nominal TC strains showed
a 20% reduction in the average tensile strength compared to virgin fibers.
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