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Simple Summary: This study was conducted to explore the antibacterial ability of sheep β-defensin
2 (SBD-2) against E. coli F17 infection in ovine intestinal epithelial cells (OIECs). Our data revealed
that E. coli F17 induces SBD-2 expression in OIECs in vitro, which appears to be mediated through
the activation of the signaling pathways NF-κB and MAPK. Our results provide a novel insight
for the functionality of SBD-2, which could be useful for developing anti-infective drugs and/or
breeding for E. coli diarrhea disease-resistant sheep.

Abstract: Escherichia coli (E. coli) F17 is a member of enterotoxigenic Escherichia coli, which can
cause massive diarrhea and high mortality in newborn lambs. β-defensin is mainly produced
by the epithelial tissue of the gastrointestinal tract in response to microbial infection. However,
the molecular mechanism of sheep β-defensin 2 (SBD-2) against E. coli F17 remains unclear. This
study aims to reveal the antibacterial ability of SBD-2 against E. coli F17 infection in sheep. Firstly,
we established the culture system of ovine intestinal epithelial cells (OIECs) in vitro, treated with
different concentrations of E. coli F17 for an indicated time. Secondly, we performed RNA interference
and overexpression to investigate the effect of SBD-2 expression on E. coli F17 adhesion to OIECs.
Finally, inhibitors of NF-κB and MAPK pathways were pre-treated to explore the possible relationship
involving in E. coli F17 infection regulating SBD-2 expression. The results showed that E. coli F17
markedly (p < 0.01) upregulated the expression levels of SBD-2 mRNA and protein in a concentration-
and time-dependent manner. Overexpression of SBD-2 contributed to enhancing E. coli F17 resistance
in OIECs, while silencing SBD-2 dramatically improved the adhesion of E. coli F17 to OIECs (p < 0.05
or p < 0.01). Furthermore, E. coli F17 stimulated SBD-2 expression was obviously decreased by pre-
treatment with NF-κB inhibitor PDTC, p38 MAPK inhibitor SB202190 and ERK1/2 MAPK inhibitor
PD98095 (p < 0.05 or p < 0.01). Interestingly, adhesion of E. coli F17 to OIECs were highly enhanced
by pre-treated with PDTC, SB202190 and PD98095. Our data suggested that SBD-2 could inhibit
E. coli F17 infection in OIECs, possibly through NF-κB and MAPK signaling pathways. Our results
provide useful theoretical basis on developing anti-infective drug and breeding for E. coli diarrhea
disease-resistant sheep.
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1. Introduction

Enterotoxigenic Escherichia coli (ETEC) F17 is one of the most common pathogens
causing E. coli diarrhea in lambs. Its fatality rate is very high, which seriously hinders the
production and profit of large-scale sheep farms [1,2]. ETEC is characterized by its ability
to produce two types of virulence factor: adhesin and enterotoxin [3]. Once colonized
by adhesin in the intestines of neonatal animals, ETEC will produce two major classes of
enterotoxins, namely, heat-labile toxin (LT) and heat-stable toxin (ST). According to their
antigenic properties, the main adhesins can be classified into different sub-types, such as
F4 (also designated K88), F5 (K99), F6 (987p), F17 (Fy), F18 and F41 [4]. F17 fimbriae were
first found in diarrhea calves, which are typically colonized in small intestinal mucosa to
produce STa enterotoxin, leading to diarrhea in lambs [5].

