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Abstract: The tensile behavior of concrete or mortar plays an important role for delaying the formation
and propagation of cracks, and also for upgrading the bearing capacity of existing concrete and
masonry constructions. Although the presence of steel fibers is known to improve, often considerably,
the tensile capacity of concrete members, methods for the quantification of this improvement are
still limited. For this reason, a model has been developed for the prediction of the tensile strength
of steel fiber-reinforced concrete members, as crack opening occurs. Given the geometry and the
physical characteristics of reinforced concrete member and fibers, the model predicts: (1) the number
of fibers crossing a crack’s surface; (2) the distribution of these fibers in terms of (i) the angle a
fiber forms with the crack surface (fiber inclination) and (ii) the embedded length of the fiber at
both sides of the surface; (3) resistance to crack opening provided by each fiber, in relation to its
position and inclination. On the results of the results obtained, the influence of the number of fibers
on the reduction of crack widening in concrete or mortar is remarkable and can be estimated with
satisfactory precision. In upgrading existing concrete and masonry constructions, this tensile behavior
is found to play important role.
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1. Introduction

The use of steel fiber-reinforced concrete (SFRC), in the construction of structural members is
increasing in recent years due mainly to the favorable contribution of the fibers to crack elimination
and/or controlled propagation [1,2]. Materials other than steel are also used for the construction of
fibers of various types (e.g., glass, nylon, etc.), mainly to control cracking of non-structural elements
(such as pavements, decks and floors) [3,4]. Classification of performance of FRC is rather empirical,
as it is based on test results. In addition to limiting crack propagation, it has also been reported that
the presence of fibers leads to more uniform crack patterns.

Mechanical characteristics, such as brittleness reduction, can also be improved, though not
significantly in terms of strength [5–10], except for tensile capacity. More specifically, the contribution
of fibers, especially steel fibers, to the tensile capacity of concrete is quite significant. The influence of
exposure of fibers to high temperature has also been investigated [11]. Among several existing types of
steel fibers, hook-end fibers are most effective in increasing the tensile capacity [12]. This is the reason
for the present study's main focus on this type of fibers.

Several relevant mathematical models that have been developed produce results that correlate and
converge with some series of experimental data [13,14], while, in other cases, they exhibit significant
divergence [15]. Such models examine the operation of fibers and their effectiveness not only in
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crack control, but also in the improvement of the mechanical characteristics of concrete (direct tensile
strength and compressive strength within a biaxial or triaxial stress field) and the interrelation of
various factors. Apart from the volumetric ratio, which is the main one, other factors are the fiber
distribution and fiber orientation to the crack surface and bond.

The proposed model gives satisfactory explanation to the observed mode of failure of the fibers,
which is mainly a pullout mode; regardless of the orientation of any hook formation and the embedded
length at each side of the crack.

2. Materials and Methods

2.1. Model Description

Given the geometry and the volumetric percentage of steel fibers in a reinforced concrete (RC)
member, the first step is to determine the number of fibers traversing a plane formed by a possible
crack due to tension; tension may occur for any reason, such as bending or shrinkage. Provided that
steel fibers are properly mixed into concrete, they can be considered as randomly oriented in three
dimensions, while their center points will be almost evenly distributed throughout the entire volume of
the member (in the common case where the fiber length is very small, compared to the dimensions of
the concrete section). Formation or widening of the crack is prevented by each fiber that is intercepted
by the crack plane, according to the crossing angle and the available anchor type and length, until each
fiber’s loading capacity is reached, and as long as the fiber does not rupture or is not pulled out.

The proposed model quantitatively describes the fibers’ (with hooked ends) reaction to the
widening of the crack. It could be also used for straight fibers, though their contribution is negligible.

The detailed description is provided for hooked fibers of length lf and diameter d, as presented in
Figure 1.
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Figure 1. Typical geometry of a hooked fiber bar of diameter df. Dimensions and properties of the fiber
used for the case study are shown in Appendix A.

