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Simple Summary: This review is a summary of recent studies of genes, many of them involved in
growth and reproduction, which can be used for distinguishing between species of the Anabantoidei
suborder of fish, focusing on the Blue Gourami as a model species. This is important in both basic
science and aquaculture applications.

Abstract: Markers of genetic variation between species are important for both applied and basic
research. Here, various genes of the blue gourami (Trichogaster trichopterus, suborder Anabantoidei, a
model labyrinth fish), many of them involved in growth and reproduction, are reviewed as markers
of genetic variation. The genes encoding the following hormones are described: kisspeptins 1 and
2, gonadotropin-releasing hormones 1, 2, and 3, growth hormone, somatolactin, prolactin, follicle-
stimulating hormone and luteinizing hormone, as well as mitochondrial genes encoding cytochrome
b and 12S rRNA. Genetic markers in blue gourami, representing the suborder Anabantoidei, differ
from those in other bony fishes. The sequence of the mitochondrial cytochrome c oxidase subunit
1 (COI) gene of blue gourami is often used to study the Anabantoidei suborder. Among the genes
involved in controlling growth and reproduction, the most suitable genetic markers for distinguishing
between species of the Anabantoidei have functions in the hypothalamic–pituitary–somatotropic axis:
pituitary adenylate cyclase-activating polypeptide and growth hormone, and the 12S rRNA gene.

Keywords: mitochondrial genes; cytochrome b; 12S rRNA gene; Anabantoidei; growth hormone; re-
production

1. Introduction

Genetic variability between the organisms refers to sequence differences between their
genomes, part of which is reflected in the sequence of protein-coding genes. This variation in
DNA sequence can be used as a marker to distinguish between organisms, including fishes,
at all systemic levels [1–8]. Compared to the much-studied genetic markers in some fish
species of economic value, little research has been done with the group of labyrinth fishes.
Blue gourami (Trichogaster trichopterus) is a labyrinth fish of the suborder Anabantoidei, order
Perciformes. It is a small tropical freshwater fish characterized by the presence of a chamber,
or labyrinth, above the gills for the uptake of oxygen from the air for breathing. The labyrinth
enables adaptation to life in water with low dissolved oxygen by partial air breathing.
Anabantoid fishes are geographically distributed in central Africa, India, and southern
Asia [9] (Figure 1). In their natural habitat, they adapt to an unpredictable environment in
which water-dissolved oxygen concentration varies throughout the year and can reach very
low concentration [10]. The 16 known genera of anabantoid fishes contain about 80 species
(FishBase, Nelson et al. Fishes of the World [10]). However, the systematic characters of the
labyrinth fishes have not been agreed upon and many synonyms are used. According to
Vierke [10], taxonomists classify the labyrinth fishes into four families: Anabantidae (genera
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Sandelia, Ctenopoma, Anabans), Belontiidae (genera Trichopsis, Trichogaster, Sphaerichthys,
Pseudosphromenus, Parosphromenus, Malpulutta, Helostoma, Ctenops, Colisa, Betta, Belontia),
Osphronemidae (genus Osphronemus), and Helostomatidae (genus Helostoma).
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Labyrinth fishes have two different stages in their life cycle: (i) before labyrinth 
organ development, from eggs to juveniles, when oxygen is absorbed over the entire 
surface by diffusion; and (ii) after labyrinth development, when the organ becomes 
important for breathing [10]. The adaptation to the development of eggs and fry in 
water with low oxygen concentration involves laying eggs in a bubble nest which 
supplies oxygen to the eggs and larvae [10]. In natural habitats, when there is a low 
density of mature males, they become territorial by building a bubble nest and pro-
tecting it from other males (Figure 2) [12,13]. 

Figure 1. Known global distribution of Trichogaster trichopterus. Locations are in Australia, Papua- New
Guinea, Indonesia, Malaysia, the Philippines, Taiwan, Vietnam, Cambodia, Laos, Thailand, Myanmar,
India, Namibia, Colombia, Brazil, and the United States. Map from the GBIF Secretariat [11].