Defensins, as the first line of defense against pathogens, have broad-spectrum bacte-
ricidal effect, especially in killing Gram-negative and Gram-positive bacteria [6]. Due to
the side effects of traditional antibiotics and the emergence of drug-resistant strains [7],
the use of defensin as a new drug or functional target gene to breed disease-resistant
animals may be helpful to control bacterial infection. β-defensins are mainly distributed in
the epithelial tissues of the gastrointestinal tract, which had been found in human, pigs,
cattle, sheep, etc. [8]. In sheep, two types of β-defensins, sheep β-defensin 1 (SBD-1) and
sheep β-defensin 2 (SBD-2), have been described [9]. However, the function of SBD-2
involved with E. coli F17 infection in sheep has not been reported. In other animals, ac-
cumulated evidence showed that β-defensins not only have strong antibacterial activity,
but also participate in regulating inflammatory response. It has been previously reported
that human β-defensin 118 could reduce the inflammation and intestinal injury in mice
induced by E.coli F4 [10]. For the inflammatory response of E. coli, it is mainly induced by
lipopolysaccharide (LPS), which can be recognized by Toll-like receptors (TLRs) family,
mainly resulting in the activation of nuclear factor-kappa B (NF-κB) and mitogen-activated
protein kinases (MAPK) signaling [11]. In a study related to HBD-3, the researchers found
that HBD-3 could down-regulate the expression of cytokines in macrophages through
inhibiting the activation of NF-κB and MAPK pathways induced by LPS [12]. Another re-
port revealed that PBD-2 could improve inflammatory response by affecting the activation
of NF-κB signal pathway [13]. Based on the above research progress, we hypothesized
that SBD-2 could play a potential role in regulating E. coli F17 infection in sheep and two
inflammatory pathways were involved in the process of E. coli F17 infection.

Thus, in this study, we constructed the model of ovine intestinal epithelial cells (OIECs)
infected by E. coli F17, and verified the relationship between the expression of SBD-2 and
E. coli F17 infection in sheep using RT-PCR and ELISA analysis. Furthermore, we performed
RNA interference and overexpression to inquiry the effect of SBD-2 expression on E. coli
F17 adhesion to OIECs. Further, we used RT-PCR analysis to detect whether NF-κB and
MAPK pathways were activated after E. coli F17 stimulation. Then, we conducted pathway
inhibition experiment to study the effect on SBD-2 expression. Finally, colony count
analysis was conducted to explore the influence of pathway inhibition on the adhesion of
E. coli F17 to OIECs. This study not only comprehensively explored the essential role of
SBD-2 regulating E. coli F17 infection in OIECs, but also deeply studied the status of the
NF-κB and MAPK pathways in this process. Our results could provide feasible treatment
direction for E. coli F17 resistance in lambs and theoretical basis on breeding for E. coli
diarrhea disease-resistant sheep.

2. Materials and Methods
2.1. Experimental Sample and Ethical Statement

OIECs used in this experiment were isolated from two healthy lambs of Hu sheep at
the age of 3 to 5 days (Jiangsu Xilaiyuan Ecological Agriculture Co., Ltd., Taizhou, China).
The detailed isolation method was documented in Figure S1. Purification and identification
work had been finished in the laboratory of our research group. E. coli F17 strain (DN1502)
was offered by Prof. Dr. Dongfang Shi, Northeast Agricultural University (Harbin, China).
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The Institutional Animal Care and Use Committee (IACUC) of the government of
Jiangsu Province (Permit Number 45) and the Ministry of Agriculture of China (Permit
Number 39) approved the animal study proposal. All experimental procedures were
conducted in strict compliance with the recommendations of the Guide for the Care and
Use of Laboratory Animals of Jiangsu Province and of the Animal Care and Use Committee
of the Chinese Ministry of Agriculture.

2.2. Cell Culture and E. coli F17 Stimulation in OIECs

OIECs were cultured with a DMEM/F12 medium supplemented with 10% fetal bovine
serum and 1% penicillin-streptomycin (All from Sigma-Aldrich, St. Louis, MO, USA) in 5%
CO2 atmosphere at 37 ◦C. The growth of cells was observed under an inverted fluorescence
microscope. E. coli F17 strain, which was preserved with glycerin, was inoculated into a
Luria-Bertani (LB) agar Petri dish and incubated for 16–18 h at 37 ◦C. Then, a single colony
was picked up with the end of a sterilization inoculation ring and inoculated it into LB
liquid medium, and then they were incubated overnight on a shaker with 150 rpm (more
details about E. coli F17 were shown in Table S1).