After formation and widening of a crack, each fiber that crosses it is subjected to the extraction
force B, which is provided simultaneously by two mechanisms, as presented at Figure 2. The first
mechanism is due to bond stress developing at the fiber interface with the surrounding concrete f bd,
while the second corresponds to the reaction stress f a of the concrete to the pullout pressure of the
inclined part of the fiber, plus the friction stresses τfr that develop due to this reaction. It should be
noted that a fiber becomes so flexible, when subjected to pullout, that it cannot develop any flexural
capacity; it practically performs as a cable, as described in Figure 3.
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Figure 3. Phases [(α)–(ε)] of extraction for a fiber, embedded in concrete, due to formation of a
perpendicular crack (initial wB + ∆w). Extraction length (∆s) increases until fiber is fully extracted.

The combined effect of the above-mentioned two mechanisms would have an effect up to the
capacity limit of the fiber in tension Bud (Equation (1), second part).

In the case that a fiber is not perpendicular to the crack plane (Figure 4, ϕ 6=0), then due to
transverse forces (resulting to high stresses to the concrete near the surface of the crack) a rupture to
the surrounding concrete takes place locally, resulting in redistribution of stresses (with a performance
similar to the one of the piles or dowels) and changing the geometry of the deformed fiber.
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Figure 4. Modeled deformation of a single fiber crossing a crack (ϕ is the inclination of the fiber from
the perpendicular to the crack direction, and δ is the width of the crack). (a)shortening of the smaller
part of the fiber due to extraction; (b) reaction stresses of concrete against compression and (c) against
bending, and (d) friction stresses along the deformed fiber axis, due to (b) and (c).

An approximation of such changes is provided in Figure 4. On the basis of testing experience, it
has been considered that local concrete rupture results in the reduction of the transverse angle ϕ to
approximately 50% (ϕ/2) (Figure 4).

Resistance to the extraction is provided by three mechanisms: (a) bond stress between fiber
and concrete; (b) compressive reaction of concrete due to hook extraction and local deformation
perpendicular to crack opening, and (c) to relevant friction forces.
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The above mechanisms can be expressed in the form of Equation (1). Their sum cannot exceed the
tensile capacity of the fiber, Bud.

B = fbd·π·d f ·lav + fa·d f ·
(

h f ·(1 + µ) +

(
δ

2
·µ
))
≤ Bud = π·

d2
f

4
· fsy (1)

Because the first term of Equation (1) has a relatively small influence at the final sum, the pullout
capacity of a fiber is negligible if a crack does not intersect its middle part (length l1, Figure 1), so
Equation (1) becomes:

B = fa·d f ·
(

h f ·(1 + µ) +

(
δ

2
·µ
))
≤ Bud = π·

d2
f

4
· fsy (2)

As fibers are mainly used for the prevention of cracking, the main aspect of interest is the
coefficient of their bearing capacity which is perpendicular to the cracking plane, (B·cosϕ).

After the formation of a crack, the geometry of each fiber changes. Concrete resisting the transverse
fiber’s deformation is locally overcome due to the concentration of stresses, and the fiber deforms
accordingly. An approximation in this deformation leads to the simplified model that is shown
in Figure 5; to model the mentioned deformation, the “effective” angle of the fiber’s crossing is
transformed from ϕ to

( ϕ
2
)
.
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Figure 5. Equilibrium forces for the part of a fiber that tends to extract (the smaller among two), the
dotted line (a) symbolizes the beginning of the extraction.

The equilibrium for each fiber, with initial angle ϕ gives:

Fextr,ϕ = B = fbd·π·d f ·lav + fa·d f ·
(

h f ·(1 + µ) +

(
δ

2
·µ
)
· cos (

ϕ

2
)

)
(3)

Of more interest is the total force (corresponding to all fibers forming the angle ϕ with the crack)
perpendicular to the crack:

Fextr,ϕ,perp = [ fbd·π·d f ·lav + fa·d f ·h f ·(1 + µ) +

(
δ

2
·µ
)
· cos (

ϕ

2
)]· cos (

ϕ

2
)·N(ϕ) (4)

2.2. Volumetric Contribution of Fibers

The fibers are considered to be distributed uniformly in the mass of concrete; a volumetric ratio is
usually provided in the concrete mix proportions. Even if uniformity is achieved, the distribution of
the fibers according to the angle they cross a crack plane also has to be calculated.
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If we consider the unified area of the crack plane P (Figure 6), the middle point of the fibers,
forming angle ϕi with the axis perpendicular to the crack, that crosses it inside their portion of length
l1, will be located inside a strip with width w=l1·cos (ϕi).
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Figure 6. Width (w) of strip that includes the center point of all fibers with orientation angle ϕ to the
plane of the crack (P) that they cross.

