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Abstract: Additive manufacturing (AM)/3D printing (3DP) is a revolutionary technology which
has been around for more than two decades, although the potential of this technique was not fully
explored until recently. Because of the expansion of this technology in recent years, new materials
and additives are being searched for to meet the growing demand. 3DP allows accurate fabrication of
complicated models, however, structural anisotropy caused by the 3DP approaches could limit robust
application. A possible solution to the inferior properties of the 3DP based materials compared to that
of conventionally manufactured counterparts could be the incorporation of nanoparticles, such as
carbon nanotubes (CNT) which have demonstrated remarkable mechanical, electrical, and thermal
properties. In this article we review some of the research, products, and challenges involved in 3DP
technology. The importance of CNT dispersion in the matrix polymer is highlighted and the future
outlook for the 3D printed polymer/CNT nanocomposites is presented.

Keywords: additive manufacturing; 3D printing; polymer; carbon nanotubes (CNT); CNT dispersion;
nanocomposites; tensile properties; electrical properties; thermal conductivity

1. Introduction

The additive-manufacturing (AM) technique through material extrusion, known as three-
dimensional printing (3DP), has drawn remarkable attention from both academia and industry in
recent years and this emerging field has been showing an exponential increase of the scientific
interest. The technology of 3DP allows accurate fabrication of complicated sub-micron to few
meters range structures from models by computer-aided design (CAD) or animation modeling
software [1–3]. 3DP, which is widely regarded as a revolution in manufacturing technology, has been
developed for a large range of applications, for example, in the field of aerospace and automotive [4],
energy storage [5], electronics [6], engineered composites [7], biotechnology, tissue engineering [8],
medical and pharmaceutical domains [9]. 3DP utilizes different techniques for the manufacturing of
prototypes. Such techniques include Inkjet printing, Fused deposition modeling (FDM), Powder-bed
technology, Micro-stereolithography (MSL), Dynamic optical projection stereolithography (DOPsL),
Direct-write assembly (DW), selective laser sintering (SLS), Solvent-cast 3DP (SC-3DP), Conformal
3DP (C-3DP), Two-photon polymerization (TPP), and UV-3DP, among others [10–13].

There are numerous compatible materials available for 3DP, for example, metals, polymers,
and ceramics [14–16]. Among these materials, polymers are in demand because of their diversified
types, availability, processability, unique properties and price. Using 3DP technique objects could
be fabricated by utilizing different polymeric materials such as latex, acrylonitrile-butadiene-styrene
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(ABS), poly(lactic acid) (PLA), poly(caprolactone) (PCL), polyamides, and photosensitive resins
based on acrylic oligomer [17–23]. Moreover, combining polymer with nanoparticles such as carbon
based nanofillers (carbon nanotubes (CNTs), graphene oxide (GO), carbon black, carbon nano-fibers),
nanoclay and metallic nanofillers, it is possible to manufacture 3D materials with optimized target
properties and multifunctionality beyond those of conventional pure printing materials, which enables
a wide range of application [24–26].

The article of Iijima on CNTs in 1991 [27] was ground breaking in the field of materials science
and soon after, researchers from different disciplines started to focus on this fascinating material.
Since then, a tremendous amount of research work has been concentrated on the CNT incorporated
advanced nanocomposites. CNTs are a long, thin cylinder of carbon with very high aspect ratio which
possess outstanding tensile properties like tensile strength and modulus, and superior thermal and
electrical conductivity [28–34]. CNTs, having the ability to induce the formation of highly ordered
interphase polymer layer, can facilitate mechanical reinforcement by interfacial stress transfer between
the nanotubes and polymer [35–43]. CNT, with a diameter comparable to the radius of gyration
of the polymer chains, forces these chains to align parallel to the CNT axis upon crystallization.
Thus, CNTs possess the ability to nucleate polymer crystal growth at the polymer/CNT interphase.
This is due to the geometric confinement effect induced by the highly curved surface of CNTs [44,45].
The templating effect thus induced by the CNTs contributes toward the stress transfer mechanism of
load between the polymer matrix and CNTs. Over the years, different routes have been developed
for synthesizing verities of nanotubes like single-wall nanotubes (SWCNTs), double-wall nanotubes
and multi-wall nanotubes (MWCNTs). Some prominent methods for the synthesis of CNTs include
chemical vapor deposition (CVD), catalyst chemical vapor deposition (CCVD), arc discharge, and laser
ablation [46–58]. However, after more than two decades of extensive research, the potential of CNTs as
polymer reinforcement has not been fully utilized. Entanglement and bundling of CNTs, which arise
because of the high aspect ratio and strong van der Waals interaction, prohibit their homogeneous
dispersion in the polymer matrix [35,59–62]. Nevertheless, polymer/CNT nanocomposite processed
by additive manufacturing has gained much attention in recent years and continuous efforts have
been made to overcome these limitations.