In order to determine the best infection condition related to SBD-2 gene, here we
designed different infection concentrations and times. Cells were inoculated to 6-well
plates, cultured in DMEM/F12 medium without serum and antibiotics, and then performed
E. coli F17 stimulation. Firstly, OIECs were treated with five different concentrations of
E. coli F17, namely, 0 CFU/mL, 105 CFU/mL, 106 CFU/mL, 107 CFU/mL and 108 CFU/mL,
respectively. Then, based on the best concentration obtained from the previous experiment,
OIECs were treated with six different infection times, namely, 0 h, 2 h, 4 h, 6 h, 8 h and 10 h.
Cells collection was used for RT-PCR analysis and Enzyme-linked Immunosorbent Assay
(ELISA) to detect mRNA and protein expression levels of SBD-2, respectively. Specific
primers for RT-PCR were shown in Table S2.

2.3. Plasmid Construction and RNA Oligonucleotides

According to the coding sequence (CDS) of SBD-2 in NCBI (https://www.ncbi.nlm.
nih.gov/ (accessed on 23 November 2021)), primers were designed by premier primer
5.0 software (Premier Biosoft International, Palo Alto, CA, USA) and were documented
in Table S3. Full-length DNA encoding SBD-2 were amplified using PrimeSTAR Max
DNA Polymerase reagent (Takara, Kusatsu, Shiga, Japan). The obtained PCR product
was purified and recovered by SanPrep column PCR product purification kit (Sangon
Biotech, Shanghai, China) and then was sequenced by Beijing Tsingke Biotechnology Co.,
Ltd. (Nanjing, China). The pGH plasmid (Generay, Shanghai, China) and SBD-2 target
fragment were digested with restriction enzyme QuickCut EcoR V (Takara), then connected
the target fragment into the linear vector according to the instruction of DNA Ligation Kit
Ver.2.1 kit (Takara). After enzyme digestion identification and sequencing verification, the
successfully constructed cloning plasmid was named pGH-SBD-2. A schematic diagram for
the construction of SBD-2 overexpression vector was shown in Figure S2. Small-interfering
ribonucleic acids (siRNAs) of SBD-2 together with negative control (NC) were synthesized
by GenePharma Pharmaceutical Technology Co., Ltd. (Shanghai, China). All sequences
were shown in Table S4.

2.4. Cell Transfection

When the cell confluence reached 50–60%, pGH-SBD-2 plasmid and siRNAs of SBD-
2 were transfected into cells with jetPRIME transfection reagent (Polyplus transfection,
Illkirch, France) following manufacturer’s instructions. Each transfection had been treated
with at least three replications. After 24 h, cells were collected for RT-PCR analysis to verify
transfection efficiency.

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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2.5. Pathway Inhibitors Blocking Signaling Pathway Test

To investigate the function of NF-κB and MAPK signaling pathway in the process of
SBD-2 regulating E. coli F17 infection in OIECs, pathway inhibitors (Beyotime, Shanghai,
China) were added into four groups of well-growing OIECs, namely, blank control group,
positive control group, negative control group and experimental group. The detailed
treatment of each group was shown in Table 1. Then, cells were collected to quantify the
mRNA expression levels of p65, p50, p38, ERK1 and JNK. Using these cells, the mRNA
and protein expression levels of SBD-2 were been quantified as well. The primers used for
RT-PCR were documented in Table S2.

Table 1. Different treatment of grouping.

A
Blank Control Group

B
Positive Control Group

C
Negative Control Group

D
Experimental Group

No treatment E. coli F17 only

NF-κB pathway inhibitor PDTC
(25 µM),

NF-κB pathway inhibitor PDTC
(25 µM) + E. coli F17,

p38 pathway inhibitor SB202190
(25 µM),

p38 pathway inhibitor SB202190
(25 µM) + E. coli F17,

ERK1/2 pathway inhibitor PD98059
(50 µM),

ERK1/2 pathway inhibitor PD98059
(50 µM) + E. coli F17,

(Add separately) (Add separately)