The number of the above mentioned fibers, as they are uniformly distributed in the volume
(volumetric ratio ρ*αϕ) is:

N(ϕi) = (ρ·αϕi)·(1.0·l1· cos (ϕi))/((2·l2h + 2·ld + l1)·π·
(d f

2

)2

) (5)

Where factor αϕi modifies the volumetric factor ρ, according to angle ϕi(Figure 6).
Equation (5) can be rewritten as:

N(ϕi) = [ρ·(1.0 ·l1)/((2·l2h + 2·ld + l1)·π·
(d f

2

)2

)]·(αϕ)· cos (ϕi) = Ct·(αϕ)· cos (ϕi) (6)

For the calculation of αϕ, the following needs to be considered:
In the case of distribution in a plane, αϕ would be constant (independent of ϕ, equal to unity), but

for spatial distribution, it varies with angle ϕ as follows:
Referring to Figure 7a, if we move the central point of all fibers, forming angle ϕi with the axis of

the opening of the crack, in a single point, C, then the edges of their central part would be on a circle
with radius:

ri =

(
l1
2

)
sin (ϕi) (7)

As the spatial volumetric ratio is constant, then the number of fibers, at an angle with values
between ϕ = 0 and ϕ = ϕ1, will be analogous to the total number of fibers multiplied by the area of the
spherical segment that is formed by the angle ϕ, divided by half the area of the total sphere.

Then:

A(ϕi)
Atot

= 2πRhi
2πR2 = hi

R = R[cos (ϕi)]
R = cos (ϕi)→

dA(ϕi)
Atot

= sin (ϕi)→ aϕ = sin (ϕi)∫ π
2

0 sin (ϕi)d(ϕi)
= sin (ϕi) (8)

According to (6), substituting in (8):

N(ϕi) = Ct · sin (ϕi)· cos (ϕi) (9)

Then

A(ϕi)
Atot

= 2πRhi
2πR2 = hi

R = R[cos(ϕi)]
R = cos(ϕi)→

dA(ϕi)
Atot

= sin(ϕi)→ aϕ = sin(ϕi)∫ π
2

0 sin(ϕi)d(ϕi)
= sin(ϕi) (10)



Fibers 2017, 5, 27 6 of 14

Fibers 2017, 5, 27  6 of 15 

→ 𝑎𝜑 =
sin(𝜑𝑖)

∫ sin(𝜑𝑖)𝑑(𝜑𝑖)
𝜋
2
0

=  sin(𝜑𝑖) 

According to (6), substituting in (8): 

𝑁(𝜑𝑖) = 𝐶𝑡 · sin(𝜑𝑖) · cos(𝜑𝑖) (9) 

Then 

𝛢(𝜑𝑖)

𝛢𝑡𝑜𝑡

=
2𝜋𝑅ℎ𝑖
2𝜋𝑅2

=
ℎ𝑖
𝑅
=
𝑅[cos(𝜑𝑖)]

𝑅
= cos(𝜑𝑖) →

𝑑𝛢(𝜑𝑖)

𝛢𝑡𝑜𝑡

= sin(𝜑𝑖) → 𝑎𝜑

=
sin(𝜑𝑖)

∫ sin(𝜑𝑖)𝑑(𝜑𝑖)
𝜋
2
0

= sin(𝜑𝑖) 
(10) 

 

Figure 7. Figure for the quantification of factor 𝛼𝜑𝑖: (a) Maximum crack width (w) of the strip that 

includes the center point of all fibers with orientation angle ϕ to the plane of the crack (P) that cross 

it; (b) Ratio of the surface areas of a spherical segment. 

