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Simple Summary: Scientific knowledge should transcend the barriers between the laboratory and
the field to act in the service of humanity. Considering the enormous potential that soil offers for
organic carbon (SOC) sequestration for the mitigation of greenhouse gas (GHG) emissions, and
considering the recognized ecological importance of biological soil crusts (biocrusts) to be applied in
the soil–plant continuum, we propose three perspectives to apply biocrusts to sustainable agriculture.

Abstract: The major priority of research in the present day is to conserve the environment by reducing
GHG emissions. A proposed solution by an expert panel from 195 countries meeting at COP 21
was to increase global SOC stocks by 0.4% year−1 to compensate for GHG emissions, the ‘4 per
1000′ agreement. In this context, the application of biocrusts is a promising framework with which
to increase SOC and other soil functions in the soil–plant continuum. Despite the importance of
biocrusts, their application to agriculture is limited due to: (1) competition with native microbiota,
(2) difficulties in applying them on a large scale, (3) a lack of studies based on carbon (C) balance
and suitable for model parameterization, and (4) a lack of studies evaluating the contribution of
biocrust weathering to increase C sequestration. Considering these four challenges, we propose
three perspectives for biocrust application: (1) natural microbiome engineering by a host plant,
using biocrusts; (2) quantifying the contribution of biocrusts to C sequestration in soils; and (3)
enhanced biocrust weathering to improve C sequestration. Thus, we focus this opinion article on
new challenges by using the specialized microbiome of biocrusts to be applied in a new environment
to counteract the negative effects of climate change.

Keywords: biocrust functions; soil microbiota; CO2 mitigation; greenhouse gas (GHG) emissions;
carbon balance; mineral weathering

1. Introduction

Among the main immediate challenges of humanity, the reduction in atmospheric
CO2 concentrations and the emissions of other greenhouse gases (GHGs) is a major priority
to counteract the negative effects of climate change [1,2]. Because soils can store two to
three times more carbon (C) than the atmosphere, soil organic carbon (SOC) sequestra-
tion is a possible and efficient solution to diminish GHG emissions to the atmosphere [2].
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In grasslands and agriculture, 47% of total potential mitigation arises from SOC protec-
tion and sequestration, while 20% involves other GHGs involved with improved soil
management practices [3,4].

The enormous potential of soils to sequester C motivated the governments of 195 coun-
tries in 2015, convened in Paris for the 21st Conference of the Parties (COP 21), to launch a
new global climate change agreement, the ‘4 per 1000′, with the main objective to increase
global SOC stocks by 4 per 1000 (or 0.4%) per year as a compensation for global GHG emis-
sions from anthropogenic sources (https://www.4p1000.org/, access on 1 August 2021).
Despite the high aim of 4% per year being almost impossible, the development of strate-
gies that increase C accumulation in soil should be a priority of governments, scientific
communities, and modern agriculture [5].

In agriculture, many approaches have been focused on soil C regeneration through
increased residue returns and biomass production (cover crops), and on decreasing C losses
via reduced disturbance (no-till farming). These agronomic approaches, however, do not
always produce net C gains since soil C accumulation is not a linear function of inputs [6].
One of the determinant keys of the C balance is the microbial mineralization of SOC, which
results in CO2 losses [7]. Thus, the efficiency of soil microbes to process C is gaining interest
as an important management strategy to increase SOC sequestration [6]. In this context,
the interactions within biological soil crusts (biocrusts) are currently attracting scientific
attention because of their ability to increase the fixation of nitrogen (N) and C, phosphorus
(P) availability, and reduce nutrient leaching. Biocrusts are therefore considered as a key
ecological microbial community in the continuity of soil biogeochemical cycles [8–10]. In
order to obtain a closed cycle, all the different sources, cycling processes, and sinks need to
be assessed by means of suitable methods, some of which will require a new approach.

1.1. Biocrust, a Photosynthetic Cell Factory for C Sequestration in Agriculture

Biocrusts cover about 12% of the Earth’s landmasses, thereby providing ecosystem
services, affecting biogeochemical fluxes on a global scale, and strongly influencing soil–
plant relationships; thus, facilitating edaphic engineering effects [11,12]. Biocrusts are
found on almost all soil types, but are more commonly found in arid and cold regions,
where plant coverage is low and more widely spaced. Across the globe, biocrusts can be
found on all continents, including Antarctica [13,14].