2.6. Total RNA Extraction and Real-Time PCR (RT-PCR)

Total RNA was extracted from cells using the TRIzol reagent (TIANGEN, Beijing,
China). The purity and concentration were detected by 1% agarose gel electrophoresis
and NanoReady spectrophotometer (Life Real, Hangzhou, China). All RNA samples were
stored at −80 ◦C. Reverse transcription was implemented using the FastKing gDNA Dis-
pelling RT Super Mix (TIANGEN). The reverse transcription reaction system and reaction
condition were summed up in Table S5. RT-PCR was conducted using the 2× TSINGKE
Master qPCR Mix (SYBR Green I) (TSE201, Tsingke, Beijing, China). The detailed amplifica-
tion program was shown in Table S5. The GAPDH was used as an internal reference gene.
RT-PCR was implemented by using CFX96 Connect™ Real-Time System (BIO-RAD, CA,
USA). All RT-PCR results were analyzed using 2−∆∆Ct method [14].

2.7. Enzyme-Linked Immunosorbent Assay (ELISA)

To assess SBD-2 mass concentration, the cell culture medium was collected to imple-
mented ELISA after plasmid transfection and E. coli F17 infection, referring to the sheep
β-Defensin 2 enzyme-linked immunosorbent assay detection kit instructions (mlbio, Shang-
hai, China), following specific steps. Firstly, the above cell medium was centrifuged at 4 ◦C,
2000–3000 rpm for 20 min and supernatant was saved as samples. Secondly, 50 µL standard
substance of different concentrations was added into the standard wells; meanwhile, 50 µL
sample was added into the sample wells except the blank wells. Thirdly, 100 µL enzyme-
labeled reagent was added into standard wells and sample wells except the blank wells,
and they were incubated at 37 ◦C for 1 h. Then, 350 µL washing liquid was added into
each well for 1 min and absorbent paper was used to pat dry, 5 times repeatedly. Finally,
50 µL substrate A and B were added into each well, and they were incubated at 37 ◦C for
15 min in the dark, then 50 µL stop solution was added into each well. OD value of each
well was measured at 450 nm wavelength in the microplate reader at 26 ◦C within 15 min
(Tecan, Shanghai, China). Additionally, the OD value of the measured standard substance
was used as the abscissa and the concentration value was used as the ordinate to draw the
standard curve.

2.8. Plate Counting Method for Bacteria Enumeration

To assess adhesion of E. coli F17 to OIECs, plate count was performed according to
Jouve et al. [15] after plasmid transfection and E. coli F17 infection. First of all, cells were
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washed gently three times with PBS buffer (Sigma-Aldrich). Then, 300 µL 0.5% Triton
X-100 (Solarbio, Beijing, China) were added into each well to lyse the cells for 30 min, and
the cell lysate was collected. Next, 200 µL PBS buffer were added to wash twice and a total
of 700 µL liquid were collected into a 1.5 mL sterile centrifuge tube, and they were mixed
uniformly. Last, liquid was diluted by multiple times, then the diluent was spread on LB
Petri dish, and they were inverted in a constant temperature incubator at 37 ◦C overnight.
The number of colonies were counted.

2.9. Statistical Analysis

Before statistical analysis, the normality of data were been tested by Kolmogorov–
Smirnov Test using SPSS 25.0. An analysis of variance (ANOVA) was applied to analyze
the differences of SBD-2 expression level in OIECs between the E. coli F17 stimulation
group and non-treated group with different bacteria concentration and infection times by
using SPSS 25.0 software (SPSS, Inc., Chicago, IL, USA). Independent t test was performed
to analyze the differences of SBD-2 expression level in OIECs between pGH group and
pGH-SBD-2 group, the differences of SBD-2 expression level in OIECs between negative
control group and siRNA-SBD-2 group, the differences of number of E. coli F17 colonies
between pGH group and pGH-SBD-2 group, and the differences of number of E. coli F17
colonies between negative control group and siRNA-SBD-2 group. Independent t test
was performed to analyze the differences of genes (p65, p50, p38, ERK1/2, JNK) mRNA
expression levels in OIECs between non-treated group and E. coli F17 infection group,
the differences of p50, p38, ERK1/2 and SBD-2 expression levels in OIECs between non-
treated group and positive control group, negative control group and experimental group,
respectively. Independent t test was performed to analyze the differences of number of
E. coli F17 colonies between non-treated group and pathway inhibitors treatment group.
Results were represented as mean ± SD (* denotes p < 0.05, significant difference; ** denotes
p < 0.01, extremely significant difference).