In the early stage of cracking, where δ≈0, the iteration of Equation (10) for all possible angles 

gives: 

∫ (𝐶𝑡 · sin(𝜑𝑖)  · cos(𝜑𝑖)

𝜋
2

0

)𝑑𝜑𝑖 = 0.50 · Ct = r · Ct (11) 

Factorr = 0.5 in Equation (11) defines the average effectiveness factor of the fibers due to their 

spatial contribution, provided that each fiber is efficiently anchored. Different models have resulted 

different values, from 0.60 to 0.64 [15,16]. This is due to the two-dimensional (2-D) consideration, 

while the three-dimensional (3-D) distribution is considered here. 

The experimental evaluation of the effectiveness factor gives values varying from 0.32 to 0.58 

[17,18]. A recently published review paper [19] presents several experimental results performed by 

various researchers, according to which the splitting capacity of plain concrete cannot be increased 

significantly with the use of fibers, but it can be altered to more ductile behavior. 

Existing models cover the case where the crack has just formed and its width is negligible. When 

the crack starts to widen, the participation factor alters, due to the geometry change, as mentioned in 

Section 2.2. 

According to Equations (4) and (5) of the proposed model: 

𝐹𝑒𝑥𝑡𝑟,𝜑,𝑝𝑒𝑟𝑝 = [𝑓𝑏𝑑 · 𝜋 · 𝑑𝑓 · 𝑙𝑎𝑣 + 𝑓𝑎 · 𝑑𝑓 · (ℎ𝑓 · (1 + 𝜇) + (
𝛿

2
· μ · cos (

𝜑

2
))] · cos (

𝜑

2
) · (12) 

w=l1cosϕi 

P- 

P+ 

l1 
. ϕi 

C . ri  
h

i
 

ϕi+dϕ 
φi 

dh 

(b)

) 

hi +dh 

l1/2 

(a) 

Figure 7. Figure for the quantification of factor αϕi: (a) Maximum crack width (w) of the strip that
includes the center point of all fibers with orientation angle ϕ to the plane of the crack (P) that cross it;
(b) Ratio of the surface areas of a spherical segment.

In the early stage of cracking, where δ≈0, the iteration of Equation (10) for all possible angles gives:

∫ π
2

0
(Ct · sin(ϕi) · cos(ϕi)) dϕi = 0.50 · Ct = r · Ct (11)

Factor r = 0.5 in Equation (11) defines the average effectiveness factor of the fibers due to their
spatial contribution, provided that each fiber is efficiently anchored. Different models have resulted
different values, from 0.60 to 0.64 [15,16]. This is due to the two-dimensional (2-D) consideration, while
the three-dimensional (3-D) distribution is considered here.

The experimental evaluation of the effectiveness factor gives values varying from 0.32 to
0.58 [17,18]. A recently published review paper [19] presents several experimental results performed
by various researchers, according to which the splitting capacity of plain concrete cannot be increased
significantly with the use of fibers, but it can be altered to more ductile behavior.

Existing models cover the case where the crack has just formed and its width is negligible. When
the crack starts to widen, the participation factor alters, due to the geometry change, as mentioned in
Section 2.2.

According to Equations (4) and (5) of the proposed model:

Fextr,ϕ,perp = [ fbd·π·d f ·lav + fa·d f ·
(

h f ·(1 + µ) +

(
δ

2
·µ· cos

( ϕ

2

))]
· cos

( ϕ

2

)
·

[ρ·(1·l1)/((2·l2h + 2·ld + l1)·π·(
d f

2
)2)]

(12)

Using the following abbreviations for the constants:

Ct = [ρ·(1.0·l1)/((2·l2h + 2·ld + l1)·π·
(d f

2

)2

)] (13)

Ct1 = fbd·π·d f ·lav + fa·d f ·
(

h f ·(1 + µ) Ct1 = [ fbd·π·d f ·lav + fa·d f ·
(

h f ·(1 + µ)
]

(14)

