
fibers

Article

Exploration of Wave Development during Yarn
Transverse Impact

Matthew Hudspeth 1,†, Emily Jewell 2, Suzanne Horner 3, James Zheng 3 and Weinong Chen 1,4,*
1 School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN 47907, USA
2 Indiana University School of Medicine, Indiana University, Indianapolis, IN 46202, USA
3 Program Executive Office – Soldier, US Army, Fort Belvoir, VA 22060, USA
4 School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
* Correspondence: wchen@purdue.edu; Tel.: +1-765-494-1788
† Current address: Currently with Sandia National Laboratories, Albuquerque, NM 87123, USA.

Academic Editor: John W. Gillespie
Received: 5 December 2016; Accepted: 24 April 2017; Published: 16 May 2017

Abstract: Single yarns have been impacted in a transverse fashion so as to probe the characteristics of
resulting wave development. Longitudinal wave speeds were tracked in efforts to directly measure
the yarn tensile stiffness, resulting in a slight increase in the modulus of Kevlar R© KM2 and Dyneema R©

SK76. Additionally, the load developed in AuTx R© and Kevlar R© KM2 yarns behind the longitudinal
wave front has been recorded, providing additional verification for the Smith relations. Further
effort to bolster the Smith equations has been successfully performed via tracking transverse wave
speeds in AuTx R© yarns over a range of impacting velocities. Additional emphasis has been placed at
understanding the transverse wave development around the yarn critical velocity, demonstrating that
there is a velocity zone where partial yarn failure is detected. Above the critical velocity, measurement
of early time transverse wave speeds also agrees with the Smith solution, though the wave speed
quickly reduces in value due to the drop in tensile stresses resulting from filament rupture. Finally,
the Smith equations have been simplified and are compared to the Cunniff equation, which bear a
striking resemblance. Due to such a resemblance, it is suggested that yarn critical velocity experiments
can be performed on trial yarn material, and the effect of modifying yarn mechanical properties
is discussed.

Keywords: Kevlar R©; Dyneema R©; transverse impact; projectile; wave speed; Cunniff velocity;
critical velocity

1. Introduction

Although a rather uncommon experiment, transverse impact into single yarns has been historically
used to determine baseline yarn mechanical properties, specifically to determine yarn stiffness in
the longitudinal direction and the yarn critical velocity, wherein the material fails “instantly” upon
projectile-yarn contact [1–10]. Such an understanding of stiffness and critical velocity is used to assess
the efficacy of implementing a specific yarn material into a full body armor system; an efficacy analysis
is most reasonably performed by determining the Cunniff parameter (Ω1/3) [11], which is described in
Equation (1),

Ω1/3 =

(
σε

2ρ

√
E
ρ

)1/3

(1)

wherein σ, ε, E and ρ represent the longitudinal failure strength, longitudinal failure strain, longitudinal
elastic modulus and density, respectively. The Cunniff parameter, an astute empirical relation
developed from non-dimensional analysis of extensive experimental study, can be best thought of as
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the product of the yarn specific toughness and the longitudinal wave speed; essentially, it is desirable
to maximize the energy absorbed by the constituent yarns before rupture and to move this energy
away from the impact site as quickly as possible. Thus, maximizing strength, strain and stiffness, while
decreasing density, are key parameters required to increase the halting capability of a fabric system.
Further analysis into the coupling of the first three parameters is discussed in Section 4.

Understanding the Cunniff parameter unveils the power available in performing single yarn
impact experiments. Not only are yarn experiments much more cost effective to perform on novel
materials as compared to full fabric experiments, it is indeed possible to determine the failure strength,
failure strain and elastic modulus developed during the single-yarn impact event. Each of the
aforementioned mechanical properties can be directly input into the Cunniff parameter, thereby
allowing comparison of various yarn types in an impact environment, creating similar loading
conditions to that seen from full fabric impact. It must be noted that traditional predictions of
the Cunniff parameter generally rely upon quasi-static mechanical properties, but as was shown by
Hudspeth et al. [12], care must be taken to understand the projectile loading conditions exhibited on
the yarn of interest.

Having provided an explanation for the need to ascertain input values for the Cunniff parameter
described in Equation (1), it is now of interest to briefly overview the governing mechanics of transverse
impact of a projectile into a single yarn in efforts to provide a background on the deformation behavior
and resulting system response. Upon impact, a longitudinal tensile wave emanates away from
the projectile-yarn contact site, moving at the longitudinal speed of sound in the material, c, being
described by Equation (2), where E and ρ represent the longitudinal tensile modulus and the material
density, respectively.

c =

√
E
ρ

(2)

Material behind the longitudinal wave front is set in tension, moving inward toward the projectile-yarn
contact site with a particle velocity of W, which is described by Equation (3), wherein ε signifies the
strain amplitude developed due to the passing of the longitudinal wave.

W = cε (3)

In addition, a transverse wave is also developed upon the projectile-yarn contact, following behind
the longitudinal wave, and possesses the wave velocity U, being described by Equation (4), or in the
laboratory reference frame, as Uobs, being described by Equation (5).

U = c
√

ε

1 + ε
(4)

Uobs = c
(√

ε(1 + ε)− ε

)
(5)

Material behind the transverse wave front transitions from an inward velocity (perpendicular to the
projectile direction) to a particle velocity identical in magnitude and direction to that of the projectile,
being described by Equation (6). U differs from Uobs in that the reference frame of the former is
attached to the inward flowing yarn material and the latter is attached to an external viewer. Solving
Equations (2)–(6) allows for determination of the strain developed in the yarn at a specific impacting
velocity, V, or vice versa, one can solve for the velocity required to initiate a specific strain value, ε.