Labyrinth fishes have two different stages in their life cycle: (i) before labyrinth organ
development, from eggs to juveniles, when oxygen is absorbed over the entire surface by
diffusion; and (ii) after labyrinth development, when the organ becomes important for
breathing [10]. The adaptation to the development of eggs and fry in water with low oxygen
concentration involves laying eggs in a bubble nest which supplies oxygen to the eggs and
larvae [10]. In natural habitats, when there is a low density of mature males, they become
territorial by building a bubble nest and protecting it from other males (Figure 2) [12,13].
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Figure 2. A scheme of two habitats, with high (A) and low (B) densities of males. At high density, the male does not 
build a nest. At low density, the male builds a nest and sexual behavior is initiated [10,13,14]. 

After courting and fertilization, the female swims under the bubble nest and 
spawns eggs into it. The male guards the nest with the eggs. If an egg falls out, the 
male returns it to the nest. The male also protects the young fish, immediately after 
hatching (Figure 3). 
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bubble nest. (5) The male guards the eggs in the nest. (6) The male further protects the fry immediately after hatching 
while they swim in the nest area [10,13]. 

Ornamental fish populations in their native habitats, mainly in tropical areas, have 
declined due to overfishing for their sale on the tropical fish market. Fish of the subor-
der Anabantoidei are important in the ornamental fish industry and have long been 
produced in aquaculture [10]. The introduction of T. trichopterus in Florida is considered 
to have failed, according to US Fish and Wildlife Service, June 2019 [11]. 

2. Sequencing Analysis of the 12S rRNA and Cytochrome b Gene Variations in 
Blue Gourami 

Information on the molecular variation of species belonging to the Anabantoidei 
in the order Perciformes (perch-like-fishes) is very limited [2,15,16]. Polymorphisms in 
several enzymes can be utilized as a genetic marker for these Anabantoidei species be-
longing to the Perciformes [5,17]. 

Thus, two Anabantoidei species—Trichogaster trichopterus and Trichogaster leerii—
are similar in morphology and in their geographical distribution. Colisa lalia does not 
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Figure 2. A scheme of two habitats, with high (A) and low (B) densities of males. At high density, the male does not build a
nest. At low density, the male builds a nest and sexual behavior is initiated [10,13,14].
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After courting and fertilization, the female swims under the bubble nest and spawns
eggs into it. The male guards the nest with the eggs. If an egg falls out, the male returns it
to the nest. The male also protects the young fish, immediately after hatching (Figure 3).
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Figure 3. Sexual behavior of male blue gourami during the reproductive cycle. (1) The male builds a nest. (2) and (3) The
male courts the female under the nest. (4) Fertilization takes place and the fertilized eggs float up and stick to the bubble
nest. (5) The male guards the eggs in the nest. (6) The male further protects the fry immediately after hatching while they
swim in the nest area [10,13].

Ornamental fish populations in their native habitats, mainly in tropical areas, have
declined due to overfishing for their sale on the tropical fish market. Fish of the suborder
Anabantoidei are important in the ornamental fish industry and have long been produced
in aquaculture [10]. The introduction of T. trichopterus in Florida is considered to have
failed, according to US Fish and Wildlife Service, June 2019 [11].

2. Sequencing Analysis of the 12S rRNA and Cytochrome b Gene Variations in
Blue Gourami

Information on the molecular variation of species belonging to the Anabantoidei in the
order Perciformes (perch-like-fishes) is very limited [2,15,16]. Polymorphisms in several
enzymes can be utilized as a genetic marker for these Anabantoidei species belonging to
the Perciformes [5,17].

Thus, two Anabantoidei species—Trichogaster trichopterus and Trichogaster leerii—are
similar in morphology and in their geographical distribution. Colisa lalia does not exhibit
an overlapping geographical distribution, but shows a high similarity to Betta betta, which
is distributed in the small area covered by the genus Trichogaster. The gene loci of species
belonging to the genus Colisa showed a higher degree of similarity to those of the Tri-
chogaster species than to those of the Betta species [5]. Population structures of Trichogaster
pectoralis collected from five locations in Thailand [17] were also studied by isozyme analysis.
The highest genetic identity coefficient was found between Samutprakan and Pitsanulok
populations in Thailand; the lowest between Pitsanulok and Pattanee populations.