Ct2 =
δ

2
·µ (15)
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and, iterating Equation (12), the result is:

Fextr, total,perp

∫ π
2

0
{Ct·(

[
(Ct1) + Ct2· cos

( ϕ

2

)]
· cos

( ϕ

2

)
· sin(ϕi)· cos(ϕi))} dϕ

=
Ct·(2·Ct1·

(
3· cos

( 5ϕ
2
)
+ 5· cos

( 3ϕ
2
))

+ 5·Ct2· cos2(ϕ)·(2· cos(ϕ) + 3)
60

|
π
2
0

(16)

2.3. Influence of Crack Widening

2.3.1.Geometrical Limitations

Equation (16) gives the analytical solution without taking into account the extraction of any fiber
crossing the crack. As the crack tends to develop, the shorter part of all embedded fibers begins to
be extracted out of the concrete, while the concrete locally ruptures to a depth of the order of half the
crack width. In consequence, as described in Figure 8, the maximum crack length that a fiber is able
to sustain, while still providing resistance, is double the initial distance of the fiber’s hook from the
intersection point. Thus:

δ1 ≤ (b) (17)
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Figure 8. Modeled sequence deformation of a single fiber crossing a crack (ϕ is the inclination of
the fiber from the perpendicular to the crack direction, and δ (δ ≤ δmax,ϕ) is the width of the crack.
(a): gradual shortening of the smaller part of the fiber due to extraction; (b): available extraction length
at the formulation of the crack; (δmax,ϕ): maximum crack length that can be sustained by a fiber
forming angle ϕ with a crack, with available distance to hook end equal to b.

There exists also another limitation; from Figure 8 it is evident that:

(α) = δ1 − 2 ·δ1

(
1− cos

ϕ

2

)
= δ1·

(
2 cos

ϕ

2
− 1
)
≯ l2d δ1 ≤

l2d(
2 cos

( ϕ
2
)
− 1
) (18)

2.3.1. Influence of Crossing Angle

As the crack develops, a number of fibers gradually lose their capacity due to their extraction;
their quantity is a function of their spatial orientation and of the point of their initial intersection with
the crack plane. It becomes very complicated to combine Equations (8)–(16) to Equations (17) and (18)
in terms of analytical solution; a numerical approach can be used for every case study, instead. An
analytical case study is provided at the following section.
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3. Results

3.1. Case Study

The characteristics of the materials and of the case study are included in Appendix B. The
percentage ratio ρ=0.5% should be modified to its active value (ρact), in accordance with Equation (5)
and with the geometric characteristics of the fiber (Table A1 and Figure A1) as follows:

ρact = 0.5%·
π·0.752

4 · 14
π·0.752

4 · (14 + 2 · 2.486 + 2 · 5.603)
= 0.232% (19)

Then, according to Equation (19), the total active number or fibers is calculated, using intervals of
10◦; it has been calculated that intervals of 1◦ provide better accuracy of the order of 2%–3%only. A
step of the calculation procedure has as follows:

For ϕ=45◦, corresponding interval is (40◦,50◦) and, referring to Figure 7:

hi = 14·[1 − sin(40◦)] = 5mm
hi+1 = 14·[1 – sin(50◦)] = 3.28mm

Ei = 2·π·14·5 = 439.9mm2

Ei+1 = 2·π·14·3.28 = 288.1mm2

Etot = 4·π·142 = 2463mm2

}
Eϕ = 151.8mm2

P(ϕ) = 2·151.8/2463 = 12.33%

The number of fibers can be calculated as:

n(40◦−50◦ ) = 12.33%·300·300·14·sin45
◦

13332
= 17.22%

Accordingly, Table 1 provides the calculated values for all angle intervals:

Table 1. Number of fibers traversing the crack plane.

