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Simple Summary: Metamorphosis, the process by which the young forms of some animals develop
into adult forms, has long kept scientists on tenterhooks. Flatfish undergo one of the most dramatic
metamorphoses described in the entire animal kingdom, in which a symmetrical larva that swims
upright and looks just like a typical baby fish becomes a completely flat, asymmetrical juvenile that
will live its entire adult life attached to the bottom. To answer the question of how the same organism
can generate two completely different body plans associated with different phases of the life cycle,
we investigated the dynamics of the brain transcriptome, which is the regulatory center of specific
endocrine-activated developmental processes during metamorphosis. Our results show, for the first
time, a temporary immune system reorganization during flatfish metamorphic remodelling process.
Therefore, characterizing and understanding all the developmental changes that take place during
metamorphosis will assist in the understanding the importance of each of these processes in the
normal development of an individual and therefore, facilitate the transfer of knowledge to prevent
abnormal development or developmental pathologies.

Abstract: Metamorphosis is a captivating process of change during which the morphology of the
larva is completely reshaped to face the new challenges of adult life. In the case of fish, this
process initiated in the brain has traditionally been considered to be a critical rearing point and
despite the pioneering molecular work carried out in other flatfishes, the underlying molecular
basis is still relatively poorly characterized. Turbot brain transcriptome of three developmental
stages (pre-metamorphic, climax of metamorphosis and post-metamorphic) were analyzed to study
the gene expression dynamics throughout the metamorphic process. A total of 1570 genes were
differentially expressed in the three developmental stages and we found a specific pattern of gene
expression at each stage. Unexpectedly, at the climax stage of metamorphosis, we found highly
expressed genes related to the immune response, while the biological pathway enrichment analysis
in pre-metamorphic and post-metamorphic were related to cell differentiation and oxygen carrier
activity, respectively. In addition, our results confirm the importance of thyroid stimulating hormone,
increasing its expression during metamorphosis. Based on our findings, we assume that immune
system activation during the climax of metamorphosis stage could be related to processes of larval
tissue inflammation, resorption and replacement, as occurs in other vertebrates.
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1. Introduction

Metamorphosis is a post-embryonic process that involves radical changes in morphol-
ogy, physiology and habitat, leading to stage-specific organs and structures [1]. Metamor-
phosis is widely distributed throughout the animal kingdom [2], which results in varying
types of metamorphosis that probably do not share the same evolutionary mechanisms [3].
The well-known metamorphoses are those carried out by insects [4,5] and amphibians [6],
but many other invertebrates and vertebrates have to face this process [7].

Most teleost fish undergo metamorphosis in the transition from larva to juvenile
stage [8,9]; however, the most dramatic metamorphosis known in fish is that of flat-
fish (order Pleuronectiformes) [10], which includes species of high economic value such
as turbot (Scophthalmus maximus), Senegalese sole (Solea senegalensis) or Atlantic halibut
(Hippoglossus hippoglossus). During flatfish metamorphosis, a pelagic and bilateral symmet-
ric larva becomes a benthonic asymmetric juvenile. Profound internal and external changes,
such as eye migration to the opposite side of the body, remodelling of the craniofacial
complex [11–13] and redistribution of the skin pigmentation [14], lead to an asymmetric
juvenile fish adapted to benthic life.

Metamorphosis is an energy demanding process that has an important impact on
the feeding, growth and, in some cases, a higher mortality rate in flatfishes [15]. The
unsuccessful larva-to-juvenile transition can lead to malformed tissues due to incomplete
migration of the eye, bone deformity and/or abnormal pigmentation deposition, ultimately
affecting the commercial value of flatfishes [16].

As occurs in amphibians [17], thyroid hormones (THs) have an important role as
endocrine regulators of flatfish metamorphosis. In fact, TH action has been shown as
mandatory to successfully carry out this process [18]. Treatments with inhibitors of THs
arrest metamorphosis, interrupting eye migration alongside development and growth
rate [19]. TH production is determined by the hypothalamus-pituitary-thyroid (HPT)
axis. The pituitary, located in the brain and ventral to the hypothalamus [20], prompts
the thyroid gland by releasing thyroid stimulating hormone (TSH). Thyroid glands are
the only component of the HPT axis that is located outside the brain and secretes THs
(triiodothyronine [T3] and tetraiodothyronine [T4]) to act on target tissues [21,22] via
thyroid hormone receptors (i.e., TH receptor alpha [TRα] and TH receptor beta [TRβ]) [9].
Then, the functional adaptive changes associated with post-embryonic development are
supposed to be tightly regulated by the expression of specific genes.