Several sets of degenerate oligonucleotides were used by Degani [2] to clone DNA frag-
ments encoding portions of the cytochrome b and 12S rRNA genes. These genes were used
to examine the genetic variation between species of the Anabantoidei by mitochondrial
gene-sequencing analysis. Results demonstrated a similarity between the gene sequences
of the various Belontiidae species, leading to the finding that these genes could serve as
molecular markers for the systematic study of Belontiidae reproduction. The cytochrome b
sequences of Anabantoidei fish examined in that study are shown in Figure 4.
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Based on this gene, the most similar species were Trichogaster trichopterus (gold) and
Trichogaster trichopterus (blue) (100%). Trichogaster leerii was less similar to these (86.0%), and
even lower similarity was found between the species T. trichopterus and Trichogaster labiosus
(85.6%). The least similarity was observed between Betta betta and the genera Colisa (50.2%)
and Trichogaster (60.1%). The similarity value for the cytochrome b gene of Macropodus
opercularis was between that of Betta and Colisa [2]. The phylogenetic tree for cytochrome b is
shown in Figure 5 [2].Biology 2021, 10, x FOR PEER REVIEW 5 of 23 
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for the 12S rRNA gene were very similar to those for cytochrome b. 12S rRNA gene se-
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less similarity between this genus and C. lalia (88.4%). In addition, there was less 
similarity between T. trichopterus and C. lalia than between T. trichopterus and B. 
betta (82.6% and 84.0%, respectively) [2]. 

 
Figure 6. Comparison of the 12S rRNA gene nucleotide sequences (150bp)  in Trichogaster trichopterus (blue gourami 
and gold gourami), T. leerii (pearl gourami), C. lalia (dwarf gourami), and B. betta (fighting fish) [2]. 

Figure 5. Composite phylogenetic tree constructed from the analysis of cytochrome b sequences of
six species: T. trichopterus (blue gourami and gold gourami), T. leerii (pearl gourami), C. lalia (dwarf
gourami), T. labiosus (C. labiosa), B. betta (fighting fish), and M. opercularis. The phylogenetic tree was
constructed by Clustal W and analysis alignment methods in the MegAlign program (DNASTAR) [2].
Branch lengths represent evolutionary distances. Percent DNA sequence identities are also shown [2].
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Additionally, sequences of the rRNA 12S gene from T. trichopterus (gold), T. trichopterus
(blue), T. leerii, C. lalia, and B. betta are shown in Figure 6, and the nucleotide-similarity
phylogenetic tree is presented in Figure 7 [2]. The phylogenetic tree results for the 12S rRNA
gene were very similar to those for cytochrome b. 12S rRNA gene sequence similarity between
Trichogaster species was high (91.4%–100%), and there was less similarity between this genus
and C. lalia (88.4%). In addition, there was less similarity between T. trichopterus and C. lalia
than between T. trichopterus and B. betta (82.6% and 84.0%, respectively) [2].
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Figure 7. Phylogenetic tree constructed from analysis of 12S rRNA gene sequences of T. trichopterus
(blue gourami and gold gourami), T. leerii (pearl gourami), C. lalia (dwarf gourami), and B. betta
(fighting fish). The phylogenetic tree was constructed by ClustalW and analysis alignment methods
in the MegAlign program (DNASTAR). Branch lengths represent evolutionary distances. Percent
DNA sequence identities are also shown [2].