V =
√
(1 + ε)2U2 − ((1 + ε)U −W)2 (6)
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Finally, Equation (7) can be used to solve for the angle θ developed behind the transverse wave front,
which notably remains constant during the impact event, barring rarefaction waves emanating from
yarn-end boundaries.

θ = tan−1
(

V
U(1 + ε)−W

)
(7)

The validity of Equations (2)–(7) is reasonably well substantiated by experimental evidence from
various authors; the reader is directed to Hudspeth et al. [12] for a thorough list of previous authors
who use the single yarn transverse impact experiment to gain understanding of yarn mechanical
properties, most notably the yarn critical velocity. The reader is specifically directed to work performed
by Chocron et al. [10] and Chocron and Walker [13], who take great effort in determining the critical
velocity for several types of high-performance yarn. Additionally, Walker and Chocron [13] present a
strong explanation for the oft-quoted difference between experimental and theoretical critical velocities
predicted by Equations (2)–(6). Additional explanation regarding the experimental/theoretical
variation in critical velocity has also been given by Carr [8], Bazhenov et al. [9], Sockalingam et al. [14]
and Hudspeth et al. [12,15].

The current experimental dataset was analyzed in an effort to determine the presence of a
rate sensitivity for both Kevlar R© KM2 and Dyneema R© SK76, but concurrent efforts also led to
experiments analyzing the validity of the strain state developed behind the longitudinal wave front and
determination of the transverse wave velocity, with both sets of latter experiments being performed
on AuTx R© yarn. Finally, due to the nature of determining the in situ mechanical properties of these
materials (along with data from [12]), it is of interest to assess the effect of varying stress, strain
and modulus in efforts to achieve greater transverse critical velocities, which will be discussed in
Section 4. As previously mentioned, this variation of mechanical properties has also been expanded to
briefly assess their effect on the oft-quoted Cunniff parameter.

2. Experimental Section

2.1. Materials

Three different high performance yarn materials have been used to assess both the longitudinal
and transverse stress wave characteristics, namely Dyneema R© SK76, Kevlar R© KM2 and AuTx R©.
Quasi-static mechanical properties of all said fibers are displayed in Table 1. Dyneema R© SK76 and
Kevlar R© KM2 yarns were selected as candidate materials due to their regular occurrence within current
body armor systems, while AuTx R© yarn was selected as it is a prospect for future armor systems. Yarns
were impacted with three different projectile nose geometries, namely razor blade, 0.30-caliber (cal)
fragment simulating projectile (FSP) and 0.30-cal round. An image of the three different projectile heads
can be found in Figure 1. Further description of the experimental setup and procedures can be found
in Hudspeth et al. [12].

Table 1. Yarn quasi-static mechanical properties. Note: Mechanical property data have been taken
from single yarn tension experiments using a 666-mm gauge length [15].

Fiber Kevlar R© Dyneema R© AuTx R©

Type KM2 SK76

Linear Density (denier) 600 1350 275
Failure Strain (%) 2.56 2.65 2.87

Failure Stress (GPa) 2.52 2.81 2.99
Elastic Modulus (GPa) 100.2 129.3 129.9
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Figure 1. Projectiles used for transverse impact into yarn material. From left to right can be seen the
0.30-cal round, 0.30-cal FSP and razor blade projectiles [12].

2.2. Longitudinal Wave

In order to determine the presence of a rate sensitivity of high-performance fiber in a transverse
impact environment, the velocity of the longitudinal wave fronts developed upon projectile-yarn
contact was tracked in situ. Initially, it is valid to assess the yarn wave speed, c, via determining the
time required for the longitudinal wave to travel from the contact site to the yarn grip, which has
been mounted onto a fast-response force transducer. This simple method is described by Equation (8),
where L represents the distance from the projectile contact site to the yarn clamp, and t represents the
duration between the time of impact to the time of arrival of the longitudinal wave to the yarn clamp.

c =
L
t

(8)

High speed imaging has been used to track yarn deformation and failure during the impact event,
which ideally, could give an impact time, but it must be noted that it is impossible to know the actual
time of impact of the projectile into the yarn, as contact will always be made at some inter-frame
separation or during a frame exposure. Thus, while estimating the impact time using imaging would
be appropriate with sufficient framing rates, low frame rates (e.g., older camera systems) result in
inter-frame separation great enough to skew the initial impact time, resulting in insufficient error
bounds being placed on the measured wave velocity. As such, estimating the time of impact has
been avoided in lieu of an alternative measurement approach, namely using the arrival times of the
longitudinal wave fronts at two ends of the yarn that have a large offset between the yarn mid-length
and the actual contact site. An example of this offset impact geometry can be seen in Figure 2. In this
specific geometry, it is possible to accurately determine the location of impact with a reasonably high
level of accuracy using a laser bore site inserted into the muzzle of the barrel. Measuring from the
clamp locations to the location demarcated by the laser yields both lengths L1 and L2. The wave
velocity c can then be determined using Equation (9) if one knows the difference in arrival times of the
two emanating longitudinal waves meeting their respective clamping boundaries, being denoted as t1

and t2, respectively. A similar technique has also been employed by an oft-quoted yet elusive study by
Wang et al. [16].

c =
L1

t1
=

L2

t2
(9)
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Figure 2. Schematic of single yarn transverse geometry used to determine longitudinal wave speeds.