Biocrusts are formed by an association of soil mineral particles and micro-organisms,
composed by free-living, lichenized, and mycorrhizal fungi, chemoheterotrophic bacteria,
cyanobacteria, diazotrophic bacteria, archaea, eukaryotic algae, and bryophytes. Biocrusts
can aggregate soil particles through excreting exopolysaccharides (EPSs), glycoproteins,
and forming filament networks [15]. However, the species composition and physical
appearance of biocrusts depend on the climate, soil properties, and disturbance conditions.
For example, biocrusts are more dominated by green algae on more acidic and less salty
soils. In contrast, cyanobacteria are more favored on alkaline soils [16]. Independent
of climate, the abundance of lichens and mosses in biocrusts generally increases with
increasing clay and silt content and decreasing sand (Table 1). Moist habitats generally
support more lichens and mosses [17]. Due to their abilities, biocrusts are one of the
major players of global C and N sequestration in soils. On the other hand, biocrusts also
increase soil stability against erosion by forming aggregates, increasing porosity and water
retention, leading to better seed germination [8,9,16,18]. Thus, an improved understanding
of the structures, composition, and functions of biocrust microbiomes and their geological
implication (geomicrobiology) allows changes in soil ecosystem structures to be forecast
for long-term restoration due their essential roles related to physiological or chemical
properties (Figure 1).

https://www.4p1000.org/
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Figure 1. Effects of biocrusts on soil properties and element cycling. The direct and indirect effects are summarized ac-
cording to their main mechanisms based on physical, chemical, biological, ecosystemic, and element cycling. The arrows 
before each point show an increase (↑) or decrease (↓) in the presence of biocrusts. 

Table 1. Preference of biocrust-composing microbial groups to climatic and edaphic conditions (nd = not determined). 
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Cyanobacteria 
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Cyanobacteria/lichens Cold desert shrub interspaces [21] 
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Figure 1. Effects of biocrusts on soil properties and element cycling. The direct and indirect effects are summarized
according to their main mechanisms based on physical, chemical, biological, ecosystemic, and element cycling. The arrows
before each point show an increase (↑) or decrease (↓) in the presence of biocrusts.

Table 1. Preference of biocrust-composing microbial groups to climatic and edaphic conditions (nd = not determined).

Organism Group Climate Soils References

Cyanobacteria

Semi-arid cold Alkaline, loamy clay soil [9]
Dry sub-humid coastal area Nd * [18]

Arid Nd [16]
Semi-arid Nd [16]
Semi-arid Sandy loams [8]

Mediterranean Nd [19]
Humid Nd [19]

Semi-arid Oligotrophic [20]

Cyanobacteria/lichens Cold desert shrub interspaces [21]

Cyanobacteria/moss Cold desert beneath Artemisia tridentata [21]

Bacteria (diazotrophs and
chemoheterotrophs)

Semi-arid Oligotrophic [20]
Cold desert Burnt soils [21]

Semi-arid cold Alkaline, loamy clay sil [10]
Cold desert Burnt soils [21]

Green algae

Arid Nd

[16]
Semi-arid Nd

Mediterranean Nd
Humid Nd
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Table 1. Cont.

Organism Group Climate Soils References

Lichens

Mediterranean semi-arid nd [22]

Semi-arid to dry sub-humid

Arenitic

[23]

Dolomitic
Arenic fluvisols

Leptic chernozems
Luvic phaeozems

Calcaric
cambisols/regosols/leptosols

Semi-arid nd [24]

Mosses

Semi-arid; arid nd [22,25]

Semi-arid to dry sub-humid

Arenitic

[23]

Luvic litosols
Leptic chernozems

Litosols
Leptic chernozems

Litosols
Dolomitic

Calcic luvisols; humic regosols
Arenic fluvisolsLeptic

chernozems
Luvic phaeozems

Calcaric
cambisols/regosols/leptosols

Calcaric regosols

* Not determined.