In this review, the current progress on the processing of polymer/CNT nanocomposites for 3DP
will be highlighted. The advantage and limitations of such nanocomposites as well as their future
scopes for the 3DP techniques will be discussed.

A summary of all abbreviations used in this review is presented in Table 1.

Table 1. Abbreviations and their elaborations.

Abbreviations Elaborations

AM Additive manufacturing
3DP 3D printing
CNT Carbon nanotubes (CNT)

SWCNTs Single-wall carbon nanotubes
MWCNTs Multi-wall carbon nanotubes

GO Graphene oxide
CAD Computer-aided design
RP Rapid prototyping

FDM Fused deposition modeling
SL Stereolithography

MSL Micro-stereolithography
DOPsL Dynamic optical projection stereolithography

DW Direct-write assembly
SLS Selective laser sintering

SC-3DP Solvent-cast 3DP
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Table 1. Cont.

Abbreviations Elaborations

C-3DP Conformal 3DP
TPP Two-photon polymerization
DLP Digital light processing
ABS Acrylonitrile-butadiene-styrene
PLA Poly(lactic acid)
PBT Polybutylene terephthalate
PCL Poly(caprolactone)

PEGDA Poly(-ethylene glycol) diacrylate
PEGMEMA Poly(ethylene glycol) methyl ether methacrylate

BAPO Bis(2,4,6-trimethylbenzoyl)-phosphineoxide
PVP Poly(vinylpyrrolidone)
CVD Chemical vapor deposition
LDM Liquid deposition modeling

CF Carbon fiber
SEM Scanning electron microscopy
MTA Multi-walled carbon nanotube-thiol-acrylate
MSCs Microsupercapacitors
DCM Dichloromethane
HA Hydroxyapatite
TPU Polyurethane

2. Processing of Carbon CNT/Polymer Nanocomposites Using 3DP

Because of the outstanding properties of CNTs as mentioned before, initially they are a suitable
candidate to integrate into 3D printing polymers. CNTs, with some structural defects, provide
suitable nucleation sites which allow stronger interactions with polymers for crystallization [63–66].
Despite all these benefits, agglomeration of nanoparticles like CNTs can be detrimental to 3DP
processing, especially for the methods like FDM, where blockages at the nozzle and flux instability can
occur [67]. Better dispersion of the nanotubes along with the compatibility with the matrix polymer
and optimization of their loading significantly improve the properties of nanocomposites [68] because
of the magnificent properties of an individual CNT at well-dispersed condition which can be translated
into the properties of a printed nanocomposite. In this section, a number of relevant studies has been
discussed to follow the current trend and state-of-the-art 3D printed nanocomposites.