The cytochrome b and 12S rRNA gene sequences of the Anabantoid fishes were com-
pared to those of other fishes and presented as a phylogenetic trees of nucleotide similarity
(Figures 8 and 9). In this comparison, some fishes that do not belong to the Anabantoidei
seemed to have high similarity to the Anabantoid fishes.
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of each pair of branches represents the distance between sequence pairs, while the units at the bottom
of the tree indicate the number of substitution events. The phylogenetic tree was constructed by
Clustal W and analysis alignment in the MegAlign program (DNASTAR). Percent DNA sequence
identities are also shown [2].
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3. Hypothalamus–Pituitary-Gonad (HPG) Axis Genes as Molecular Markers in Blue
Gourami and Other Anabantoid Species

The genes involved in the HPG are important in the breeding of fishes and therefore
their sequences have been studied. In teleosts, as in other vertebrates, kisspeptin (Kiss)
has recently received considerable attention as a potential key player in the indirect neu-
roendocrine control of reproduction [18]. Kiss is a member of the RFamide peptide family.
Originally identified as a metastasis suppressor in mammals, the Kiss1 gene produces sev-
eral Kiss peptides in mammals. Kiss54 and its endogenous variants, Kiss14, Kiss13, and
Kiss10, are generated by proteolytic cleavage of the Kiss precursor derived from the Kiss1
gene. They share a common core 10-amino acid (aa) sequence (Kiss10) at their C-terminal
end, which allows them to bind to their cognate G-protein-coupled receptor (GPR54) or Kiss
receptor (Kiss1r) [19]. Thus, Kiss1 controls the HPG axis, acts on the caudal hypothalamus
and seems to affect receptors of gonadotropin-releasing hormone (GnRH) [20]. It controls
the release of the pituitary gonadotropins follicle-stimulating hormone (FSH) and luteinizing
hormone (LH), which in turn control gametogenesis [21] through steroids [21–24]. Studies
on Kiss in teleosts have shown variation in their involvement in reproduction; however,
more detailed studies are required due to the relatively large size of this class and the inher-
ently high variation in hormones involved in reproduction. The brain of zebrafish (Danio
rerio), one of the most intensively studied model fish, has two Kiss genes, Kiss1 and Kiss2,
and two Kiss receptors (GPR54): Kiss1r and Kiss2r [19,25]; this is similar to other fishes
such as lamprey (Petromyzon marinus) [25], medaka (Oryzias latipes) [26], goldfish (Carassius
auratus) [27] and striped bass (Morone saxatilis) [28]. We studied the DNA sequence of the
brain Kiss2 and the two Kiss receptors (GPR54), Kiss1r and Kiss2r, in blue gourami [29,30].
The obtained partial sequences of Kiss2 were compared with homologous sequences from a
number of other fish species (Figure 10).

There was a low degree of similarity for both nucleotide and amino acid sequences
of Kiss2 between the blue gourami and other fish species (Figure 10). A higher degree of
similarity was found between the Kiss2r of blue gourami and those of the other fish species
(Figure 11). The results show that Trichogster trichopterus Kiss2r’s amino acids sequence is
very different from those of the species Tetraodon nigroviridis, Xenopus tropicalis, Scomber
japonicus, and Gasterosteus aculeatus and closer to the species Danio rerio, Carassius auratus,
and Dicentrarchus labrax.

The obtained sequences of Kiss1r in the blue gourami were also compared with ho-
mologous sequences in a number of other fish species. There was a low degree of similarity
for both nucleotide and amino acid sequences between the blue gourami sequence and
those of other fish species (Figure 12).

GnRH plays a central role in the control of vertebrate reproduction by affecting
various other hormones, e.g., gonadotropins and the growth hormone (GH) family, which
in turn regulate gametogenesis and steroidogenesis [31,32]. cDNA cloning of three GnRH
forms (GnRH1, GnRH2, and GnRH3) of blue gourami was described by Levy et al. [31–33]
(Figures 13 and 14).
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Figure 13. The schematic structure of the prepro GnRH of blue gourami (A); cDNA sequences
of GnRH1 (B) and GnRH2 (C). The signal peptide is underlined in black; the GnRH sequence is
double-underlined, the cleavage-site position is underlined with a bold black line; the GAP sequence
is underlined with a dashed line; and the 3’ poly(a) signal is boxed [31].
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Figure 14. Schematic structure of the Prepro GnRH3 (A) and the cDNA and deduced amino acid
sequence of GnRH3 (B) of the blue gourami. The signal peptide is underlined in black; the GnRH3
sequence is double-underlined and the cleavage-site position is underlined with a bold black line;
the GAP sequence is underlined with a dashed black line and the 3′ poly(a) signal is boxed [31].