Although one of the two major components of the HPT axis is found in the brain, this
organ does not seem to suffer an obvious morphological remodelling during the flatfish
metamorphosis. Despite the fact that the horizontal semicircular canals, with respect to
the eyes, change from parallel to perpendicular in the transition from larva to juvenile,
the symmetry of the brain is not affected [23]. The only regions of the brain known to
become asymmetric after metamorphosis are the olfactory lobes [24] and telencephalic
hemispheres [25]. Neither has evidence of asymmetric remodelling been found in the
neuronal nerve pathways [10].

The present study aims to characterize the gene expression profile and molecular
mechanisms involved in the flatfish brain during metamorphosis. Turbot brain transcrip-
tome of three developmental stages (pre-metamorphic, climax of metamorphosis and
post-metamorphic) were analyzed to study the gene expression dynamics throughout the
metamorphic process. The brain was selected as the target tissue since it is the regulatory
center of specific endocrine-activated developmental processes during metamorphosis.
We focused on the differential gene expression profile throughout metamorphosis and the
enriched pathways in each developmental stage.

2. Materials and Methods
2.1. Fish Collection and Sampling

Newborn turbots (Scophthalmus maximus) reared under a standard commercial produc-
tion cycle were supplied by the company Insuiña SL, Grupo Nueva Pescanova (Pontevedra,
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Spain). Fish from a single-pair mating were collected at different stages by experienced
company staff. The number of fish sampled for all experimental procedures was estimated
according to the minimum number of animals necessary to provide reliable and robust
statistical results. The metamorphic stages were defined following the morphological
criteria described by Al-Maghazachi and Gibson [26] and Suarez-Bregua [27], based on eye
migration, whole body symmetry and rearing temperature (18 ◦C): pre-metamorphic stage
(stage 3b: 15 days post fertilization [dpf]), before eye migration on a symmetrical larva;
metamorphic climax (stage 4d: 30 dpf), larva exhibiting asymmetrical features with upper
edge of right eye visible from left side; and post-metamorphic stage (stage 5c: 57 dpf),
asymmetric juveniles that achieved complete eye migration. Individual fish samples at each
metamorphic stage (N = 3 independent biological replicates per stage) were euthanized
using a lethal dose of MS-222 (250 mg/L for 30–40 min) [28] (Sigma-Aldrich, Saint Louis,
MO, USA), photographed and dissected with a Leica M165FC stereomicroscope equipped
with a DFC310FX camera (Leica, Wetzlar, Germany).

Ethical approval (AGL2017-89648P) for all studies was obtained from the Institutional
Animal Care and Use Committee of the IIM-CSIC Institute in accordance with the National
Advisory Committee for Laboratory Animal Research Guidelines licensed by the Spanish
Authority (RD53/2013). This work was in conformance with the European animal directive
(2010/63/UE) for the protection of experimental animals.

2.2. RNA Isolation and Sequencing

Fish brains (N = 9) were dissected. Briefly, the turbot head was cut off and the top
of skull was opened to remove all brain tissue, including the pituitary gland. Samples
were then fixed in RNAlater (Thermo Fisher Scientific, Waltham, MA, USA) for 24 h at
4 ◦C and stored at −80 ◦C until use. Brain samples were removed from RNAlater solution
(Invitrogen, Waltham, MA, USA) and homogenized in RLT buffer (RNeasy Mini Kit,
Qiagen, Venlo, Germany). Total RNA was extracted and purified using the RNeasy Mini
Kit (Qiagen) with on-column DNase digestion (Qiagen) according to the manufacturer’s
instructions. RNA concentration was quantified on a Qubit 4 fluorometer (Thermo Fisher
Scientific) and RNA integrity (RIN (RNA integrity number) > 8) was verified on an Agilent
2100 bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).