Sandoval et al. [69] carried out one of the preliminary studies on 3D printed polymer/CNT
nanocomposites to understand the interfacial bonding between the commercially available
epoxy-based SL resins and MWCNTs using the stereolithography (SL) layered manufacturing process.
The dispersion of MWCNT in the epoxy resin was carried out by means of a few consecutive steps such
as shear, non-localized ultrasonic dispersion and mechanical stirring via paddle. The dispersion was
stable for a week which was attributed to the high viscosity of the SL epoxy resins. The highly
viscus system overcomes the attractive forces between CNTs and delays the formation of CNT
agglomerates, and thus, their precipitation. It was found that a MWCNT concentration of as low as
0.05% (w/v) increased the ultimate tensile stress and fracture stress on the nanocomposites to 17% and
37%, respectively, compared to that of the control sample. Increasing the MWCNT concentration
to 0.5% (w/v) enhanced the integrity of the nanocomposite samples over much wider operating
temperatures and showed an increase in the elastic modulus at temperatures beyond ~200 ◦C. Zhang
et al. [70] used stereolithography (SL) technique as well to fabricate highly customized radar absorbing
materials (RAM) and novel RAM structures. In this work, dispersion of CNTs in acrylic ester matrix was
carried out by homogenization only and the microwave absorbing properties of CNTs/photopolymer
composites was measured as a function of the concentration of CNTs.

Incorporation of MWNTs can significantly improve the electrical conductivity as shown in [71]
and [72]. Postiglione et al. [71] studied a new three-dimensional (3D) printing system based on liquid
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deposition modeling (LDM) technique for the fabrication of conductive 3D nanocomposite-based
microstructures with arbitrary shapes. This technology consists of the additive multilayer deposition
of polymeric nanocomposite liquid dispersions based on poly(lactic acid) (PLA) and multi-walled
carbon nanotubes (MWCNTs). MWCNT was exploited to impart conductive character to the final
MWCNT/PLA nanocomposite. A homogeneous dispersion of MWCNTs in PLA was achieved by
magnetic stirring of the stock solution followed by ultrasonication at room temperature and in the
presence of an ice bath. Optimum processing parameters were achieved from the electrical and
rheological measurements on the nanocomposites. From the processed nanocomposite, electrical
conductivity in the range of as high as 10 S/m–100 S/m was obtained for high (>5 wt. %) MWCNT
concentration. Guo et al. [72] processed PLA/MWCNT nanocomposite in a novel freeform helical
geometry using the solvent-cast 3DP technique to obtain a 3D liquid sensor. With increasing MWCNT
loadings, typical concentration percolation behavior of electrical conductivities of the extruded
nanocomposite filaments was observed and the electrical percolation threshold was approximately
0.3 wt. % MWCNT concentration. Comparing the straight line and 3D helix composites, it was found
that the 3D helical sensor can trap a larger amount of the liquid inside the structure when immersed in
a target solvent and the helical sensor was approximately three times more sensitive than the straight
line sensor to certain solvents under investigation.

While MWCNTs are considered one of the popular choices of nanoparticles for the 3DP,
Ushiba et al. [73] used two-photon polymerization (TPP) lithography to develop 3D micro/nano
structural single-wall carbon nanotube (SWCNT)/polymer nanocomposites into arbitrary structures,
as shown in Figure 1a–f. Using this technique, the authors could achieve the spatial resolution as
small as 200 nm in lateral direction. In this work, SWCNT was dispersed into an acrylate monomer
by sonication followed by mixing of photo-initiator and photo-sensitizer by stirring. As shown in
Figure 1g–k, the nanocomposites were characterized using Raman microscopy experiments to study
the incorporation and distribution of SWCNTs into the whole structures. Due to the self-alignment of
SWCNTs inside the wire, as observed with the use of polarized Raman spectroscopy, it was predicted
that the resultant structures would exhibit higher mechanical and electrical properties. It was predicted
that the alignment of SWCNTs inside the wire arises from spatial confinement in the nanowire and/or
volume shrinkage of polymer during the rinse and dry processes [74,75].