1.2. Biocrust, a Photosynthetic Cell Factory for C Sequestration in Agriculture

Baumann, Jung, Samolov, Lehnert, Büdel, Karsten, Bendix, Achilles, Schermer and Ma-
tus [16] evaluated the richness of green algae and cyanobacteria of biocrusts in four climate
zones: arid, semi-arid, Mediterranean, and humid temperate. According to the morpholog-
ical identification of the enrichment cultures, a total of twenty-four taxa of green algae and
eighteen of cyanobacteria, regardless of climatic conditions, were found. Each biocrust was
comprised of twelve to fifteen phototrophic species that used sunlight as an energy source
to assimilate CO2, directly affecting the C cycle by C fixation [26]. Cyanobacteria are the
oldest oxygenic photosynthetic organisms, producing O2 during photosynthesis as they fix
CO2 dissolved in the water, thus having one of the most important metabolisms to have
evolved on Earth [27,28]. The adaptation ability of cyanobacteria has allowed them to live
in various conditions, including marine, freshwater, and terrestrial environments [29,30].
Cyanobacteria have been applied in medicine, cosmetic manufacturing, bioremediation,
biofuel, and agriculture [29,31–33]. In fact, some filamentous cyanobacteria have evolved
specialized cells to fix atmospheric N, known as heterocysts [34]. However, in recent
years, more attention has been paid to their C sequestration potential [10,35]. For example,
Kheirfam, Sadeghi and Darki [10] studied a factorial combination of bacteria and cyanobac-
teria from biocrusts and nutrients added to the field-collected soil. The authors showed
that the inoculation of biocrusts had the potential to remove 0.85–1.07 g CO2 m−2 from
the atmosphere.

Such scientific interest in the understanding of biocrusts’ contribution to global climate
change advances the prediction, scaling, restoration, and C sequestration options that are
at the forefront of contemporary biocrust science. In the present opinion manuscript, we
discuss the structural, benefic, and evolutionary mechanisms to overcome environmental
limitations by biocrusts. In addition, we suggest a new and revolutionary challenge for
the new generation of bioinoculants based in biocrusts, such as host natural microbial
engineering, where plants recruit their microbiome to increase C sequestration: new
challenges in a new environment.
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2. Limitations of the Broad-Scale Application of Biocrusts in Agriculture

Despite the demonstrated importance of biocrust-residing microorganisms to improve
C sequestration, field applications are limited because (Figure 2):

(1) Competition of micro-organisms (desirable strains from biocrusts) with native microbiota
in a new environment;

(2) Biocrusts are not applicable themselves;
(3) A lack of parameterized C balance models simulating the contribution of biocrusts to the C

sequestration processes;
(4) A lack of studies evaluating the contribution of biocrust weathering to improve C sequestration.
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3. Perspectives to Solve Practical Limitations of Biocrust Use for Carbon Sequestration

Most research on biocrust inoculation has been conducted at a laboratory or on a
plot scale, which is a necessary starting point; however, we need methods that can scale
up the application, innovative methodologies, and treat ecological- and management-
relevant areas. For these purposes, we propose three perspectives to implement effective
biocrust application and monitoring to understand the main functions and services of the
ecosystem (Figure 3).
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Figure 3. Proposal perspectives: biocrust applications in agriculture and in a new environment.
The link between soil processes, microbiome, ecosystem services, weathering, and soil monitoring
perspectives. The arrows indicate the relationship between soil–plant processes and biocrusts. The
yellow arrow indicates the impact of the soil perspectives on regulating and provisioning ecosystem
functioning and C sequestration.
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3.1. Perspective I. Natural Microbiome Engineering by a Host Plant, Using a Biocrust as Source of
Desirable Micro-Organisms

To decrease the first and second limitations, we suggest natural microbiome engineer-
ing by a host plant, using a biocrust as a source of a desirable microbiome. Host-mediated
microbiota engineering (HMME) is a novel biological strategy that utilizes the intrinsic
ability of plants to recruit and select their associated microbiome in their rhizobiome
through cyclic differentiation and propagation [36,37]. HMME is a promising approach for
improving host performance by engineering microbial communities for beneficial effects
on growth, stress tolerance, and plant health [38,39]. This strategy enables the selection
of a particular microbiome by visualizing changes in the host phenotype after several
generations of growing the plant in the same place [40]. We recently report that the natural
selection of microbiota over multiple generations can be induced through the existence of
three factors: (1) a plant model, (2) an abiotic/biotic stressor or inducer factor, and (3) a de-
sirable microbiome [41]. Thus, when a host plant is subjected to some type of abiotic/biotic
stress or inducer factor, the plant can modify the composition of their exudates, resulting
in the reassembly of the associated microbiomes, which in turn is reflected in modifications
of the plant phenotype [42–44], entailing an adaptation of the host plant [42,45]. These
‘selected’ micro-organisms would have an advantage over external microbiota, and the
reassembled microbiome can optimize the plant’s response against stress or an inducer
factor [46,47]. Bakker, et al. [48] suggested the concept of ‘cry for help’, wherein the stage of
an outbreak of biotic or abiotic disease plants recruit protective microbiota, mainly by the
exudation of photo-synthetically fixed C in the rhizobiome and favoring endosphere colo-
nization [49,50]. Thus, plants are able to recruit a specialized microbiota when subjected to
an adverse condition.