3. Results
3.1. Effect of E. coli F17 Different Infection Concentration and Time on SBD-2 Expression

The resuscitated OIECs had consistent normal morphology and good activity, growing
adherently and closely connected (Figure S3). They could be used in the later experiment.
Using 1% agarose gel electrophoresis to check the quality of the total RNA extracted from
cells, clear 28 S and 18 S bands can be observed, indicating that the integrity of the extracted
RNA is of high quality (Figure S4). As clearly reflected in Figure 1A, mRNA expression
levels of SBD-2 with 107 CFU/mL infection concentration reached maximum, which were
also extremely significantly higher than those of the control group (p < 0.01) (The extremely
significant level was shown in Figure S5, the same below).

Hence, we used 107 CFU/mL infection concentration to optimize the infection time.
The result of relative quantification (Figure 1B) showed that mRNA expression levels of
SBD-2 achieved maximum at 6 h, which were also extremely significantly higher than
those of the control group (p < 0.01). We also detected SBD-2 protein level using ELISA. As
demonstrated in Figure 1C, this standard curve could be used to calculate SBD-2 protein
level in samples. Results obviously showed that changes in SBD-2 protein levels shared the
same trend with SBD-2 mRNA levels that it reached the peak when we used 107 CFU/mL
infection concentration (Figure 1D) with 6 h of infection (Figure 1E), which were both
extremely significantly higher than those of the control group (p < 0.01). Therefore, we
took 107 CFU/mL of E. coli F17 concentration and 6 h of infection as optimal conditions in
subsequent experiments.
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3.2. Expression Level of SBD-2 Regulates E. coli F17 Resistance in OIECs

To probe into whether SBD-2 expression has the function of resisting E. coli F17
infection in OIECs, we performed SBD-2 overexpression and RNA interference (Figure 2).
The results of relative quantification (Figure 2A) and ELISA (Figure 2B) showed mRNA
and protein expression levels of SBD-2 in OIECs treated with pGH-SBD-2 were extremely
significantly higher than those of pGH treated cells (p < 0.01). The result of bacteria
enumeration (Figure 2C) showed the remarkably decreased adhesion of E. coli F17 to OIECs
treated with pGH-SBD-2 compared with that of pGH treated cells (p < 0.01). Besides, we
used RNA interference to knockdown SBD-2 expression. As shown in Figure 2D, the
interference efficiency of SBD-2 reached more than 50%, and we chose siRNA-70 for next
functional verification experiment. The result from ELISA (Figure 2E) showed that SBD-2
protein expression level was significantly reduced in OIECs treated with siRNA-SBD-2
compared with that of non-treated cells (p < 0.05). The result from bacteria enumeration
(Figure 2F) showed SBD-2 knockdown could dramatically improve the adhesion of E. coli
F17 to OIECs. All these results indicated that overexpression of SBD-2 contributed to
enhancing E. coli F17 resistance in OIECs, while SBD-2 knockdown improved adhesion of
E. coli F17 to OIECs.
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3.3. Effect of E. coli F17 Stimulation in OIECs on NF-κB and MAPK Pathways