As previously stated, without sufficient framing rates, both t1 and t2 can only be estimated with a
low level of precision. In order to circumvent this high variability measurement, a more appropriate
method has been pursued wherein one tracks the difference in longitudinal wave travel times from
projectile-yarn contact site to the detection of the longitudinal wave from the clamping load cells
for drastically different yarn lengths L1 and L2; L1 and L2 are measured as 10.3 cm and 73.2 cm,
respectively. Such a measurement is described in Equation (10) and is demonstrated in Figure 3.
As previously stated, possessing accurate L1 and L2 is achieved using a laser bore site, allowing for
Equation (10) to provide an accurate estimate of the wave speed of the yarn material. As an aside, it is
important to note that the longitudinal stress wave must also travel through the yarn clamping fixtures,
but accounting for this travel time is unnecessary if identical clamping fixtures are used on both ends
of the yarn; the longitudinal wave travel time through the clamps is identical in both fixtures and is
inherently subtracted out using the aforementioned time difference method. Additionally, the time
origin in Figure 3 is arbitrary, and time zero has been set to the instant the data collection system is
triggered; thus, a rough calculation of the projectile impact time is −20 µs to 41.5 µs within Figure 3,
including wave travel through yarn and clamp.

c =
L2 − L1

∆t
(10)
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Figure 3. Representative load cell history measured during an impact event.

Finally, due to the presence of the aforementioned load cells onto which the yarn clamps were
attached, it was feasible to track the load developed in the yarn behind the longitudinal wavefront.
Specifically, effort was placed on determining the stress developed in the yarn as a comparison to
the analytical evaluation of strain described in Equations (2)–(7). Results from razor blade transverse
impact were analyzed for both Kevlar R© KM2 and AuTx R© yarns. It is important to note that although
the maximum load detected by the transducers does indeed represent the max load generated by the
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longitudinal stress wave, the temporal load evolution depicted by the force transducers is not identical
to that present in the actual fiber, due to the inertial presence of the yarn clamp; caution is advised
when analyzing the load history in Figure 3, as a reader may initially believe it is possible to assess a
strain rate from the slope of the force history plot. The quantity of interest from this dataset is based on
the max load amplitude and, for example, in Figure 3 is roughly 44 N. Additionally, it is important to
note that the force values measured in the load cells are roughly twice that generated in the wake of the
longitudinal wave, due to the wave reflection from the rigid clamp boundary. As such, the measured
load values used for analysis of Equation (2) result from maximum detected load amplitudes that have
been appropriately halved to represent the load that would be developed behind the longitudinal
wave front before interaction with the rigid clamping boundary.

2.3. Transverse Wave

Along with determining the effect of impact velocity on the longitudinal wave speed, it was also
deemed of use to assess the transverse wave velocity as a function of impact velocity. This transverse
wave, which is described by Equation (4) in Section 1, presents itself in a tent formation, thereby
allowing direct tracking of wave velocity using high-speed imaging. An example of this transverse
wave movement can be seen in the schematic shown in Figure 4. Specifically, attention was placed on
movement of the transverse wavefront between several frames, and in tandem with known inter-frame
separations, observed transverse wave velocities were calculated for various impacting velocities.

V

θ
W

V

1 + 𝜀 𝑈 − 𝑐𝜀 𝑡( 1 + 𝜀 𝑈 − 𝑐𝜀 𝑡) 𝑐𝑡( 𝑐𝑡)

Figure 4. Longitudinal and transverse wave front positioning at two instances in time post impact.

3. Results and Discussion

3.1. Longitudinal Wave

3.1.1. Wave Speed

As described in Section 2.2, longitudinal wave speeds have been tracked for a number of transverse
impact experiments for Dyneema R© SK76 and Kevlar R© KM2. A table describing wave speeds and
corresponding elastic moduli can be found in Table 2, and a plot of the experimentally-measured
longitudinal wave speed as a function of impacting velocity can be seen in Figure 5.