As shown in Table 1, the degree of identity between the blue gourami GnRH3 pre-
prohormone amino acid sequence and that of other fishes was 80–82.2% [31]. There was a
higher degree of identity at both the nucleotide and amino acid levels between the blue
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gourami sequence and the respective sequences of Dicentrarchus labrax and Pagrus major
(Order Perciformes). In other perciforms (Cynoscion nebulosus, Rachycentron canadum, Sci-
aenops ocellatus, and Mugil cephalus), a higher degree of amino acid similarity was found, as
compared to the more variable nucleotide sequence [31–33].

Table 1. Nucleotide and amino acid similarities (%) between cDNA sequences of GnRH1 of blue gourami and other
teleosts [31]. Notes: a Pejerrey-type GnRH sequence, b Whitefish-type GnRH sequence.

Order Species Accession No. % Amino Acid Identity % Nucleotide Identity

Perciformes (Scombridae) Thunnus thynnus EU239500 70.3 74.3
Perciformes (Serranidae) Epinephelus bruneus FJ380047 64.8 72.3
Perciformes (Cichlidae) Oreochromis niloticus AB101665 67 68.2
Perciformes (Moronidae) Morone chrysops DQ000672 61.5 62.6

Pleuronectiformes
Paralichthys olivaceus DQ074693 50.5 51.4
Verasper variegatus HM131600 62.6 70.5

Atherinomorpha
Odontesthes bonariensis a AY744689 33 22.6
Fundulus heteroclitus AB302265 65.9 60.8
Coregonus clupeaformis b 47.3 54.2

Mugilomorpha Mugil cephalus AY373450 62.6 59

4. DNA Sequences of FSH and LH as Molecular for Genetic Similarity between Blue
Gourami and Other Fish Species

FSH and LH are gonadotropins that control gametogenesis in fishes. The sequences of
those genes are described in many fishes. FSH and LH cDNAs from the pituitary gland
of blue gourami (T. trichopterus), encoding the α and β subunits of these hormones, were
cloned [34]. The two cDNAs were sequenced and analyzed. The deduced amino acid
sequences of both FSH and LH cDNAs are presented in Figure 15.

Comparison of FSH-β and LH-β are shown in Figure 16. The blue gourami FSH-β was
most similar to its striped bass counterpart, with the two polypeptides sharing 73% of their
residues. The lowest similarity was found between blue gourami and of goldfish FSH-β,
with only 44% similarity (Figure 17A) [34]. A dendrogram, graphically representing these
polypeptide comparisons, showed highest similarity between blue gourami and striped
bass FSH-β, with 84% identical residues (Figure 17A). For LH-β, the lowest similarity
was found with the Coregonus migratorius, a whitefish of the Family Salmonidae. (only
65% identical residues). The dendrogram showing the relationships between the LH-β
polypeptides is presented in Figure 17B [34].Biology 2021, 10, x FOR PEER REVIEW 12 of 23 
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5. Hypothalamic–Pituitary–Somatotropic (HPS) Axis Genes as Markers for Genetic
Variation between Blue Gourami and Other Fish Species