To confirm whether NF-κB and MAPK pathways participating in the process of E. coli
F17 infection in OIECs, we used 107 CFU/mL E. coli F17 to infect OIECs for 6 h. Then,
RT-PCR was to detect mRNA expression levels of p50, p65, p38, ERK1 and JNK. The result
of relative quantification (Figure 3A) showed that expression levels of p50, p65, p38, ERK1
and JNK were highly up-regulated in infection group compared with non-treated group
(p < 0.01), which indicated NF-κB and MAPK pathways were activated after E. coli F17
stimulating OIECs. Then, we conducted experiments on co-treatment of OIECs with path-
way inhibitors and E. coli F17. The result of relative quantification (Figure 3B–D) reflected
obviously down-regulated mRNA expression levels of p50 (Figure 3B), p38 (Figure 3C)
and ERK1/2 (Figure 3D) in inhibitor addition groups in comparison with the non-treated
groups (p < 0.05 or p < 0.01), while mRNA expression levels of p50 and ERK1/2 were
markedly increased after co-treatment with E. coli F17 (p < 0.05 or p < 0.01). The above
results indicated that pathway inhibitors could be used for the subsequent experiments.
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Figure 3. The effect of E. coli F17 stimulation in OIECs on NF-κB and MAPK pathways. (A) p65, p50, p38, ERK1/2 and JNK
expression level determined by RT-PCR in OIECs treated with E. coli F17 (107 CFU/mL) for 6 h compared with non-treated
control. (B) p50 expression level determined by RT-PCR in OIECs treated with NF-κB inhibitor PDTC, PDTC+E. coli F17 and
E. coli F17 compared with non-treated control. (C) p38 expression level determined by RT-PCR in OIECs treated with p38
MAPK inhibitor SB202190, SB202190+E. coli F17 and E. coli F17 compared with non-treated control. (D) ERK1/2 expression
level determined by RT-PCR in OIECs treated with ERK1/2 MAPK inhibitor PD98095, PD98095+E. coli F17 and E. coli F17
compared with non-treated control. * p < 0.05, significant difference; ** p < 0.01, extremely significant difference; NS = no
difference. Data were shown as mean ± SD, n = 3 biological replicates.

3.4. NF-κB and MAPK Pathways Influence SBD-2 Expression at the mRNA and Protein Levels

Since we have confirmed that NF-κB and MAPK pathways could be activated after
E. coli F17 infecting OIECs, the effects of pathways on SBD-2 expression is unknown.
First, we added NF-κB pathway inhibitor PDTC and E. coli F17 infection treatment to
OIECs. The relative quantitative results revealed that the mRNA expression level of SBD-2
was significantly down-regulated after the addition of PDTC inhibitors compared with
non-treated group (p < 0.05), then very highly up-regulated after co-treatment with E. coli
F17 (p < 0.01) (Figure 4A). The result of ELISA (Figure 4B) showed the changes of SBD-2
protein level were consistent with the mRNA level. Next, we added p38 pathway inhibitor
SB202190 and ERK1/2 pathway inhibitor PD98095, co-treatment with E. coli F17. The
result of relative quantification (Figure 4C,D) showed an obvious decrease with SBD-2
mRNA expression levels in OIECs treated with pathway inhibitors compared with those in
non-treated cells (p < 0.05 or p < 0.01), then highly up-regulated after co-treatment with E.
coli F17 (p < 0.01). The result of ELISA (Figure 4E,F) confirmed that protein level of SBD-2
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shared the same trend of mRNA level. Therefore, NF-κB and MAPK pathways could be
involved in regulating the SBD-2 expression in OIECs infected by E. coli F17.
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Figure 4. The effect of NF-κB and MAPK pathways on SBD-2 expression. (A) SBD-2 relative expression determined by
RT-PCR in OIECs treated with PDTC, PDTC+E. coli F17 and E. coli F17 compared with non-treated control. (B) SBD-2
protein expression determined by ELISA in OIECs treated with NF-κB inhibitor PDTC, PDTC+E. coli F17 and E. coli F17
compared with non-treated control. (C) SBD-2 relative expression determined by RT-PCR in OIECs treated with p38 MAPK
inhibitor SB202190, SB202190+E. coli F17 and E. coli F17 compared with non-treated control. (D) SBD-2 relative expression
determined by RT-PCR in OIECs treated with ERK1/2 MAPK inhibitor PD98095, PD98095+E. coli F17 and E. coli F17
compared with non-treated control. (E) SBD-2 protein expression determined by ELISA in OIECs treated with p38 MAPK
inhibitor SB202190, SB202190+E. coli F17 and E. coli F17 compared with non-treated control. (F) SBD-2 protein expression
determined by ELISA in OIECs treated with ERK1/2 MAPK inhibitor PD98095, PD98095+E. coli F17and E. coli F17 compared
with non-treated control. * p < 0.05, significant difference; ** p < 0.01, extremely significant difference; NS = no difference.
Data were shown as mean ± SD, n = 3 biological replicates.