Transverse impact experiments performed on Dyneema R© SK76 yarn resulted in longitudinal
wave speed values of 11,466± 795 m/s, 12,416± 342 m/s and 12,332± 262 m/s, when impacting with
razor blade, FSP and round projectile geometries, respectively. Average impacting velocities for the
razor blade, FSP and round projectile into the Dyneema R© yarn were measured as 357 m/s, 547 m/s
and 619 m/s, respectively. Although small, it is suggested that the variation in measured wave speed
could arise due to projectile contact site inconsistency, with one standard deviation in the measured
wave speed resulting in a contact site variation of roughly 2–7 mm. Though plausible, such a large
shot line deviation is not seen in any of the high-speed images. An alternative explanation can also
be postulated that yarn entanglement, be it due to sizing or yarn twist, could alter the nature of the
perceived linear density of the yarn, thereby affecting the longitudinal sound velocity.
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From Figure 5a, it can also be seen that there may exist a slight increase in longitudinal
wave velocity with increasing transverse impact speeds. Such a slight rate sensitivity is not
uncommon in ultra high molecular weight polyethylene (UHMWPE) fiber, and an example is given
by Cansfield et al. [17], who showed a linear increase in failure stress with a logarithmic increase in
applied strain rate from strain rates ranging from 10−4 s−1–10−1 s−1. Finally, it is important to note that
the elastic modulus exhibited by these fibers at such an elevated strain rate has been determined to be
roughly 128 GPa, 150 GPa and 148 GPa when using the razor blade, FSP and round indenters. If there
is indeed an increase in longitudinal wave speed, there is a likewise increase in elastic modulus; it must
though be noted that the scatter measured in the longitudinal wave speed makes it impossible to affirm
the rate sensitivity of the yarn material. Additionally, it is highly doubtful the projectile nose geometry
plays any role on the longitudinal wave speed; rather, the three different geometries used for the current
experiments were shot generally in different velocity regimes, as these experiments were primarily
performed in order to determine the yarn critical velocity, as described in Hudspeth et al. [12]. It could
also be argued that partial yarn failure could cause a slowing of the yarn wave speed if non-tensioned
filaments provide a pseudo-density increase due to yarn entanglement, but such an argument appears
unlikely as the longitudinal wave speed does not decrease when impacting within the critical velocity
transition regime for each projectile nose geometry. This lack in variation of longitudinal wave speed
when impacting with a specific nose geometry is also bolstered by the consistency of the observed
initial transverse wave velocity below, within and above the critical velocity transition regime, which
will be demonstrated in Section 3.2.
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Figure 5. Measured longitudinal wave speeds of (a) Dyneema R© SK76 and (b) Kevlar R© KM2 when
impacted with razor blade, FSP and round projectiles.
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As demonstrated in Figure 5b, longitudinal wave speeds for Kevlar R© resulted in values of
8182 ± 128 m/s, 8454 ± 93 m/s and 8505 ± 53 m/s, for the razor blade, FSP and round projectile
geometries, respectively. Average impact velocities for the razor blade, FSP and round projectiles
into the Kevlar R© yarn were measured as 212 m/s, 573 m/s and 643 m/s, respectively. Similar to the
explanation given for impact into Dyneema R© yarns, it is suggested that the variation in wave speed
may have arisen due to a slight projectile contact site variation, with one standard deviation in the
measured wave speed resulting in a variation of roughly 1 mm.

Again, similar to the Dyneema R© yarns, Kevlar R© also may exhibit a slight degree of material
rate sensitivity, although if present, much less pronounced in Kevlar R© as compared to Dyneema R©.
Using the experimentally-measured wave speeds exhibited by these fibers at such an elevated strain
rate, calculation of the elastic modulus from Equation (2) results in values of roughly 96 GPa, 101 GPa
and 103 GPa when using the razor blade, FSP and round indenters, respectively. This slight increase
in modulus, as just mentioned, may occur due to the increase in impacting velocity ranges of each
projectile, thereby increasing the strain rate at which the filaments are loaded in tension. That said,
it must be noted that such a rate sensitivity is quite small and well within the variance demonstrated
by the series of experiments. Additionally, it must be noted that said rate sensitivity was not found by
Wang et al. [16] when impacting Kevlar R© 29 and Spectra R© 1000, presumably due to the small range of
impact velocities (80–170 m/s).

Table 2. Longitudinal wave speeds and resulting moduli for both Dyneema R© SK76 and Kevlar R© KM2.

Fiber Kevlar R© Dyneema R©

Type KM2 SK76

Projectile Razor Blade FSP Round Razor Blade FSP Round
Impact Velocity – Avg (m/s) 211 573 643 357 547 619

Longitudinal Wave Speed – Avg (m/s) 8182 8454 8505 11,466 12,416 12,312
Longitudinal Wave Speed – SD (m/s) 128 93 53 795 342 262

Elastic Modulus – Avg (GPa) 96 103 104 128 150 148
Elastic Modulus – SD Low (GPa) 93 101 103 110 141 141
Elastic Modulus – SD High (GPa) 99 105 105 146 158 154

Note: Avg and SD represent average and standard deviation, respectively.

3.1.2. Longitudinal Stress

In addition to determining the velocity of the longitudinal wave, it was also deemed of importance
to track the stress developed behind the longitudinal wave front. Specifically, it was desired to probe
the validity of Equations (2)–(6). As such, due to the use of force transducers required for camera
triggering and longitudinal wave tracking, it became possible to track the force developed behind
the longitudinal wave front when impacting at low velocities. This low velocity stipulation, being
required by load cell restrictions, led to tracking of force levels developed due to the transverse impact
of razor blade projectiles, as such sharp projectiles presented the lowest yarn critical velocity transition
regime [12]. Two different yarn types were analyzed when impacting in the aforementioned loading
conditions, namely Kevlar R© KM2 and AuTx R©, with resulting max tensile stress values as a function
of impacting velocity shown in Figure 6. Stress values were calculated using the measured force and
yarn cross-sectional areas found in Hudspeth et al. [18]. Additionally, the analytical stress described
by Equations (2)–(6) has also been overlaid on both plots within Figure 6 (assuming σ = εEavg, Eavg

found in Table 2). It is important to note that the stress measured in the load cell is nearly twice
that generated in the wake of the longitudinal wave, due to the wave reflection from the rigid clamp
boundary. As such, the measured stress values shown in Figure 6 result from maximum detected
load amplitudes that have been appropriately halved to represent the stress that would be developed
behind the longitudinal wave front before interaction with the rigid clamping boundary. As shown in
Figure 6, there can be seen a demonstrative drop in max stress within the critical velocity transition
regime due to the immediate rupture of the constituent fibers.
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Figure 6. Longitudinal tensile stress developed behind the longitudinal wave front in both (a) Kevlar R©

KM2 and (b) AuTx R© when impacted via razor blade projectiles. *Load data recorded from force
transducers have been converted to stress assuming σ = F/A wherein A is the cross-sectional area of
the filaments within the tow using density and linear density values listed in Hudspeth et al. [18].