Approximately 1 µg of total RNA was initially used for BGISEQ-500 standard library
construction at BGI (Beijing Genomics Institute, Shenzhen, China). Prepared cDNA libraries
were sequenced on a BGISEQ-500 platform and single-end reads of 50 base pairs (bp) length
were generated per sample.

2.3. Transcriptome Analysis and Annotation

Reads were quality checked (phred score > 30) using FastQC v0.11.8 (http://www.bi
oinformatics.babraham.ac.uk/projects/fastqc/; accesed 18 November 2019) and mapped
to the turbot genome assembly (ASM318616v1) [29] using STAR v2.7.0e alignment soft-
ware [30]. The turbot reference genome and respective annotation file were downloaded
from Ensembl Genome Browser (ftp://ftp.ensembl.org/pub/release-101/fasta/scophtha
lmus_maximus/; accesed 25 November 2019). HTseq v0.10.0 [31] was used to transform
uniquely mapped reads into counts and assign them to genes.

We performed a functional annotation of the whole turbot genome using Sma3s v2
software [32]. We first obtained the predicted amino acid sequences from Ensembl REST
server through the API with a custom script, and then, query sequences were compared
with non-redundant protein sequences of the Swissprot and TrEMBL vertebrate databases
using an E-value threshold of 1 × 10−6. Subsequently, the annotated genes were assigned
to the three main categories of Gene Ontology (GO): biological process (BP), molecular
function (MF), and cell component (CC). The large computational operations were carried
out using the resources of the Supercomputing Center of Galicia (CESGA).

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
ftp://ftp.ensembl.org/pub/release-101/fasta/scophthalmus_maximus/
ftp://ftp.ensembl.org/pub/release-101/fasta/scophthalmus_maximus/
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2.4. Differential Expression Analysis, Clustering and GO Enrichment

Gene count data were normalized and pairwise comparisons were performed to identify
differentially expressed genes (DEGs) with the DESeq2 R package v1.26.0 [33]. p-values were
adjusted (padj) by false discovery rate (FDR) [34]. Only genes with a padj < 0.01 and Log2 fold
change (Log2FC) ≤ −2 or ≥2 were considered as DEGs. DEGs were analyzed according to
their expression pattern throughout three different approaches: (1) Hierarchical clustering
via heatmap; (2) Soft clustering using Mfuzz software [35]; (3) overlapping clustered up
and downregulated genes using custom Venn diagram.

GO enrichment analysis was carried out using clusterProfiler R package v3.14.3 [36],
based on hypergeometric distribution and FDR control [34]. We used the previously
functionally annotated turbot genome as a background.

2.5. Quantitative Real-Time PCR (qRT-PCR)

To validate the RNA sequencing and transcriptome analysis, a set of five selected
genes were evaluated by qRT-PCR. Genes related to immune system response (chitinase
3, chit3; and Interferon-induced helicase C domain-containing protein, ifih1) and brain-
driven metamorphic remodeling (thyroid hormone receptor alpha, thra; thyroid-stimulating
hormone subunit beta a, tshba; and ependymin, epd) were selected.

For cDNA synthesis, 200 ng of the total RNA isolated from each sample was reverse-
transcribed according to the Maxima First Strand cDNA Synthesis Kit (Thermo Fisher
Scientific) protocol. Samples were amplified in duplicate containing 10 µL of PowerUp
SYBR Green Master Mix (2×) (Thermo Fisher Scientific), 1 µL of 0.5 µM of each primer,
7 µL nuclease-free water, and 1 µL of cDNA template. qRT-PCR reactions were analyzed
with a QuantStudio3 Real-Time PCR System (Thermo Fisher Scientific) under the following
cycling conditions: initial uracil-DNA-glycosylase step at 50 ◦C for 2 min, Dual-Lock™
DNA polymerase activation at 95 ◦C for 2 min, followed by 40 cycles of denaturation
at 95 ◦C for 15 s and annealing/extension at 60 ◦C for 1 min. Gene expression of chit3,
epd, thra, tshba and ifih1 genes was assessed in two independent experiments by using the
efficiency-calibrated method, as previously described [37]. Relative mRNA expression
levels were normalized to the housekeeping 18S ribosomal gene. Primer sets used for each
gene are listed in Supplementary Table S1.