3.5. NF-κB and MAPK Pathways Regulate Adhesion of E. coli F17 to OIECs

In order to further determine the role of the NF-κB and MAPK pathways in the process
of E. coli F17 infecting OIECs, NF-κB pathway inhibitor PDTC, p38 pathway inhibitor
SB202190 and ERK1/2 pathway inhibitor PD98095 were added to OIECs, respectively,
and then collected cells for colony count analysis. The result of bacteria enumeration
(Figure 5A) showed that distinctly increased adhesion of E. coli F17 to OIECs treated with
PDTC compared with that of non-treated cells (p < 0.01). Similarly, adhesion of E. coli F17 to
OIECs were both highly enhanced in OIECs treated with SB202190 and PD98095 contrast
with those of non-treated cells (p < 0.01) (Figure 5B). These results suggested that NF-κB
and MAPK pathways could affect the adhesion of E. coli F17 to OIECs.
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4. Discussion
4.1. Effect of SBD-2 Expression on E. coli F17 Adhesion to OIECs

Defensin is a kind of antimicrobial peptide, which exists widely in mammals and has
an extensive killing effect on bacteria, fungi, viruses and parasites that invade the body.
β-defensin was first found in bovine neutrophils, which is considered to be an important
component of the anti-microbial barrier on the mucosal surface [16]. Thus far, SBD-1
and SBD-2 have been annotated in sheep and are located on chromosome 26. SBD-2 is
mainly distributed in the epithelial cells of the gastrointestinal tract and digestive tract [17].
In recent years, studies focused on sheep β-defensin seem to be more inclined to study
SBD-1, because the strong expression of SBD-1 in rumen epithelium makes researchers
interested in exploring the mechanism of SBD-1 expression in the process of sheep rumen
innate immunity [18–22]. However, we cannot ignore that sheep colibacillosis is one of
the important factors restricting the development of sheep breeding industry in China,
which is caused by E. coli F17. Previous studies have found that SBD-2 expression level
is the strongest in the intestinal tract, and the tissue distribution is higher in fetal sheep
and newborn lambs, which plays a vital role in developmental regulation before and after
birth [23,24]. However, there is no detailed report related to the relationship between SBD-2
and E. coli F17 infection in OIECs.

In this study, we successfully established a model of E. coli F17 infection in OIECs
in vitro. To explore the expression changes of SBD-2 in OIECs infected by E. coli F17, cells
were infected with different concentrations of E. coli F17. We found that different concentra-
tions of E. coli F17 could cause significant changes in SBD-2 expression in OIECs, and the
expression level of SBD-2 in OIECs reached the maximum when the infection concentration
was 107 CFU/mL. Further, cells were infected with E. coli F17 at the concentration of
107 CFU/mL for different times, and we found that the expression level of SBD-2 in OIECs
reached the maximum at 6 h. Interestingly, E. coli F17 infection markedly upregulated SBD-
2 mRNA and protein expression levels in a concentration- and time-dependent manner.
Based on the above results, we figured out that the best condition for infection test was
E. coli F17 infecting OIECs with 107 CFU/mL for 6 h.
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Recently, scholars in various fields tend to use gene overexpression technology to
explore the mechanism of β-defensin regulating cancer diseases, species including hu-
man [25,26], pig [27,28], mice [29,30], etc. Similarly, RNAi technology is also increasingly
used in gene functional analysis [31]. However, to comprehensively explore the mechanism
of gene action, we are supposed to combine gene overexpression with interference to
explore the molecular mechanism of β-defensin [32]. In this study, we carried out SBD-2
overexpression and knockdown to explore the ability of E. coli F17 adhering to OIECs.
The results showed that overexpression of SBD-2 could dramatically enhance E. coli F17
resistance in OIECs, while interfering with SBD-2 could obviously improve the adhesion
of E. coli F17 to OIECs. Thus, SBD-2 is likely to play an essential role in the resistance
of OIECs to E. coli F17 infection in lambs. It is well established that the distribution of
β-defensins differ in different species [33], resulting in their different anti-infection ability
to bacteria. In human, Lin et al. reported that Human β-Defensin 118 (DEFB118) showed
antimicrobial activities against E. coli K88 and E. coli DH5α with a minimum inhibitory
concentration (MIC) of 4 µg/mL [34]. In pig, Su et al. showed that porcine β-defensin 114
(PBD114) inhibited the activities of E. coli DH5α and K88 with MIC of 64 and 128 µg/mL,
respectively [35]. In sheep, we have confirmed the molecular mechanism by which SBD-2
regulated the adhesion of E. coli F17 to OIECs. Therefore, we believe that SBD-2 has an-
tibacterial activity against E. coli F17 and has the potential to be used as a novel antibiotic
against diarrhea caused by E. coli F17 in lambs. It is worth noting that the in vitro cell
model cannot completely reflect the subtle changes of the immune environment in vivo.
Thus, the function of SBD-2 should be further verified in vivo.