Intervals for ϕ Number of Fibers Nϕ

(0◦–10◦) 2.12
(10◦–20◦) 6.30
(20◦–30◦) 10.29
(30◦–40◦) 13.97
(40◦–50◦) 17.22
(50◦–60◦) 19.95
(60◦–70◦) 22.08
(70◦–80◦) 23.53
(80◦–90◦) 24.27

Total 139.74

In order to calculate the pullout capacity of a single fiber, the following calculations are made:

fbd = 2.25·η1·η2· fctd = 2.69 Mpa (20)

fα =
1.5· fck

1 + 2
d f
ab

=
1.5·25

1 + 2 0.75
25.39

= 35.41 MPa (21)

where αb =

√
(300·300)√

139.57
= 25.39 mm, the equivalent distance between adjacent fibers.

Friction τfr, due to reaction stress fα is

τfr=µ·fα·sinθ=0.45·35.41·sin26.5◦=7.11 MPa (22)



Fibers 2017, 5, 27 9 of 14

The considered value of µ is taken from published experimental data [19,20].
According to Equation (1), the maximum pullout force for a fiber crossing a crack at the position

(l1/4), which is the average length lav, is:

B = 2.69 · π · 0.75 · 11.589/103 + 35.41 · 0.75 · 2.5/103 + 7.11 · 5.603 · π · 0.75
2

/103

= 0.1869 kN (≯ Bud =
π · 0.752

4
· 1150

1.15
/103 = 0.4418 kN)

(23)

This force is modified according to the intersection point with the crack, but holds a remarkable
participation factor, if this point is located inside the middle region (between the hooks). This
modification results to a participation factor, dependent of the crossing point, as presented in Table 2.

Table 2. Participation factor of a fiber, in accordance with the intersection point with a crack.

Crossing Point Length of Middle
Part l1’ (mm)

Total Length lav
(mm)

Total Pullout
Force B (kN)

Participation
Factor

0 (at the hook) 0 8.089 0.1646 78.8%
l1/8 1.75 9.839 0.1758 84.1%
l1/4 3.5 11.589 0.1869 89.4%
3l1/8 5.25 13.339 0.1980 94.7%
l1/2 7 15.089 0.2091 100.0%

It is interesting to allocate the bearing capacity to the three components that constitute the pullout
capacity of a fiber, as presented in Table 3; it becomes evident that the compressive resistance of the
hook and the corresponding friction are the main components of the fibers’ resistance to crack opening.
For a fiber crossing a crack at the “average position” (l1/4), the sum of the resisting forces of all three
mechanisms is B = 0.1868 kN. If we consider a crossing angle ϕ = 35◦ (as in Figure 8), then

D = 0.1868· sin(
90
◦ − 35

◦

2
) = 0.0863 (24)

T = 0.45·0.0863=0.0388 kN (25)

F = 0.1869·cos27.5◦ + 0.0388 = 0.2046 kN ≤ Bud=0.4418 kN (26)

Table 3. Quantification of the influence of the mechanisms that resist the crack opening.

Crossing
Point

Bond Compressive Resistance Friction

Fbd(kN) Percentage Fα(kN) Percentage Tfr(kN) Percentage

0 0.0513 31.2% 0.0664 40.3% 0.0469 28.5%
l1/8 0.0624 35.5% 0.0664 37.8% 0.0469 26.7%
l1/4 0.0735 39.4% 0.0664 35.5% 0.0469 25.1%
3l1/8 0.0846 42.8% 0.0664 33.5% 0.0469 23.7%
l1/2 0.0957 45.8% 0.0664 31.8% 0.0469 22.4%

Resistance to extraction is

Fx,27.5◦ ,l1/4 = 0.2046·cos27.5◦ = 0.1815 kN (27)

Following the same procedure for all intervals for angle ϕ, according to Table 1, average resistance
to extraction is calculated and presented at Table 4.
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Table 4. Maximum axial force and force coefficient perpendicular to the crack, with the corresponding
maximum crack opening before extraction, in accordance to embedded length.