3. Results
3.1. Transcriptome Assembly and Annotation

We sequenced the brain transcriptomes in three key developmental stages across turbot
metamorphosis (pre-metamorphic, climax and post-metamorphic stages) (Figure 1). Nine
cDNA libraries (three replicates per each metamorphic stage) were sequenced and more
than 208 million 50 bp single-end reads were generated. Reads were processed for sub-
sequent transcriptome analysis (Table 1). The reads were mapped to the turbot refer-
ence genome, obtaining average mapping rates of 88.98%, 88.78% and 89.23% for pre-
metamorphic, climax and post-metamorphic stages, respectively. The average number
of genes assigned was 19,119, 19,045 and 18,996 for pre-metamorphic, climax and post-
metamorphic stages, respectively (Table 1, Figure 2). Reads assigned to each gene of turbot
genome are listed in Supplementary Table S2.

Table 1. Summary of RNA sequencing, assembly and annotation data of the turbot brain samples at three key metamorphic stages.

Pre-Metamorphic Stage Climax Stage Post-Metamorphic Stage Total
R1 R2 R3 R1 R2 R3 R1 R2 R3

Reads 24,000,160 22,065,907 23,172,275 23,261,839 23,167,451 23,191,562 23,275,068 23,173,993 23,358,252 208,666,507
Mapped reads 21,366,876 19,668,853 20,569,271 20,699,424 20,540,205 20,569,248 20,731,453 20,676,181 20,882,737 185,704,248

Mapping rate (%) 89.03 89.14 88.77 88.98 88.66 88.69 89.07 89.22 89.40 -
Number of genes 19,137 19,058 19,162 19,042 19,045 19,048 18,977 18,993 19,017 -
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On the lookout for a subsequent successful GO enrichment analysis, a functional
annotation of the turbot genome was carried out. 95.30% of the genes in the turbot genome
were functionally annotated, summarized in three categories: BP, MF and CC. A total of
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286,299 different GO terms were assigned, with 53.15%, 22.46% and 24.38%, corresponding
to the BP, MF and CC categories, respectively. This functionally annotated turbot genome
was used as a background to perform GO enrichment for selected genes of interest.

3.2. Gene Expression Dynamics in Metamorphosing Turbot Brains

To identify DEGs in the turbot brain during metamorphosis, we performed pair-
wise comparisons among three postembryonic developmental stages (pre-metamorphic
vs. climax, climax vs. post-metamorphic and pre-metamorphic vs. post-metamorphic).
A total of 1570 genes were differentially expressed in the three metamorphic developmen-
tal stages. A high proportion of DEGs were found when pre-metamorphic vs. climax
stages (338 up- and 221 down-regulated) and pre-metamorphic vs. post-metamorphic
stages (415 up- and 487 down-regulated) were compared (Figure 3a,c, respectively; Supple-
mentary Tables S3 and S4). However, a significantly lower number of DEGs (33 up- and
76 down-regulated) was found after comparison between the climax and post-metamorphic
stages (Figure 3b; Supplementary Table S5). All DEGs from the three developmental stages
were combined into a single set and hierarchically clustered within a heatmap in order to
produce an overview of the gene expression profiles across metamorphosis (Figure 3d).
In the heatmap, DEGs were clustered according to gene expression level. Overall, two
major clusters could be observed. Most genes clustered on the top half of the heatmap
displayed decreased expression throughout the metamorphosis process (Figure 3d), while
groups of genes on the bottom half showed increased expression over time. Specifically, a
set of tightly clustered DEGs showed a marked expression peak at the metamorphic climax,
while exhibiting down-regulated gene expression at the pre- and post-metamorphic stages
(Figure 3d).