4.2. Effect of NF-κB and MAPK Pathways on SBD-2 Expression and E. coli F17 Adhesion
to OIECs

NF-κB and MAPK signaling pathways are two key pathways activated by E. coli
induced inflammatory response [36]. The NF-κB family consists of five related transcription
factors: p50, p52, REL (also known as cREL), REL-A (p65) and REL-B, which is involved in
the differentiation, proliferation and survival of almost all multicellular organisms [37]. The
MAPK pathway including ERK1/2, p38 and JNK has been found in mammals. ERK1/2
signaling is mainly involved in the regulation of gene expression, protein translation,
cell growth and differentiation. JNK and p38 signaling mainly play a significant role
in inflammation, apoptosis and immune system response [38]. A wealth of studies has
shown that the expression of induced β-defensin is usually mediated by NF-κB and MAPK
pathways [20,39–43]. Among the reports related to Gram-negative bacteria, p38, ERK1/2
and JNK pathways are the most common MAPK pathways that cause inflammatory and
immune responses [44,45]. In this study, detected mRNA expression levels of p50, p65,
p38, ERK1/2 and JNK were significantly up-regulated after OIECs infected by E. coli F17,
indicating that MAPK and NF-κB pathways were activated. Furthermore, we added p50
pathway inhibitor PDTC, p38 pathway inhibitor SB202190 and ERK1/2 pathway inhibitor
PD98095 to OIECs, respectively. RT-PCR and ELISA analysis showed that the mRNA and
protein expression levels of SBD-2 were significantly down-regulated after adding NF-κB
and MAPK pathway inhibitors, indicating that SBD-2 expression induced by E. coli F17
is possibly mediated by NF-κB and MAPK signaling pathways. Finally, in order to more
directly clarify the effects of NF-κB and MAPK pathways in OIECs infected by E. coli F17,
we found that the addition of pathway inhibitors enhanced the adherence of E. coli F17 to
OIECs. A similar study reported that LPS-induced SBD-1 expression is mainly mediated
by the TLR4-P38 MAPK pathway [46]. Recently, Su et al. introduced a vital inflammation
of NF-κB-dependent that induces porcine β-defensin 114 by using an infected porcine
model [47]. Another report showed the novel anti-inflammatory effect of DEFB118 on
ETEC-infected mice [48]. Hence, an effective animal model aims to uncover the novel
anti-inflammatory function of SBD-2 needs to be further excavated, associated with the
receptors recognized and the most vital pathway involved in the E. coli F17 infection.



Biology 2021, 10, 1356 12 of 14

5. Conclusions

In conclusion, the findings of the present study demonstrate that E. coli F17 induces
SBD-2 expression in OIECs in vitro, which appears to be mediated through the activation
of the signaling pathways, NF-κB and MAPK. The regulation of SBD-2 expression and
the elucidation of the host signaling pathways that contribute to the induction of SBD-
2 expression are conducive to enhance the innate immune response of the host against
bacterial invasion. Our results provide a novel insight for the functionality of SBD-2, which
could be useful for selecting sheep resisting E. coli F17.
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