3.2. Transverse Wave Speed

In order to provide additional validity of Equations (2)–(6), it was deemed of use to track the
transverse wave speed developed in yarn when subjected to transverse impact. As such, transverse
wave speeds were analyzed via high-speed imaging of impact into AuTx R© yarns using both FSP and
round projectile heads. Implemented impact velocities spanned from roughly 400 m/s–1000 m/s.
Below the critical velocity, wherein no filaments fail upon impact, impact via FSP and round projectile
heads resulted in transverse wave speeds being quite close to those predicted from Equation (5).
Examples of this impact event can be seen in Figures 7 and 8 when impacting with FSP and round
projectiles, respectively. Both image sequences, which represent impacting velocities of 394 m/s (FSP)
and 508 m/s (round), demonstrate experimental transverse wave velocities quite close to the their
respective theoretical values, being 824 m/s compared to 832 m/s (FSP) and 960 m/s compared to
970 m/s (Round).



Fibers 2017, 5, 17 10 of 22

(a)

0
100
200
300
400
500
600
700
800
900

0 5 10 15 20

Tr
an

sv
er

se
 W

av
e 

Sp
ee

d 
(m

/s
)

Time from Impact (μs)

Experimental

Theoretical

(b)

Figure 7. (a) Image sequence of an FSP transversely impacting into a single AuTx R© yarn at 394 m/s
(below critical velocity transition regime [12]), along with (b) corresponding measurement of transverse
wave speed overlaid with the theoretical value predicted by Equation (5).
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Figure 8. (a) Image sequence of a round projectile transversely impacting into a single AuTx R© yarn at
508 m/s (below the critical velocity transition regime [12]), along with (b) corresponding measurement
of transverse wave speed overlaid with the theoretical value predicted by Equation (5).
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At higher impacting velocities residing within the critical velocity transition region, the lead
transverse wave velocity again showed very good agreement to theoretical prediction, which can
be seen in Figures 9 and 10 for 621 m/s (FSP) and 659 m/s (round) projectile impact, respectively.
The measured experimental and predicted theoretical transverse wave velocities were 1142 m/s and
1093 m/s (FSP) and 1114 m/s and 1132 m/s (round), respectively. Interestingly, both projectiles
clearly demonstrate the partial nature of failure when shooting within the critical velocity transition
region [12], and a range of transverse wave velocities is detected, depending on the fail/no-fail status
of each filament. Both Figures 9 and 10 also show a plot of the minimum measured transverse wave
speed, thereby demonstrating the aforementioned variation in transverse wave speed. An example
of the location exhibited by the minimum and maximum transverse wave speeds is demarcated in
Figure 9 via ∗ and -, respectively. Said minimums have been measured as 223 m/s and 239 m/s for the
FSP and round projectile impact conditions shown in Figures 9 and 10, respectively. It is important to
note that the minimum and maximum measured wave speeds appear to be constant throughout the
range of relevant image times.
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Figure 9. (a) Image sequence of an FSP transversely impacting into a single AuTx R© yarn at 621 m/s
(inside the critical velocity transition regime [12]), along with (b) corresponding measurement of
transverse wave speed overlaid with the theoretical value predicted by Equation (5).
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Figure 10. (a) Image sequence of a round projectile transversely impacting into a single AuTx R© yarn at
659 m/s (inside the critical velocity transition regime [12]), along with (b) corresponding measurement
of transverse wave speed overlaid with the theoretical value predicted by Equation (5).

Transverse wave speeds were also tracked from representative shots fired above the critical
velocity transition regime for both FSP and round projectile geometries, which are shown in Figures 11
and 12. As opposed to the shots fired below and within the critical velocity transition regime, shots
impacting above the critical velocity region do not express constant transverse wave velocities. Indeed,
they show a progressive reduction in transverse wave speed with increasing time post projectile-yarn
contact. For both the FSP and round projectile impact, the initial measured transverse wave velocity
appears to correspond exceedingly well with the theoretical transverse wave velocities predicted from
Equation (5). Initial measured transverse wave speeds and the theoretical wave speeds initiated via
transverse impact were 1281 m/s and 1273 m/s (FSP) and 1316 m/s and 1433 m/s (round), respectively.
The FSP impact velocity was measured to be 806 m/s, and the round impact velocity was measured
to be 994 m/s. For both impact conditions, a stark drop in transverse wave speed can be seen in the
measured time window, resulting in a transverse wave velocity of 748 m/s at 12.2 µs post impact
and 749 m/s at 11.8 µs post impact, for the FSP and round projectile, respectively. As with the shots
shown in Figures 9 and 10, there exists a range in the transverse wave speed due to partial yarn
failure. The slowest moving broken filaments appear to possess a transverse wave speed of roughly
200–400 m/s, with this wave speed reducing in value as time post contact progresses. Again, it
is reiterated that there exists a reduction in both maximum and minimum transverse wave speeds
with progressing time post impact. Such a reduction in wave speed values is believed to signify the
occurrence of progressive failure in the yarn; indeed, initial transverse wave speeds are quite similar to
the corresponding theoretical transverse wave speed, demonstrating initially intact filaments, which is
then followed by a reduction in demonstrated transverse wave speed due to complete filament failure.
Thus, it is interesting to note that the “immediate” failure of a yarn is not indeed immediate. Rather,
there is a slight window wherein both longitudinal and transverse waves are allowed to develop.
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While the longitudinal wave is able to propagate outwards without a reduction in velocity at the wave
front, the transverse wave, which must be fed by inflowing material behind the longitudinal wave
front, is subject to the level of failure of the yarn upon impact. Below the critical velocity transition
regime, the transverse wave is fed completely from the inflowing material behind the longitudinal
wave front. Within the velocity transition regime, only intact filaments continue to provide the tension
and inward flow characteristics needed to feed the transverse wave. Above the critical velocity
transition regime, all yarn material fails, but not immediately upon impact, thereby allowing for an
initial transverse wave to develop before rarefaction waves from failed filaments deplete the yarn
longitudinal stress levels required for continued transverse wave propagation. Thus, yarn failure is
not seen to be immediate within the impact conditions of the current experimental setup; rather, the
failure process is seen to be progressive as the projectile moves through the bundled filaments in the
transverse direction.
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Figure 11. (a) Image sequence of an FSP transversely impacting into a single AuTx R© yarn at 806 m/s
(above the critical velocity transition regime [12]), along with (b) corresponding measurement of
transverse wave speed overlaid with the theoretical value predicted by Equation (5).