Overcoming the usual nozzle jam issue while nanocomposites are processed using the Fused
Deposition Modeling (FDM) technique, Gnanasekaran et al. [76] printed non-conventional polymer
nanocomposites (CNT- and graphene-based polybutylene terephthalate (PBT)) on a commercially
available desktop 3D printer. It was addressed that the nozzle jam issue can be controlled by
the optimization of the size and size distribution of the conductive fillers as well as the printing
parameters/conditions, such as printing temperature, printing speed, residence time and printing
bed temperature. In this study, CNT and graphene dispersions were achieved in PBT by sonicating
the nanoparticles in isopropanol solvent in an ice bath and subsequent vigorous stirring after adding
the PBT while evaporating the solvent. In this way, PBT powder containing conductive fillers was
processed and extruded later to obtain composite filaments for 3DP. The printed structures were
characterized for electrical conductivity, morphology, crystallization behavior, thermal stability and
viscoelastic behavior. It was found that PBT/CNT 3D printed structures have better functional
properties (elastic behavior and conductive properties) than that of the PBT/G 3D printed structures.
The authors concluded with some vital recommendations/comments regarding the printing of abrasive
materials since such materials could potentially damage the printing nozzle. The recommendation
includes manufacturing the FDM nozzles using harder materials, such as silicon carbide. It was
also stated that change in nozzle design such as use of co-extruding nozzles instead of double
nozzles could help with the clogging of conductive fillers. Health and safety issues upon printing
ultra-small nanoparticles is another vital concern in this field which should be addressed properly in
the manufacturing environment. Gonzalez et al. [77] studied the blend of PEGDA and PEGMEMA and
mixed the MWNTs into it. The authors achieved the CNT dispersion by sonicating PEGMEMA/CNT
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mixture, followed by high-shear homogenizing the mixture after addition of PEGDA resin and BAPO
photoinitiator. Digital light processing (DLP) technique was used to print a series of objects such as
3 mm cubes, sub-mm films, cm-scale hexagonal structures (Figure 2a) and a circuit model (Figure 2b)
and the mechanical and electrical properties of the polymer/CNT nanocomposites were evaluated.
It was found that the addition of CNTs to the formulation causes a slight decrease in crosslinking
density, which reduces its mechanical performance. However, it was found that with the addition of as
low as 0.1 wt. % of CNTs, the conductivity rises almost 3 orders or magnitude with respect to the pure
PEGDA:PEGMEMA 1:1.5 formulation. Tsiakatouras et al. [78] processed ABS filaments with different
CNT concentrations and conducted a comparative mechanical properties study between injection
molding, a conventional manufacturing method and 3DP. Carbon fibers (CF) were also introduced
into the 3D printed specimens during printing, however, no further details regarding the type of CF
and the process of addition were discussed in this work. It was found that injection molding produces
more rigid structures compared to that of 3DP, however, 3DP showed better manufacturing flexibility
because of rapid prototyping by producing commercial objects which are possible to test under real
operational conditions and by in situ incorporation of carbon fibres.
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Figure 1. 3D micro/nano structural SWCNT/polymer composites are fabricated by using the TPP
lithography. The structures in (a–f) are a 8-µm-long micro bull, a micro tea pod, a micro lizard,
a nanowire suspended between two micro boxes, magnified image of (d), and perspective view of the
nanowire, respectively; (g) shows a Raman spectrum taken from the box suspending the nanowire with
an excitation wavelength of 785 nm. Laser power and exposure time are 2.8 mW and 60 s, respectively;
(h) A bright field image of the 300-nm-thick nanowire suspended between two boxes; (i) A G-band
Raman image taken at the same area in (h). Laser power and exposure time are 1.4 mW and 10 s,
respectively; (j) A bright field image of a 8-µm-long micro bull; (k) A G-band Raman image taken at the
same area in (h). Laser power and exposure time are 2.8 mW and 10 s, respectively. Copyright © 2013,
with permission from Elsevier [73].