We next focused on the selected gene clusters that exhibited specific expression at
pre-metamorphic stage (Supplementary Table S6), climax stage (Supplementary Table S7)
and post-metamorphic stage (Supplementary Table S8) and a GO term enrichment analysis
was performed to investigate the biological functions associated with each gene dataset
(Figure 4), using the previous functional annotation of the turbot genome as a back-
ground. In this analysis, the most significant GO terms (padj < 0.05) were identified.
Genes from the cluster showing overexpression at the pre-metamorphic stage revealed
a significant enrichment of BP GO terms related to the developmental process and the
development of anatomical structures, such as anterior/posterior pattern specification
(GO:0009952), embryonic skeletal system (GO:0048704) and multicellular organism devel-
opment (GO:0007275). Regarding the MF ontology, the most significant GO terms included
heme binding (GO:0020037) and monooxygenase activity (GO:0004497) and in the CC
category, we found ontologies such as RNA polymerase II transcription regulator complex
(GO:009075) and apical plasma membrane (GO:0016324) (Figure 4a; Supplementary Table
S9). Genes that were predominantly expressed during the climax of metamorphosis enrich
BP ontologies related to immune system processes, such as antigen processing and pre-
sentation of endogenous peptide antigen via MHC class I (GO:00019885), innate immune
response (GO:0045087) and immune response (GO:0006958), in MF category the most
significant GO terms were NAD+ ADP-ribosyltransferase activity (GO:0003950), extracel-
lular matrix structural constituent (GO:0005201) and protein transmembrane transporter
activity (GO:0008320) and in the CC category we found ontologies such as collagen trimer
(GO:0005581), collagen type I primer (GO:0005584) and extracellular matrix (GO:0031012)
(Figure 4b; Supplementary Table S10). We observed that clustered genes with a higher ex-
pression in the post-metamorphosis stage also enrich the BP ontologies related to immune
system process, such as immune response (GO:0006955), although we can also highlight
ontologies related to cellular components organization, such as extracellular matrix or-
ganization (GO:0030198) or muscle system processes, like the cardiac muscle contraction
(GO:0060048) and skeletal muscle contraction (GO:0003009) (Figure 4c; Supplementary
Table S11).
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from low to high, respectively.

3.3. qPCR Validation of Gene Expression Patterns

Real-time qPCR was used to validate the expression levels of chit3, epd, thra, tshba and
ifih1 genes across turbot metamorphosis (Figure 5d). The qPCR results of the analyzed
genes were consistent with the RNA sequencing data. We found that chit3, ifih1 and
thra expression levels peaked at the metamorphic climax and decreased after overcoming
metamorphosis (Figure 5d). In addition, the expression of tshba increased at the climax
stage, but remained high in the post-metamorphic stage. The only gene that exhibited a
gradual increase of expression from the pre-metamorphic to post-metamorphic stage was
epd. (Figure 5d).
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Figure 5. Selected clusters from Mfuzz soft clustering analysis of DEGs in turbot brains throughout
the developmental metamorphosis process. DEGs show up-regulated genes corresponding to the:
(a) pre-metamorphic stage, (b) climax stage, (c) post-metamorphic stage. Color code, from magenta
to yellow, denote high or low Mfuzz membership values, respectively. Time 1, 2 and 3 in X-axis
corresponds to pre-metamorphic, climax and post-metamorphic stage, respectively. (d) Validation of
expression patterns of chit3, epd, thra, tshba, and ifih1 genes in the turbot brain using qPCR. In the
bar plots, the trend lines represent the fold change obtained by analyzing the RNAseq values during
the metamorphic stages. The bars represent the fold change values obtained by qPCR. Results were
normalized to 18S gene and expressed as the mean ± SEM of two independent experiments. Data
from climax stage was set at 1.

3.4. Stage-Specific Gene Expression and GO Enrichment Analysis

To further identify genes in the turbot brain with potentially important roles through-
out the developmental metamorphosis process, we first explored the temporal expression
patterns of DEGs by soft clustering analysis. The 1570 DEGs were divided into 28 clusters
according to the similarity of their expression patterns throughout the three selected key
stages. We then selected clusters containing genes that showed consistent and specific
up-regulated expression at each metamorphic stage (Figure 5a–c). Clusters with genes
highly expressed in the pre-metamorphic stage and then down-regulated displayed a total
of 236 genes (Figure 5a; Supplementary Table S12), while 23 genes from a single cluster
were specifically expressed in the post-metamorphic stage (Figure 5c; Supplementary
Table S13). Interestingly, we found two clusters contained a total of 63 genes whose ex-
pression peaks at the metamorphic climax (Figure 5b; Supplementary Table S14), which
supports the data represented on the heatmap (Figure 3d).