Finally, transverse wave speeds measured from several experiments within the 400 m/s–1000 m/s
velocity window were plotted against their corresponding impact velocity and can be found in
Figure 13. As shown in the data presented in Figures 7–12, the transverse wave propagation
measurement scheme was slightly different below, within and above the critical velocity transition
regime. Below said regime, the transverse wave front was tracked as the entire yarn showed a stark
“tent-like” deformation and stayed constant during the entire imaging history. Within the transition
regime, a range of transverse wave velocities was measured due to partial yarn failure, and only the
leading edge of the transverse wave front was used to calculate the wave speed presented in Figure 13.
Above the transition regime, due to rapid failure of the entirety of the yarn, only early time calculations
were used to determine the transverse wave velocities presented in Figure 13. Overlaid on top of the
experimental transverse wave velocities in Figure 13 is also the theoretical transverse wave velocity as
a function of the projectile impact speed. The experimentally-measured velocities correspond quite
well with the theoretical transverse wave speed, bringing further verification to Equations (2)–(6).
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Figure 12. (a) Image sequence of a round projectile transversely impacting into a single AuTx R© yarn at
994 m/s (above the critical velocity transition regime [12]), along with (b) corresponding measurement
of transverse wave speed overlaid with the theoretical value predicted by Equation (5).
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Figure 13. Experimental and theoretical transverse wave velocities for AuTx R© yarn shot with both
FSP and round projectile geometries.

4. Optimization of Filament Properties

Due to conjectures made regarding the optimization in the mechanical properties of
high-performance filament material [19] and the governing constraints constituent yarn places on
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the performance of an entire fabric system, a basic thought experiment has been performed to assess
the effect of varying failure strength, failure strain and the elastic modulus of yarn material, both in
controlling the resulting critical velocity as predicted by the Smith equations (Equations (2)–(7)) [20]
and, even more importantly, the Cunniff parameter (1).

4.1. Constitutive Equation Modification

Due to the simultaneous solution requirement of Equations (2)–(6), said relations have been somewhat
simplified via removing higher order strain terms. Such a simplification can be seen in the following:

W = cε (11)

U =

√
E
ρ

(
ε

1 + ε

)
∼= c
√

ε (12)

Uobs = c
(√

ε(1 + ε)− ε

)
∼= c

(√
ε− ε

)
(13)

V =
√
(1 + ε)2U2 − ((1 + ε)U −W)2 ∼= c

√
2ε
√

ε (14)

In order to demonstrate the validity of Equations (12)–(14), all three relations have been solved for
a range of impact velocities up to 1 km/s and are plotted in Figure 14 using mechanical properties
exhibited by Kevlar R© KM2. Figure 14a compares the full solution (6) and simplified solution (14)
of the tensile strain developed behind the longitudinal wave front, showing very good agreement,
with the simplified solution tending to be slightly less than the full solution. Figure 14b compares the
variation in the full solution and simplified solution of the transverse wave speed in both a reference
onboard the yarn (Equations (4) and (12), respectively) and from the reference of a laboratory observer
(Equations (5) and (13), respectively). Both comparisons show very similar results between the full
solution and simplified solution with the partial solution of U tending to slightly overpredict the
full solution and the partial solution of Uobs tending to slightly underpredict the full solution. Thus,
the following assessment of mechanical property evaluation on the resulting critical velocity uses the
simplified set of equations for ease of analysis.
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Figure 14. Plots showing the variation in the full analytical solution and simplified solution of (a) the
longitudinal strain and (b) the transverse wave speed developed during transverse impact for a
Kevlar R© KM2 yarn.

4.2. Material Property Modification: Single Yarn Critical Velocity

As it has been proposed that an increase in yarn critical velocity will result in a corresponding
increase in full fabric performance, it is of interest to understand the coupled effect of increasing single
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filament mechanical properties. Specifically, it is of interest to understand the effect of varying failure
stress, failure strain and elastic modulus. As a first trial of single filament performance, it is of use
to compare linear elastic mechanical parameters, considering the long-range tensile characteristics
demonstrated at rupture. This analysis assumes a linear elastic response of the material; such an
assumption is well substantiated from experimental evidence [21–23]. It must be noted that previous
work has demonstratively shown that single filaments do not fail in pure tension [15,18], but this short
analysis is solely being performed to elucidate the effect of local failure characteristics resulting in
strength/strain increases measured during transverse loading.

In order to assess the effect of the coupled variation of failure strength and failure strain on the
resulting yarn critical velocity, Equation (14) has been modified to remove the elastic modulus term,
E, present within the yarn wave speed (c), thereby presenting the critical velocity, V, as a function of
solely failure strain and failure stress. Said modification can be seen in Equation (15).