To improve the weak weld zone between successive filament traces in the 3D printed plastic
engineering parts, Sweeney et al. [79] developed a novel concept for welding 3D printed thermoplastic
interfaces. The authors used intense localized heating of carbon nanotubes (CNTs) by microwave
irradiation which was introduced as locally induced RF (LIRF) welding method. As shown in Figure 3a,
3D printed filaments result in a macroscopic structure with MWCNTs localized only at the interfaces
between each trace because of the MWCNT-rich polymer film coating around the thermoplastic
filaments. Upon exposure to microwave irradiation as can be seen in Figure 3b, these MWCNTs
loaded interfaces create localized heating, which promotes increased local polymer mobility and
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entanglement across the interface. To characterize the weld strength, a single 3D printed layer weld
line was subjected to trouser tear tests, as shown in Figure 4a. In this method, the sample is torn such
that the fracture propagates along a single z direction weld line. It was found that fracture strength
increased by 275% over baseline 3D-printed parts. SEM images of the fracture surfaces further showed
that the fracture surface of the LIRF-welded samples exhibit large necked zones along the tear path
with significant bulk plastic deformation which closely resembled that of the bulk hot-pressed PLA
films. This suggested that both the strength and ductility of the LIRF-welded samples have been
restored as the bulk film sample. The authors demonstrated impressive load-supporting structures
with complex shapes such as the 3D-printed chain link (Figure 4b).
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Figure 2. (a) Representative scheme of the DLP 3D printing process and 3D hexagonal structure
(thickness of 5 mm) containing, 0.1 wt. % CNTs as finished part; (b) Circuit-like structure built on an
insulating base (PEGDA:PEGMEMA 1:1.5 wt/wt with brilliant green as colorant) with suspended
elements containing 0.1 wt. % CNTs (30× 50 mm. Copyright © 2017, with permission from Elsevier [77].
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Figure 3. (a) 3D-printed parts tend to display weak tensile properties in the y and z directions
due to poor interlayer welding. To address this, the authors coated thermoplastic filament with a
CNT-rich layer; the resulting 3D-printed part contains RF-sensitive nanofillers localized at the interface;
(b) When a microwave field is applied, the interface is locally heated to allow for polymer diffusion
and increased fracture strength [79].
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Figure 4. (a) Tear tests are used to determine that (b) the fracture strength of 3D-printed PLA coupons
is increased by 275% when CNT coatings and LIRF welding are applied; (c) A nanotube-coated,
LIRF-welded PLA chain link printed in the z direction is able to support the weight of the co-author.
This LIRF welding enables new, high-strength applications of additive manufacturing [79].

Liu et al. [80] fabricated arbitrary 3D micro/nanostructures (Figure 5) from MWNT-thiol-acrylate
(MTA) composite resins via TPP technique with ultrahigh spatial resolution. For TPP fabrication,
MTA composite resin was prepared by mixing acid-purified MWNTs and thiol-acrylate using ultrasonic
agitation under ice bath. Large agglomerated MWNTs were removed using high-speed centrifugation.
The authors confirmed excellent distribution of MWNTs with high concentrations and stability in
the MTA composite. It was found that with 0.2 wt. % MWNTs loaded into the acrylate polymer,
the electrical conductivity of the composite resin increased over 11 orders of magnitude and reached
46.8 S/m. Wu et al. [81] prepared printing ink by milling CNTs in a solution composed of isopropyl
alcohol, ethylene glycol, and the dispersion agent. This ink was used to make carbon nanotubes-based
3D printed microsupercapacitors (MSCs). The printing was carried out via a micronozzle, with printing
speeds and micronozzle-to-base distances controlled, and with predesigned base temperature and
preprogrammed printing trajectory. It was claimed that the heated base introduces benefits such as
(a) lowering the demand of highly concentrated solid contents which is required in the traditional
extrusion-based 3D printing and (b) promoting adhesion between the printed features. MSCs produced
utilizing this method deliver a specific capacitance of 2.44 F cm−2 and exhibit superior cycle stability
and reliable energy storage capacity.