We propose the use of HMME using a (i) model plant, which could be a representative
grassland species, (ii) subjected to elevated CO2 (eCO2) as an inducer factor, due to eCO2
influencing the richness, composition, and structure of soil microbial community to C se-
questration [51], (iii) grown in soil mixed with a biocrust (desirable microbiome). After some
growth cycles under these eCO2 conditions, plants (themselves) could select those micro-
organisms that give them a comparative advantage in C sequestration (induced by eCO2).
These micro-organisms can be horizontally transferred among cycles and vertically to de-
scending generations by seeds. From this, is possible to obtain bioinoculants by culturable
micro-organisms or whole microbiota by using rhizobiome extracts (Figure 3). For example,
Jochum and collaborators induced drought tolerance after six rounds of HMME selection,
and core microbiota functionality was transferable in a subsequent assay [36]. Another
study induced earlier or later flowering times in Arabidopsis thaliana plants using HMME
selection [37]. Recently, HMME was also applied in Nasonia; the insects were exposed over
successive generations to subtoxic levels of atrazine, and changes were observed in the
structure and function of the gut microbiome that conveyed that microbiome-mediated
atrazine resistance was inherited and increased over successive generations of Nasonia
vitripennis [44]. This innovative biotechnology allowed for the endophytic bioinoculant
(inside the roots) naturally selected by the host plant to be obtained, which avoids com-
petition with native microbiota (limitation one) and is applicable under field conditions
because it could be directly applied to seeds (limitation two).

3.2. Perspective II. Quantify the Contribution of Biocrusts to Carbon Sequestration in Soils

The monitoring of C fluxes in terrestrial ecosystems to accurately quantify and predict
C balance is, globally, one of the highest research priorities [52]. These predictions are
essential for identifying and quantifying sinks and sources of greenhouse gas (GHG, e.g.,
CO2) emissions (limitation three). Research about biocrusts related to the C cycle has been
carried out mainly under controlled conditions with temperate forest soils, agricultural
ecosystems, and drylands. However, field-scale studies are scarce [19]. Quantifying the C
stocks and fluxes in these biomes and determining the processes that regulate them are
crucial for a basic understanding of the C cycling of these ecosystems that cover 45% of the
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Earth’s land area [53]. It is estimated that increasing soil C reserves in these low-productive
ecosystems could significantly reduce atmospheric CO2 levels [54], considering that soil C
uptake estimates are 3.5 to 5.2 Gt year−1 [55].

The C budgets of these forest and agriculture ecosystems can be increased with the
application of a biocrust. However, we must also consider how microbial compositions
affect the responses of the C flux to abiotic conditions [56,57], since each taxon may have
a different response and could form different interactions among them (limitation one).
Quantifying the magnitude of the contribution of each species or functional group to the
ecosystem C balance will improve estimates of C budgets in these ecosystems. A biocrust
can contribute differently to C storage: (a) aggregating soil particles through the secretion
of exopolysaccharides, forming networks of filaments that increase the stability of the
soil against erosion and other degradation factors [58,59]; (b) increasing porosity [60]; (c)
retaining water and/or infiltrating it [61,62]; (d) increasing soil fertility by accumulating
nutrients [27,59]; and (e) helping in the establishment of other organisms such as mosses,
lichens, cyanobacterias, micro-fungi, and plants, increasing the storage potential of C [63].
These functions performed by a biocrust are relevant since it is one of the predominant soil
covers, covering up to 70% of the surface in some areas (e.g., dryland), and it is the primary
source of soil organic carbon (SOC) in many of them. It is estimated that biocrusts represent
~15% of global terrestrial C stock and ~40–85% of N fixation worldwide [64,65]. Therefore,
quantifying C fluxes and nutrients through the assembly of biocrust communities under
field conditions would significantly enhance our understanding and prediction, through
mathematical models, of how specific pressures derived from global change could alter the
structure of the biocrust community and, accordingly, guide our efforts towards enhancing
C sequestration and nutrient availability in soils [66,67].