V =

√
2
ρ

σ
√

ε (15)

An array of values of σ and ε are then input into Equation (15), yielding a critical velocity surface,
which can be seen in Figure 15a. Additionally, iso-velocity curves have been overlaid on top of the
velocity surface with curves ranging from 300 m/s–1000 m/s in 100-m/s increments. Take notice of the
clear effect that both failure strain and failure stress have on the resulting critical velocity. Increasing
either value while holding the other constant shows an increase in critical velocity, but simultaneous
increases in both are clearly the most preferable.

In efforts to more easily visualize the effect of both failure stress and failure strain, Figure 15a
has been reoriented to view along with the critical velocity axis, which can be seen in Figure 15b,
using the same color scheme present in Figure 15a. As previously stated, there is clearly a coupled
effect of increasing either the long-range failure stress or failure strain of the impacted yarn material,
assuming a linear elastic response. The described plot contains iso-velocity lines for a filament material
possessing a density of 1.45 g/cm3. Overlaid on said plot can be seen an example failure stress/strain
solution of a yarn exhibiting a critical velocity of 500 m/s. In this specific case, the failure stress and
failure strain are ∼1.48 GPa and 1.48%, respectively. Again, note that an increase in either failure
property (failure stress or failure strain) while holding the neighboring parameter constant will result
in an increase of the transverse impact critical velocity.

(a)

Figure 15. Cont.
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Figure 15. (a) Variation in the critical velocity (Vcritical) of a single Kevlar R© KM2 yarn subject
to transverse impact when varying both the failure stress and failure strain of the yarn material.
(b) Stress-strain field overlaid with critical iso-velocity curves; example linear elastic stress-strain
response resulting in a critical velocity of 500 m/s.

From Equation (15), it can also be seen that changes in failure stress result in a more rapid increase
(and decrease) in critical velocity, as compared to proportional changes in failure strain. For example,
a 10% increase in failure stress results in a critical velocity of 524.4 m/s, while a 10% increase in failure
strain results in a critical velocity of 512.1 m/s. Figure 16 demonstrates the variation in critical velocity
due to the modification of either exclusively failure stress or exclusively failure strain.
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Figure 16. Relative effect of varying either the ultimate failure stress or failure strain of Kevlar R© KM2
yarn on the resulting single yarn critical velocity, Vcritical (assuming an initial failure stress and failure
strain of 1.48 GPa and 1.48%, respectively).
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4.3. Material Property Modification: Cunniff Equation

Similar to the analysis performed on the simplified Smith equations given in the previous section,
it was also deemed of use to analyze the effect of changes in mechanical properties on the resulting
Cunniff parameter, shown previously in Equation (1). Equation (1) can be modified to be written
as a function of either longitudinal wave speed and failure strain, longitudinal wave speed and
failure stress or failure stress and failure strain. Such versions of the Cunniff parameter are shown in
Equation (16). As previously mentioned, the first two equalities in Equation (16) were used by Phoenix
and Porwal [19] in order to assess the effect that changing mechanical properties has on the resulting
Cunniff parameter.

Ω1/3 = c
(

ε√
2

)2/3
= c−1/3

(
σ√
2ρ

)2/3

=

√
2−2/3

ρ
σ1/2ε1/6 (16)

The first inequality demonstrates the effect of varying either failure strain or wave speed. In this format,
increases in ballistic performance are initially suggested to increase when there is either an increase
in failure strain or longitudinal wave speed, which follows intuitive reason. In contrast, the second
equality, which is manipulated to be a function of failure stress and longitudinal wave speed, suggests
that either increases in failure stress or decreases in longitudinal wave speed will render increases
in the resulting Cunniff parameter. Although formally correct, such a representation of the Cunniff
parameter is somewhat misleading, and reasoning for the occurrence is the result of the failure stress
having a greater effect on the Cunniff parameter as opposed to the failure strain, which is demonstrated
by the third equality shown in Equation (16). Similar to the dataset shown for the Smith equation, it is
of use to plot out the Cunniff parameter as a function of both failure stress and failure strain, which
can be seen in Figure 17a. Additionally, iso-velocity lines have been overlaid on the surface plot of
Figure 17b, ranging from 100 m/s–700 m/s in 100-m/s intervals. In an effort to more easily visualize
the effect of failure stress and failure strain on the resulting Cunniff parameter, the surface plot of
Figure 17a has been reoriented to view down the critical velocity axis, which is depicted in Figure 17b.
Iso-velocity lines similar to those depicted in Figure 17a have also been overlaid on Figure 17b.

Using Figure 17 and Equation (16), it is now of interest to assess the effect of elastic material
property variation. A linear elastic stress-strain curve having a modulus of 100 GPa has been overlaid
on Figure 17b, which shows a Cunniff parameter of 400 m/s, resulting in a failure stress and failure
strain of 1.49 GPa and 1.49%, respectively. Clearly an increase in either failure stress or failure strain will
provide an increase in ballistic performance, but increases in failure stress demonstrate a greater effect
than proportional changes in failure strain; this effect can be seen in Figure 18a, wherein a 10% increase
in solely failure strain or a 10% increase in solely failure stress exhibits a Cunniff parameter increase of
1.6% and 4.9%, respectively. Additionally, Figure 18b demonstrates that the Cunniff parameter is more
strongly affected by variations in the yarn toughness while holding the elastic modulus constant as
compared to varying the elastic modulus while holding the toughness constant, which is readily seen
from the native version of the Cunniff equation (Equation (1)).