Additionally, we performed a GO enrichment analyses of the selected clusters (Figure 6).
In the pre-metamorphic stage, the gene set from clusters selected showed significant en-
richment of early development-related BP GO terms, such as embryonic skeletal system
morphogenesis (GO:0048704), cholesterol homeostasis (GO:0042632) and anterior/posterior
pattern specification (GO:0009952). For MF ontology, the most significant GO terms were
UDP-glycosyltransferase activity (GO:0008194), hormone activity (GO:0005179) and heme
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binding (GO:0020037) (Figure 6a; Supplementary Table S15). Clusters with genes with an
overexpressed expression pattern at climax were associated with immune response-related
BP GO terms, such as chitin catabolic process (GO:0006032), immune system process
(GO:0002376) and positive regulation of T cell migration (GO:2000406). NAD+ ADP-
ribosyltransferase activity (GO:0003950), chitinase activity (GO:0004568) and chitin binding
(GO:0008061) were the most highly represented MF GO terms (Figure 6b; Supplementary
Table S16). Finally, the post-metamorphic clustered genes exhibited a significant enrich-
ment in GO terms, including dopamine biosynthetic process (GO:0042416), regulation of
removal of superoxide radicals (GO:2000121) and tetrahydrofolate biosynthetic process
(GO:0046654) in the BP category; oxygen carrier activity (GO:0005344), oxygen binding
(GO:0019825) and mitogen-activated protein kinase binding (GO:0051019) in the MF cate-
gory; and nuclear membrane (GO:0031965) in the CC category (Figure 6c; Supplementary
Table S17).
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biological process (BP), molecular function (MF) and cellular component (CC) categories are represented.
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3.5. Snapshot of Up- and Down-Regulated Gene Expression at the Metamorphic Climax

A tight transcriptional control of crucial genes is supposed to occur during the turbot
metamorphic climax, which is a critical metamorphosis stage. To gain information on
the differentially expressed genes in the turbot brain at the climax of metamorphosis, we
identified the most significantly up-regulated and down-regulated genes (Figure 7). The
Venn diagram in Figure 7a shows 14 overlapping genes that increased in expression to
a peak at the metamorphic climax (i.e., DEGs down-regulated by pre-metamorphic vs.
climax comparison), and subsequently, gene expression decreased in the post-metamorphic
stage to the same level as the pre-metamorphic stage (i.e., DEGs up-regulated by climax vs.
post-metamorphic comparison). In contrast, only four overlapping genes were significantly
down-regulated at the climax of metamorphosis when compared to the pre-metamorphic
stage (i.e., DEGs up-regulated by pre-metamorphic vs. climax comparison) and the post-
metamorphic stage (i.e., DEGs down-regulated by climax vs. post-metamorphic com-
parison), where the expression level was gradually recovered prior to metamorphosis
(Figure 7b). Based on the annotation results, the set of up-regulated genes included
neurotrophic factors (e.g., meteorin and MYCBP-associated protein), cellular signaling
regulators (e.g., tetraspanin, interferon regulatory factor 3 and interferon-gamma 1) and
immune-response activators (e.g., chitinase and TFN 2 domain-containing protein), among
others (Figure 7c). Down-regulated genes were associated with biological processes, such
as osmoregulation (e.g., aquaporin 8a) and iron transport (e.g., hemopexin, Figure 7c).
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4. Discussion

Some marine fish species have complex life cycles, in which one or more free-living
developmental stages eventually transform into morphologically, ecologically and physio-
logically distinct juvenile stages. However, the molecular and cellular processes underlying
the regulation of this dramatic transformation process remains a mystery.

The purpose of this study was to investigate the dynamics of the brain transcrip-
tome and determine the potential signaling pathways involved in the flatfish develop-
mental metamorphosis process. To the best of our knowledge, this paper is the first to
study the whole transcriptomic profile of the brain during metamorphosis in a flatfish
species, identifying differential expression in 1570 of the analyzed 21,000 different protein
coding genes.