Kim et al. [82] demonstrated a 3D-printing strategy to produce highly conductive 3D MWNT
microarchitectures with a MWNT concentration as high as ~75 wt. % via meniscus-guided printing
method [83]. In this method, CNT aqueous ink was composed of MWNTs and polyvinylpyrrolidone
(PVP). Later, PVP was removed via thermal decomposition at 450 ◦C for 1 h in vacuum. Rheological
properties of CNT inks showed clear shear thinning behavior, occurring from the rearrangement
of MWNTs under shear stress (Figure 6a) and fluid-like behavior (G′ is lower than G”) (Figure 6b).
3D MWNT microstructures were printed using the developed CNT fluid ink as shown in Figure 6c–f.
It was pointed out that the key factor for the successful 3D printing of MWNT structures presented
in this study was the modification of the MWNT suspension. Since the A-MWNT suspension did
not possess the required rheological behavior for 3D-printable ink, addition of PVP to the suspension
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improved the CNT ink printability. Thus, uniform dispersion and appropriate rheological properties
of the PCP/CNT suspension ensured consistent flow through a confined nozzle geometry.
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Figure 6. (a) Viscosity as a function of shear rate and (b) storage and loss moduli as functions of ink shear
stress. ((a), Inset) Histogram comparing viscosities of CNT inks with 7 wt. % A-MWNT and different
PVP concentrations (0, 10, 17, 25 wt. %). The viscosity at a 10 s−1 shear rate increases gradually from
12.64 to 88.38 mPa·s; (c) Schematic diagram of 3D-printing process based on meniscus-guided printing.
A 3D square MWNT microarchitecture (FE-SEM image) is printed by horizontally pulling a micronozzle
filled with CNT ink (PVP-wrapped A-MWNT suspended in water), with water evaporating from the
ink meniscus during the nozzle pulling. (d–f) FE-SEM images of 3D wall architectures with different
shapes: (d) “3D” shaped wall (thickness (t) = 10 µm and height (h) = 24 µm); (e) Four-stair structure with
orthogonal feature (t = 10 µm, h = 48 µm); (f) Three-dimensional cross-shaped structure with elliptical
hollow feature (t = 10 µm, h = 40 µm). All scale bars are 20 µm. Reprinted (adapted) with permission
from [82]. Copyright (2016) American Chemical Society.
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Recently, Chizari et al. [84] fabricated highly conductive CNTs/PLA nanocomposites used as
3D printable conductive inks for fabrication of conductive scaffold structures. A ball mill mixing
method was used to disperse the MWCNTs with a concentration up to 40 wt. % in PLA, however,
it was reported that up to 30 wt. % of CNT concentration was 3D printable without blocking of the
printing nozzle and fragility of the printed structures. The dried CNT/PLA composites were dissolved
in dichloromethane (DCM) and the CNT/PLA-DCM was used directly after mixing as the printing
ink using solvent cast 3DP method. It was found that the sensitivity of the liquid sensors decreased
by increasing the filament diameter and/or the thickness of the fabricated scaffolds. On the other
hand, the scaffold showed electrical conductivity of up to ≈2350 S/m−1 which is higher than that
of many recently reported polymer based conductive composites (maximum < 100 S/m−1) suitable
for 3D printing [84]. Gonçalves et al. [85] demonstrated that a 3D printed nanocomposite scaffold
system possesses enough compressive strength and electrical conductivity along with bioactivity,
biocompatibility, porosity, and pore size which could be a suitable option for the application in the
field of bone regenerative medicine. The scaffold was printed from three-phase monocrystalline
hydroxyapatite (HA)/CNTs/PCL system with optimum viscosity. The CNT/HA suspension was
homogenized for 1 hour to mix HA and CNTs. PCL solution was then added to the suspension to
prepare the slurry for printing. Maximum CNT concentration used in this study was 10 wt. % and no
nozzle jam was reported. CNT loading was optimized and it was found that 2% CNT scaffold offers the
best combination of mechanical behavior and electrical conductivity for scaffold application. Selective
laser sintering (SLS) was used by Li et al. [86] to prepare the flexible thermoplastic polyurethane
(TPU) conductor using self-made MWCNTs wrapped TPU powder. The authors claimed that having
lower percolation threshold, the electrical conductivity for the SLS processed TPU/CNTs composite
reached ≈10−1 S/m−1 at 1 wt. % CNTs content, which is seven orders of magnitude higher than that
of conventional injection-molded TPU/CNTs composites at the same CNTs content. In this study,
CNT dispersion in ethanol was carried out by ultrasonication. The TPU powder was then added to the
CNTs suspension and mechanically stirred before filtered and dried to obtain the MWCNTs wrapped
TPU powder. For the printed flexible nanocomposites, no considerable change was observed after
1000 bending cycles, but there was a decrease in mechanical strength to some extent.