Examining Equation (16), it is of use to discuss the means of increasing the Cunniff parameter,
thereby increasing the ballistic resistance of a soft-armor system. The simplest positive governance
of the Cunniff parameter entails a decrease in material density while keeping mechanical properties
constant; such a result is any material scientist’s prized outcome, but is typically unattainable, as a fiber
manufacturer is generally only able to alter mechanical response within a specific material class
(e.g., working on an aramid or ultra-high molecular weight polyethylene fiber). Thus, in efforts
to still provide an increase to the Cunniff parameter, the material scientist is sequestered within
mechanical property alteration. Equalities listed in Equation (16) demonstrate several mechanical
property relationships, assuming a linear elastic material response. Of course, all three of these
Cunniff parameter variants are valid, but caution is suggested to the reader to remember the inherent
meaning of the parameter’s original form. It is again reiterated that the Cunniff parameter is most
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meaningfully described in its native state as the product of yarn toughness and longitudinal wave
speed; an improved yarn material will transport energy away from the impact site more rapidly
and can withstand greater loading environments.

(a)

Ω1/3 =	100	m/s
Ω1/3 =	200	m/s
Ω1/3 =	300	m/s

Ω1/3 =	400	m/s
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Ω1/3 =	600	m/s

Ω1/3 =	700	m/s

(b)

Figure 17. (a) Variation in the Cunniff parameter, Ω1/3, when varying both the failure stress and failure
strain of Kevlar R© KM2 yarn material. (b) Stress-strain field overlaid with critical iso-velocity curves;
example linear elastic stress-strain response resulting in a Cunniff parameter of 400 m/s.
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Figure 18. Relative effect of varying (a) the ultimate failure stress or failure strain or (b) the toughness
or elastic modulus on the resulting Cunniff parameter, Ω1/3, for Kevlar R© KM2 yarn (assuming an
initial failure stress and failure strain of 1.49 GPa and 1.49%, respectively).
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4.4. Material Property Modification: Comparison of Smith and Cunniff Equations

Finally, it is of use to compare both the Smith equation and the Cunniff equation in the format
shown in Equations (17) and (18).

V =

√
2
ρ

σ1/2ε1/4 (17)

Ω1/3 =

√
2−2/3

ρ
σ1/2ε1/6 (18)

Interestingly both equations are very similar in nature, with the Cunniff equation being slightly less
controlled by the failure strain than the Smith equation. The similarity of these equations can also be
verified by the plots shown in Figures 15 and 17. It is thus suggested that very similar understanding
can be gained from finding the yarn critical velocity by performing single yarn impact experiments as
compared to shooting entire armor systems in efforts to determine V50 values. Used as a preliminary
design tool, the former experiment is much less costly to perform, and analysis can be performed on
small batches of material developed either from desktop-made filaments or from pilot runs on an
experimental fiber spinning line.

5. Conclusions

Initial portions of this work were directed at performing single yarn transverse impact experiments
in an effort to gain understanding of waves developed due to the impact event. Firstly, longitudinal
wave speeds were tracked in Kevlar R© KM2 and Dyneema R© SK76 in order to back-out material
stiffness, with the desire to detect the presence of material rate sensitivity. Three different projectile
nose geometries were used to impact the yarn material, namely razor blade, FSP and round. Slightly
differing wave speeds were detected from the three different projectile nose geometries, not due
to the nose geometry itself, but rather because of the differing strike velocities used for each nose
geometry. As these experiments were performed in efforts to uncover the yarn critical velocity [12],
increasing impact velocities were required to promote immediate rupture for the razor blade, FSP
and round nose geometries, respectively, due to the corresponding increase in stress concentration
for the three projectile heads. Longitudinal wave speed measurements were also used to detect the
max load developed in Kevlar R© KM2 and AuTx R© yarn behind the longitudinal wave front, which
agreed very well with theory. Subsequently, transverse wave speeds were measured for AuTx R©

yarns for a variety of impacting velocities, which also agreed quite well with theory. Effort was also
placed in understanding the transverse wave development around the yarn critical velocity. Below the
critical velocity, the transverse wave demonstrated full yarn transverse displacement with a constant
transverse wave speed. Within the critical velocity transition region, partial yarn failure was detected,
resulting in a range of transverse wave speeds exhibited by the material; the leading edge of the
transverse wave was constant and moved with the theoretically-predicted velocity. The slowest
moving transverse wave, though constant in the region measured, was much slower than the leading
edge, presumably due to the lack in tension from filament failure. Above the critical velocity, the entire
yarn failed, but measurement of the initial leading edge of the transverse wave yielded a transverse
wave velocity similar to that predicted from theory. With time progression, the leading edge (and the
trailing edge) of the transverse wave decreased in velocity.

Finally, effort was directed towards understanding room for filament improvement,
demonstrating that common linear-elastic, high-performance polymer fiber promote greater increases
in ballistic performance (both the Cunniff parameter and the Smith single yarn critical velocity) with
increases in yarn toughness or elastic stiffness, although the former yields greater performance effects
than the latter. Additionally, it was determined that changes in failure stress are more significant than
changes in failure strain for these common fiber types. Due to the similarity between the Cunniff
parameter and the critical velocity arising from the Smith equations, effort has also been directed
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toward warning the reader to be wary of manipulating the Cunniff equation in a way to show that
decreases in wave speed can actually improve ballistic performance. Although correct in certain
modifications of failure stress, such a claim is actually identical to suggesting an increase in yarn
toughness, which as previously mentioned, is more powerful at controlling the Cunniff parameter
than the elastic stiffness.
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