With this goal, we suggest that it is important to consider: (i) in situ monitoring of
CO2 and other GHG fluxes with the microbiota derived from an inoculated biocrust from
perspective I in the soil and to relate these fluxes with environmental factors and physico-
chemical properties that control GHG emissions; (ii) a second significant contribution to
knowledge would be to map the distribution of biocrust types (in successional stages)
in the basins of various ecosystems using ground-based remote sensing techniques. As
low- and moderate-resolution satellite imagery (e.g., Landsat and Moderate Resolution
Imaging Spectroradiometer (MODIS)) or object-based image analysis (OBIA) approaches
are often used for mapping with very-high-resolution imagery when the pixel resolution
is inadequate.; (iii) all contributions (balance) on C fluxes (both biocrusts and micro-
organisms) under natural field conditions to include them in model-based soil C monitoring
systems; and (iv) possible associations between specific groups of micro-organisms below
the biocrust, enzymatic activities involved in the C, N, and P turnover, and soil physico-
chemical variables (e.g., TOC, TN, P, pH, and carbonates). Improving the production of
reliable maps of biocrust cover further depends on the availability of imaging systems
which provide not only adequate spatial and spectral resolution but are also capable of
collecting images sufficiently frequently.

3.3. Perspective III. Enhanced Biocrust Weathering to Improve Carbon Sequestration

Enhanced mineral weathering is a C sequestration process that could remove more
than 2 billion tons of CO2 each year. Silicate minerals exposed to the weathering surface
can sequester atmospheric CO2 and transform it into HCO3

-, thereby reducing the intensity
of atmospheric greenhouse effects. However, it is a process that usually takes thousands
of years. Even so, rock weathering is an important component to consider for geological
carbon sinks. Carbon sinks derived from carbonate weathering and silicate weathering are
the two primary mechanisms underlying rock weathering carbon sinks [68]. Unfortunately,
the time this process takes is too long to compensate for CO2 flux from human activities.
This limitation can be compensated through an inoculated biocrust from perspectives I
and II to increase weathering rates. Because when the biocrust comes into contact with
the rock, it triggers a chemical process known as the Urey reaction. This reaction removes
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CO2 from the atmosphere and combines it with water and calcium or magnesium silicates,
leaving the CO2 trapped in these carbonates in the soil. C capture’s accelerated chemical
weathering process could remove more than 2 billion tons of CO2 each year [65]. This is
because approximately 95% of the Earth’s crust is made of silicate minerals, which are
silicon and oxygen compounds.

Exemplarily, the chemical reaction can be followed through the dissolution of anorthite
(Equation (1)). The dissolution of primary silicates leads to secondary precipitates, releasing
cations, and transforming CO2 into HCO3:

Ca2Al2Si2O8 + 2CO2 + 3H2O→ Al2Si2O5(OH)4 + Ca2
+ + 2HCO3 (1)

If supersaturation concerning individual carbonate phases is reached, solid carbonates
might form (Equation (2)):

Ca2+ + 2HCO3
− → CaCO3 + CO2 + H2O (2)

Carbonate formation is an important mechanism for the in situ fixation of CO2 through
carbon capture and storage [69]. However, enhanced weathering aims to convert CO2 into
alkalinity, as the formation of carbonates will reduce the process’s efficiency (Equation (2)).
The maximum CO2 amount drawn from the atmosphere through silicate dissolution is a
function of the cation flux (mostly Ca2

+, Mg2
+, K+, and Na+); which is charge-balanced

by HCO3
− formation. In addition, CO2 fixation through the dissolution is based on Al

conservation through the formation of secondary minerals (Equation (1)). However, the
dissolution of the aluminosilicate can precede the formation of the secondary phase [70]
(Equation (3)), and far from equilibrium conditions can be sustained during basalt weather-
ing, for instance, through the complexation of Al3+ with organic acids [71]:

Ca2Al2Si2O8 + 8CO2 + 4H2O→ 2Al3+ +Ca2+ + 8HCO3
− + 2SiO2(aq) (3)