Our results show a specific gene expression profile for each characterized develop-
mental stage. In addition, we observed larger differences in the quantity of genes expressed
in the pre-metamorphic stage with respect to the other stages, while the climax and post-
metamorphosis stages presented a lower number of genes differentially expressed between
them. This is supported because the pre-metamorphic stage is a larval development period
that requires a tight regulation of gene expression for specific ontogenesis [38].

Comparative analysis of the different approaches to cluster and analyze the DEGs
obtained (i.e., hard clustering, soft clustering and overlapping clustered DEGs by custom
Venn diagram), revealed that both hierarchical and soft clustering highlight genes mostly
involved in developmental processes during the pre-metamorphosis stage. At the climax
stage, the three approaches revealed up-regulated genes associated to immune system
functions. However, comparisons between hierarchical and soft clustering at the post-
metamorphic stage showed different enriched ontologies. From hierarchical clustering,
significant GO terms at post-metamorphic stage were related to immune system processes
as found in the metamorphic climax. Soft clustering exhibited stage-specific GO terms and,
thus, this approach led to an increased resolution to identify stage-specific gene expression
and enriched ontologies across turbot metamorphosis. For this reason, we focused on the
data analyzed by soft clustering approach.

At the pre-metamorphic stage (15 dpf), which corresponds to a larva with symmetrical
morphology [26], the main biological processes affected were, as expected, those related to
embryonic skeletal system morphogenesis, epithelial cell differentiation, gluconeogenesis,
steroid metabolism and cholesterol, triglyceride and lipid homeostasis, among others.
Thus, the up-regulation of several Hox genes at this stage suggests that it is still an active
stage of morphogenesis [39,40]. As previously stated, our results show an enrichment of
ontologies related to lipid homeostasis and steroid metabolism. Therefore, during early
larva development and the time of mouth opening, lipids located in the yolk or oil drop
play an essential structural and energetic role in turbot development. As a result, high
activation of lipid metabolism is observed, but after this stage, lipid levels greatly decrease
and regulation of lipid homeostasis occurs. Sterols are the only lipids that remain stable
even after this event [41,42].

At the onset of the metamorphic climax (30 dpf), a strong morphological remodelling
occurs, including the beginning of the migration of the right eye. As expected, our results
showed significant transcriptional activation of thyroid hormone receptor alpha-A (thraa)
and thyroid-stimulating hormone beta subunit (tshba) genes at this specific stage. All stud-
ies to date suggest that THs play a key role in the induction of the teleost metamorphosis
process. Thus, metamorphosis in teleosts is triggered by the hypothalamic-pituitary-thyroid
(HPT) axis, which is constituted of brain neuropeptide thyrotropin-releasing hormone
(TRH), brain neuropeptide corticotropin-releasing hormone (CRH), pituitary glycoprotein
hormone (thyrotropin, TSH) and THs (thyroxime [T4] and triiodothyronine [T3]). In some
teleosts, such as coho salmon, it has been suggested that CRH, rather than TRH, plays a key
role as a stimulator of TSH secretion by the pituitary gland [21,43]. Our results corroborate
the critical role of THs in the regulation of the flatfish metamorphosis process. Interestingly,
during this stage, one of the most enriched GO categories was innate immune system.
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A significant up-regulation was detected for the chitinase family genes [44,45]. In addition,
several genes of innate immune response were also up-regulated, including the dhx58, ifih1,
irf3 and irf7genes. ifih1 gene encodes the melanoma differentiation-associated protein 5
(Mda5). This protein increases the phosphorylation levels of the transcription interferon
regulatory factors 3 and 7 (irf3 and irf7), activating the expression of the type 1 interferon
genes (ifnα and ifnβ) and initiating the processes of inflammation and cell death [46]. Mda5
helicase is activated by both endogenous and exogenous double-stranded RNA and several
studies demonstrate that the regulation of Mda5 expression is linked to the induction of
autoimmunity [47]. This suggests that Mda5 activation is not only due to the antiviral
response but may also be stimulated by endogenous factors. It is well known that diverse
innate immunity-related molecules are also expressed in the brain and play important
roles in brain development [48]. We also observed an overexpression of casp10 and ripk3,
which stimulate cell apoptosis and inflammation [49]. The results obtained by applying
more restrictive statistical conditions also show a significant up-regulation of genes that
enrich the immune response ontologies, such as mx, which promotes cell apoptosis [50], or
faslg, which induces apoptosis in T cells [51]. Another enriched GO term at the onset of the
metamorphic climax stage was regulation of T-cell migration. It is generally believed that
the development of an immune response involves T-cell activation in lymphoid organs and
subsequent migration to peripheral tissues to mediate tissue damage inflammation [52].
However, it has recently been shown that, in addition to the defense function of cells and
immune molecules, they also play a key role in neurodevelopmental processes [48].