Angle ϕ
(◦)

Maximum Axial
Force Per Fiber

(kN)

Coefficient
Perprendicular to

Crack (kN)

Maximum Crack Width before Fiber Extraction (mm), in
Accordance to Embedded Length

0 (hook) l1
8

l1
4

3l1
8

l1
2

5◦ 0.1946 0.1435 6.00 7.30 8.55 9.90 11.15
15◦ 0.1994 0.1582 6.45 7.85 9.25 10.65 12.00
25◦ 0.2028 0.1710 6.85 8.35 9.80 11.30 12.75
35◦ 0.2046 0.1815 7.20 8.80 10.35 11.90 13.45
45◦ 0.2048 0.1892 7.50 9.15 10.75 12.40 14.00
55◦ 0.2035 0.1941 7.75 9.45 11.10 12.80 14.45
65◦ 0.2006 0.1959 7.95 9.65 11.35 13.10 14.85
75◦ 0.1962 0.1946 8.10 9.80 11.55 13.30 15.15
85◦ 0.1903 0.1902 8.15 9.90 11.65 13.40 15.15

3.2. Quantification of Volumetric Distribution of Fibers

Combining the values of Table 1 (number of fibers per crossing angle) and of Table 4 (a single
fiber’s resistance to a crack opening, up to the maximum, per case, crack width), the total pullout
resisting force, due to the fibers’ contribution only, of the considered 300/300 mm concrete section
C25/30, with volumetric fibers’ ratio 0.50%, in accordance to crack width, is presented in Figure 9. For
comparison, the concrete tensile capacity is about

Fct = fctm·Ac = 2.565· 3002

1000
≈ 231 kN (28)
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Figure 9. Overall pullout resistance of 300/300 mm section C25/30, $ = 0.5%.

Had all fibers been perpendicular to the crack and totally bonded, their pullout capacity would
have been

Fx, tot = fsy·n·As = 1150·139.74·0.44 ≈ 70.7 kN (29)

According to (19), the pullout capacity due to the fibers (rho = 0.5%) is in the order of 10%–12%
of the tensile capacity of concrete. Since all equations for this capacity are linear to with respect to ρ,
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the relevant capacity would increase accordingly if a larger ratio ρ (up to the level a homogeneous
distribution could be assured) can be achieved (e.g., ρ = 1.0% would result in more than 20% of the
tensile capacity of concrete). The “effectiveness ratio” (which expresses the pullout resistance of all
fibers crossing a crack), provided that all fibers were efficiently anchored and perpendicular to the
crack, takes the initial value r = 27.8

70.7 ≈ 0.40, which is gradually reduced as the crack widens. The
factor r is independent of the volumetric ratio ρ, provided that the homogeneity of fibers’ distribution
can be achieved.

What can be noticed from Figure 9 is that fibers sustain their capacity for a crack width of 2.50 mm,
while a considerable proportion of this capacity (more than 50%) is sustained for a crack width of the
order of 5 mm (about 30% of the length of the middle part of the fiber).

Repeating the same procedure for several types of industrially produced steel fibers, we have
concluded that similar results can be obtained.

Normalizing the width of the crack to the length of the central part of the fiber l1, envelope curves
have been produced and presented in Figure 10.Fibers 2017, 5, 27  12 of 15 
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4. Conclusions

According to Equation (10), which is valid during the early stage of cracking, the initial pullout
resistance of fibers crossing a section can be estimated using analytical expressions.

The average effectiveness factor of the fibers due to their spatial contribution, provided that each
fiber is efficient anchored, has analytically been calculated as r = 0.50.

According to Figure 9 and Equation (28), this resistance is practically quite small, when compared
to the tensile bearing capacity of the concrete (of the order of 10%–15% for ρ = 0.5%), even at the initial
stage of the crack formation. It plays a significant role however, as it partially permits the redistribution
of tensile stresses and the formation of new cracks; an increase of number of cracks leads to crack
width reduction.
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With the proposed numerical method, an estimation for the initial pullout resistance can be
achieved, and the process of the pullout resistance, in the case of a crack starting widening, can also be
described. Due to the accidental lack of anchorage of a percentage of the fibers, r ranges between 0.35
and 0.40 at the early stages of crack formation (about 15% of the length of the central part of the fiber,
l1). Also, r ≈ 0.25–0.35 when crack formation reaches about 30% of l1. Practically, if cracks reach a
width of about 40% of the length of the fibers’ central part, l1, their ability to resist the further opening
of the crack is practically exhausted.