It is essential to consider that the investigations of the patterns, mechanisms, and rates
of weathering with biocrusts are in their infancy (limitation four). What we know comes
largely from geomicrobial interactions studied in similar settings, that are endolytically
within rocks. Because of its importance in global carbon cycling, many scientists have
carried out research on silicate rock weathering carbon sink and made progress toward un-
derstanding the related mechanisms. In this sense, Chen, et al. [72] analyzed the effects of
biocrust incorporation on the soil, showing that it enriched the soil with biogenic elements
(C, N, and P) and generated the leaching of many metals and metalloids from the mineral
phase. This effect on the rock is achieved through the reactivity of the biocrust metabolic
products (e.g., extracellular polymeric substances) excreted by the micro-organisms on
the mineral surface, acidification or decrease in the redox potential due to the permanent
coating of minerals by exopolymeric substances, and the secretion of specific metallic
ligands and other organic complexes [73,74]. Moreover, in the rock fragments (because of
weathering), more Mg, Fe, and Ca silicates are exposed, increasing porosity and permeabil-
ity [75,76]. Additionally, the reactive mineral fraction (Fe and Mn) forming associations
with the organic matter has been suggested as another C sequestration strategy to mitigate
climate change [77–79]. The combination and intensity of these mechanisms in biocrusts
likely vary, but microbial stabilization is determining in all of them, and abiotic factors
have not been examined in much detail. In this sense, carrying out studies about the
relationships between natural chemical weathering rates and controlling parameters (e.g.,
temperature, precipitation, and pH) can help to clarify the discrepancy observed between
field and laboratory data [80,81] and could allow the up-scaling of local measurements to
a global scale (perspective II), contributing to the refinement of global CO2 consumption
estimations. Future research can help to elucidate the generality of biocrust responses to
the suite of global changes with which they are faced and increase our understanding of
the mechanisms that drive this change. Studying the parameters controlling weathering



Biology 2021, 10, 1190 9 of 13

rates associated with biocrust in natural settings can improve the feedback between climate
and weathering and its role in the short-term carbon cycle and climate change [82–84].

The responses of biocrusts to climate change appear to be particularly strong and,
while different biocrust organisms will respond differently to changing climatic conditions,
the data suggest that increasing temperatures and altered precipitation patterns, as well as
strong interactions between the two, are significantly modifying the structure, function, and
resilience of biocrust communities. Thus, depending on how microbial community profiles
change, there may be more implications for mineralization and organic C storage [65].
Unfortunately, studies on the relationship between biocrusts and weathering are few and
appear only to account for current research. Thus, we propose an intensive study of the
relationship between the effects of micro-organisms derived from biocrusts (perspective
I) on mineral weathering, soil formation, and continuous C sequestration (perspective II)
to validate the advantage and attributes of biocrusts. Consequently, we postulate that the
exhaustive study of the composition and dynamics of biocrust and their interactions with
the physico-chemical properties of soils under the new prevailing conditions as a result of
the atmospheric increase in GHGs has enormous potential to be used as a biotechnological
tool to increase the sequestration of C in soils.

4. Conclusions

Investigations of biocrust weathering patterns, mechanisms, and rates are in their
infancy. Most research on biocrust inoculation has been conducted at a laboratory, which
is a necessary starting point. However, we need to scale-up the research using common
protocols in relevant areas to land managers, and bridge the gap between science and prac-
tice. The next frontiers for biocrusts need to better document how biological (e.g., species
composition/function and organism condition) and physical factors (e.g., activity rates
and times as determined by climatic factors, soils) influence C fixation and loss. Across
all scales, we need to understand and observe biocrust photosynthesis and respiration,
and what portion of C losses is due to other sources, such as bacteria, fungi, and soil
carbonates by indirect inoculation, where host plants recruit specific microbiomes in the
rhizobiome to induce C sequestration. Future research can help elucidate the generality of
biocrust responses to the suite of global changes they face and increase our understanding
of the mechanisms that drive this change. For this, we proposed three perspectives to
solve practical limitations to using biocrusts to increase carbon sequestration: utilizing the
natural microbiome of a host plant, quantifying the contribution of biocrusts to carbon
sequestration in soil ecosystems, and enhanced biocrust weathering to increase the level
of nutrients released and carbon sequestration, addressing the spatial relationships be-
tween biocrusts and ecological processes and quantifying their contribution to ecosystem
functionality at local to landscape scales.
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