Our data show that during the climax stage of the developmental metamorphosis
process in turbot brains, components of the immune system and THs could play an im-
portant role, as well as the processes of inflammation and cell death in the metamorphosis
process at the brain level. Other studies in Xenopus also highlight the reorganization of
the immune system during metamorphosis due to the need to replace larval tissue in
adults and to support all the new chemical and biological products generated during this
transformation [53,54].

At the post-metamorphic stage (57dpf), and after successfully completing the meta-
morphosis process, both morphological and behavioral changes were observed in the
juvenile turbot. At this stage, one of the most enriched GO terms was dopamine biosyn-
thetic process. A significant up-regulation was detected for nuclear receptor subfamily 4
(nr4a1) and GTP cyclohydrolase 1 (gch1) family genes. Dopamine is a neurotransmitter
involved in the inhibitory control of TSH secretion [55]. The timeline profile of tshb ex-
pression during the metamorphosis process shows a significant increase during climax
stage; however, significant high levels of tshb remain after the end of this stage. This
may be because sufficiently high levels of dopamine have not yet been reached to inhibit
tshb expression. Another enriched GO term induced at the post-metamorphic stage was
regulation of removal of superoxide radicals. It is well known that the active processes of
inflammation and apoptosis found at the climax stage generate free radicals that must be
removed to avoid further damage in the organism at later stages [56].

In conclusion, the generated transcripts expression patterns provide a framework of
novel developmental process-responsive genes in the brain during turbot metamorphosis.
This molecular response entails the initial activation of signaling networks, mainly related
to morphogenesis and cell differentiation at the pre-metamorphic stage, thus suggesting
an active stage of embryonic development. Subsequent activation of the signaling network
was mainly related to immune response, inflammation and cell apoptosis at the climax
stage and finally, a signaling network related to a different mechanism of biosynthesis
and homeostasis at the post-metamorphic stage. Caution should be taken, however, in
the interpretation of these results, because some studies have shown that the different
protocols used in the different rearing procedures of the animals in intensive aquaculture
systems could significantly stimulate different signaling network systems [57]. Likewise,
environmental factors, such as temperature, can also be determining factors at the level of
transcriptomic characterization, since, in poikilothermic animals, temperature variations
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are directly related to metabolism and growth [58]. Nevertheless, this study is the first
genome-wide transcriptome analysis of flatfish brain tissue during the developmental
metamorphosis process and it is an important resource for future research on the molecular
characterization of vertebrate metamorphosis.

5. Conclusions

Our results show a clear and evident reorganization of the immune system during
the metamorphosis process of flatfish. By studying the gene expression profile through
transcriptomic analysis and throughout turbot development (pre-metamorphic, climax of
metamorphosis and post-metamorphic stages), we observed that during the metamorphic
climax there is an overexpression of genes related to immune system processes, such as
inflammatory processes or cell apoptosis, among others. This suggest that this overex-
pression could be related to processes linked to the generation of new juvenile tissues and
reorganization and/or destruction of larval tissues and to support all the new chemical
and biological products generated during this transformation process [53]. Thus, the need
for further studies related to the immune system during metamorphosis in flatfish to
determine and describe its specific function is emphasized.
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of genes highly expressed in turbot brain at climax stage. Gene set from hierarchical clustering,
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