3. Applications

This review is directed at providing an overview on the up-to-date on-going research in the field
of manufacturing of polymer/CNT nanocomposites using 3DP, along with their potential applications.
A summary of the recent investigates as discussed in the previous section are presented in Table 2.
From the table, it is clear that the most widespread use of 3D printed CNT nanocomposites is in
electronics. More specifically, owing to the outstanding electrical conductivity (102 S/m to 107 S/m at
300 K) of CNTs [33], most of the 3D printed polymer/CNT nanocomposites structures are concentrated
on improving electrical properties. The applications of the polymer/CNT nanocomposites include
energy storage devices like microsupercapacitors, electronic components such as transducers, flexible
conductor, emitters, and radio frequency inductors, absorber of electromagnetic energy, liquid
sensors such as gas or strain sensors, precise electrical micro-interconnectors in 3D circuits and so
on. High electrically conductive polymer/CNT nanocomposites can be beneficial as the 3D printable
biomaterials electrical stimuli to enhance the cell functions [85]. As significant improvement in electrical
conductivity is observed at very low CNT loading, 3D printed precise macro and micro-structured
CNT/polymer nanocomposites could be a light weight, low cost and highly effective option for
particular applications. Other than that, very high tensile modulus (270 GPa–950 GPa) and tensile
strength (11 GPa–63 GPa) [28] of CNTs qualified them as an appropriate candidate for reinforcement
in 3D printed nanocomposites to address their strength limitations. The incorporation of CNTs could
also improve the thermal transport properties of polymer composites due to the excellent thermal
conductivity (200 W/m/K–3000 W/m/K at 300 K) [31,87] of CNTs.
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Table 2. CNTs/polymer composites preparation using various additive manufacturing fabrication methods.

Technique Polymer CNT Type CNT Concentration Potential Applications/Additional Information Year Published Ref.

Stereolithography (SLA) Epoxy MWCNTs 0.05% (w/v) Nanocomposites with high tensile and fracture stress 2007 [69]

Stereolithography (SLA) Acrylic ester photopolymer MWCNTs 0.5% to 1.5% wt. % Radar absorbing materials (RAM) and novel
RAM structures 2016 [70]

Liquid deposition
modeling (LDM) Poly(lactic acid) (PLA) MWCNTs Not available (NA) Conductive polymer-based 3D microstructures 2015 [71]

Solvent-cast 3D printing Poly(lactic acid) (PLA) MWCNTs 5% High electrical conductivity and an excellent
sensitivity for low power consumption devices 2015 [72]

Two-photon polymerization
(TPP) lithography Acrylic photopolymer SWCNTs 0.01 wt.% Functional applications in micro- and

nano-electromechanical systems 2013 [73]

Fused deposition modeling (FDM) Polybutylene terephtha-late
(PBT)

MWCNTs
(+ graphene) ~0.5 wt. % Sufficient mechanical strength, stiffness, and chemical

resistance for user specific application 2017 [76]

Digital light processing (DLP) PEGDA and PEGMEMA MWCNTs Up to 0.3 wt. % Structure with high electrical properties applications 2017 [77]

Fused deposition modeling (FDM) Acrylonitrile butadiene
styrene (ABS) CNTs (+ carbon fiber) 0.5%, 1% and 3% Comparative study between conventional injection

molding and 3D printing 2014 [78]

Locally induced RF (LIRF) welding
of 3DP parts

Feedstock polylactide
(PLA) MWCNTs Up to 20 wt. % in the film For the enhancements of 3D-printed weld strength 2017 [79]