Relevant tests performed by other researchers [18] verify the effectiveness ratio for the small
width of cracks, for w/L1 ratios up to about 0.10 (unfortunately, their experimental setup could not
provide a descending branch, in order to compare with higher w/L1 ratios).

Other experiments performed for hooked end fibers [2] describe a similar behavior to that
presented in Figure 10, with the difference being that the effectiveness ratio is reduced for smaller
values of w/L1. The effectiveness ratio is rather constant up to values of w/L1 to 0.05 and subsequently
it remains equal to 50% of its initial value for larger w/L1.

In a recent review paper [19], other researchers’ tests on specimens report the constant effectiveness
values for w/L1 ratio up to 0.2.

A test of specimens submitted to four-point flexural bending [20] showed that reduction of the
effectiveness ratio was not so abrupt for larger w/L1 ratios. This could be attributed to the test method
used. Flexural bending tests form cracks of linearly varying width, so there is always a number of
fibers that remain active.

As a proposal for future work, the model described herein, which is valid for cracks of pure
tensile type (where the width is the same along the rupture surface) could be altered to cover flexural
type cracking.
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Appendix A

List of symbols

Ac: area of concrete
B: pullout resistant force of a fiber
Bud: design value of maximum pullout force of a fiber, in the case that the fiber reaches the yield stress
Fextr,ϕ,perp: total pullout resistance of fibers forming an angle ϕ perpendicular to crack direction
Nϕ: number of fibers that cross a crack, forming an angle ϕ perpendicular to crack direction
df: diameter of a fiber
hf: hook height (Figure 1)
f ctm: tensile strength of concrete
f bd: ultimate bond stress between fiber and concrete (EC2-1, cl. 8.4.2)
f sy: tensile yield stress of a fiber
fα: the bearing capacity of concrete against compression inside a bent of a fiber, that can be calculated
as (EC2-1, cl. 8.4.2):

fα =
1.5· fck

1 +
2·d f
ab

(A1)

αb: the distance (perpendicular to the crack plane) between axes of adjacent fibers. In case of uniformly
oriented fibers, this can be efficiently approximated by

ab =

√
Ac

Σ(n)
≈
√

1
ct
≈ 0 (A2)
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Then
fa ≈ 1.5· fck (A3)

αϕ: modification factorof the volumetric ratio, regarding angle ϕ
lf: total length of fiber (refer to Figure 1)
l1: length of middle part of fiber (refer to Figure 1)
lav: for one fiber, is the length of the smaller of the two parts of it, as divided by a crack plane; for
many fibers is the average of the smaller parts, practically lav = 1

2 ·
(

l1
2 + l2d + l2v

)
(refer to Figure 1)

n: number of effective fibers that cross area A (function of the volumetric ratio)
r: effectiveness ratio for fibers [refer to section 3.2]
µ: friction coefficient between fiber and concrete, considered here as µ = 0.45.
ρ: volumetric ratio of fibers
ρact: active volumetric ratio of fibers
τfr: friction due to compression inside a bent fiber, τfr = µfα
ϕ: angle formed by a fiber perpendicular to crack direction

Appendix B

Details of the characteristics of the materials used for the case study.

Table A1. Characteristics of the case study fibers.

Property Quantity Property Quantity

Diameter df (mm) 0.75 Long. dim. of hook hf (mm) 2.50
Total longitudinal dimension lf (mm) 29.0 Angle of hook θ (◦) 26.5

Central straight part l1 (mm) 14.0 Total Length ltot (mm) 30.2
Long. dimension of hook (mm) 7.50 Area Af (mm2) 0.44

Horizontal part l2,h (mm) 2.49 Volume Vf (mm3) 13.3
Diagonal part l2,d (mm) 5.60 Vol. of straight part V1 (mm3) 6.18
Horizontal T l2,d’ (mm) 5.01 Volumetric ratio 0.50%

Capacity to tension f sy (MPa) 1150 Modulus of elasticity Es (MPa) 2 × 105
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