Two-photon polymerization
(TPP) lithography Thiol-acrylate resins (MTA) MWCNTs 0.05, 0.1, 0.15 and 0.2 wt. % Precise 3D printing for device applications 2016 [80]

A new/novel technique based on
inkjet and extrusion based

3D printing
Poly(vinyl alcohol) (PVA) MWCNTs 70 wt. % of dispersion

agent wt. in the ink Microsupercapacitors (MSCs), energy storage devices 2017 [81]

Meniscus-guided printing Polyvinylpyrrolidone
(PVP) MWCNTs ~75 wt. % Electronic components such as sensing transducers,

emitters, and radio frequency inductors 2016 [82]

Solvent cast 3D printing method Polylactic acid (PLA) MWCNTs UP to 40 wt. % Scaffold structures as Liquid sensors 2016 [84]

Nozzle-deposition
method/layer-by-layer dispensing

Hydroxyapatite (HA) and
polycaprolactone (PCL) MWCNTs Up to 10 wt. % Scaffold for bone regeneration 2016 [85]

Selective laser sintering (SLS) Polyurethane (TPU) MWCNTs 0.1 to 1 wt. % Flexible circuit, wearable devices, implantable
devices, electronic skin, dielectric elastomer actuators 2017 [86]
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It is predicted that by 2019, the 3DP market will reach $10 billion (with an annual growth rate
(CAGR) of 32.2% from 2014 to 2019) which was only $1 billion by 2009 after more than 20 years of
exploitation. It is worth noting that it took only three more years to reach $2 billion, which highlights
the prospect of this industry [88,89]. CNT nanocomposites will undoubtedly be a part of this growth
which opens up a new age of advanced multifunctional materials.

4. Conclusions and Future Developments

Recent studies presented in this review on 3D printed CNT/polymer nanocomposite suggest
its enormous potential in the respective fields. However, in spite of the rapid evolution of the 3DP
technique towards different applications from simple devices for day to day use to high-tech complex
structures, significant gaps still remain in the knowledge relating to the introduction of CNTs as a part
of nanocomposites manufactured using 3DP technique.

First and foremost, carbon nanotube dispersion is the biggest challenge in realizing the
full potential of CNTs, which is addressed by many researchers. It was found that sonication,
homogenization and other mechanical mixing are the tools employed for the separation of entangled
or agglomerated CNTs and centrifugation for filtering out the agglomerated residue. Non-covalent and
covalent functionalization of the CNTs and/or coating or wrapping of the individual nanotubes using
appropriate compatibilizer [35] could be an effective route while processing 3D printed CNT/polymer
nanocomposite and it needs further exploration. Chemical functionalization purposefully creates
defects on the CNT surface which subsequently generates active functional groups. These newly
created functional groups assist the bonding between the CNT and the polymer chain [90]. It was
found that acid treated CNTs could improve the electrical conductivity of the composites compared
with that of CNT-polymer composites made from the same pristine CNTs [91]. At the same time,
it is important that such types of additional processing steps are economically viable and scalable
preserving the intrinsic properties of CNTs. Too many defects caused by the nanotube functionalization
could potentially degrade the properties of the CNTs and thus adversely affect the composite
properties. Aside from dispersion, surface tension and viscosity of the inks are other important
characteristics that the researchers considered while processing nanocomposites for certain 3DP
applications. These parameters are largely dependent on the CNT loading, dispersion in the matrix,
alignment of CNTs with the polymer chain and interaction between the polymer and the CNTs.
Good mechanical reinforcement of the nanocomposites is another important criterion for better
mechanical properties of the nanocomposites. Such a reinforcement could be tailored by the types of
CNTs (MWCNT or SWCNT), diameter and length of CNTs (aspect ratio) other than the parameters
stated above. Systematic studies optimizing all of these parameters are essential for user specific 3D
printed CNT/polymer nanocomposites production.

As a final remark, it can be concluded that recent rapid progress in the 3D printed polymer/CNT
nanocomposites is leading to new, exciting developments and breakthroughs targeting the theoretical
or fundamental aspects as well as the commercialization of new materials.
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