Pituitary adenylyl cyclase-activating polypeptide (PACAP) and PACAP-related peptide
(PRP) are members of the secretin/glucagon/vasoactive intestinal polypeptide family.
PACAP was first isolated from the ovine hypothalamus [36], and its sequence has also
been determined in representative species of non-mammalian vertebrates. In fishes, PRP
(formerly known as GHRH or GHRH-like peptide) was first isolated from the hypothalamus
of common carp [37]. In teleosts, the complete sequence of the PRP–PACAP cDNA has been
cloned from several species [36]. In all vertebrates, the PACAP preprohormone consists of a
signal peptide, a cryptic peptide, a PRP segment and a PACAP segment. Two processing
sites, Lys–Arg and Gly–Arg–Arg, between the PRP and PACAP fragments and in the PACAP
sequence, respectively, result in three peptides: PRP, PACAP27 and PACAP38. In several
teleosts, there are two transcripts of PRP–PACAP as a result of exon skipping. This stems
from alternative splicing resulting in the partial excision of exon 4, which encodes part of
PRP (residues 1–32), leaving the PACAP-encoding region in the correct reading frame [38].
PACAP can bind specifically to three G-protein-coupled receptor (GPCR) variants (PACAP-
Rs) respectively termed: PAC1-R, VPAC1-R, and VPAC2-R [36]. Differential distribution of
PACAP-R has been identified in the brain, pituitary, heart, spleen, liver, gut, gills, kidney,
skin, blood, and gonads [36]. PRP-R also belongs to the GPCR family, but has only been
identified in non-mammalian species, e.g., in the goldfish pituitary [39]. These findings
suggest that evolutionary pressure has acted to preserve the bioactive sequence of PACAP,
indicating that the peptide must exert important physiological functions. PACAP and PRP
are involved in growth promotion and GH control. In teleosts, PACAP is involved in various
physiological processes, such as brain development, ventilation and cardiac baroreflex
control, digestive physiology, immune response, food intake, and growth promotion [40].

The structures of the PRP–PACAP cDNA are presented in Figure 18A [36], and the
full-length cDNA sequence of the PRP–PACAP precursor, compiled from data obtained
from 5’ and 3’ RACE, and its deduced amino acid sequence, are shown in Figure 18B [36].
The nucleotide and amino acid sequences of this gene in blue gourami were compared
with homologous sequences from a number of other fish species (Figure 19) [36]. Sequence
alignment of the PRP amino acid sequence revealed that only the first 32 aa at the N
terminus are highly conserved in closely related fishes. There was 80.0–93.3% sequence
identity between the blue gourami PRP sequence and that of other teleosts, whereas there
was only 31.6–56.6% sequence identity between other tetrapods and fishes (Figure 19A).
On the other hand, the amino acid sequence of PACAP is highly conserved in mammals
and fishes.

6. GH and Prolactin (PRL) Family Hormones as Genetic Variation Markers for Blue
Gourami and Other Anabantoid Fishes

Growth hormone (GH) is a single-chain polypeptide. Together with prolactin, growth
hormone and somatolactin, it forms a family of related polypeptide hormones whose
sequences seem to have evolved from a common ancestor [31,33,36]. GH has been studied
extensively, and cDNA sequences are available for blue gourami (Figure 20) and many
other teleosts. The study of GH expression in relation to growth and the reproductive
cycle could contribute to an understanding of the interactions between somatotropic and
gonadotropic axes at the pituitary level in order to elucidate the effects of GH on fish
reproduction [31,33,36]. Other HPS axis genes that control growth and that are involved in
cell division have been sequenced in blue gourami but less in other species of Anabantoid
fishes [7,31,36,41,42].
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Figure 18. Schematic structures and sequences of PRP–PACAP. (A). Schematic structures of the prepro
PRP–PACAP cDNA of blue gourami. (B). cDNA sequence of PRP–PACAP. The signal peptide is
underlined with a dashed black line; the cryptic peptide is underlined with a dashed double line; the
PRP sequence is underlined in black; the cleavage-site positions are boxed and the PACAP sequence
is double-underlined. The gray box designates the deleted region in the PRP–PACAP short form. The
triangle denotes the 3’ poly(A) signal ATTAAA [31,33,36].
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Figure 20. Nucleotide sequence of blue gourami growth hormone (GH) cDNA together with the
hormone’s putative amino acid sequence (in three letter code) [42].

In a comparison of the deduced amino acid sequence of bgGH to other fish sequences
found in the GenBank database, bgGH was most similar to that of Sparus aurata (86%
identical residues) and least similar to Anguilla japonica (43% identity) (Figure 21). The
sequence similarity was in accordance with prevailing systematics [41].
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Figure 21. Phylogenetic trees based on the comparison of the deduced amino acid sequence of
bgGH to similar Belontiidae family (Anabantoidei suborder) fishes (A) and various fish species
(B) GH found in the GenBank database [41]. Tree was constructed using Neighbor-joining method
using Kimura 2 Distance Model, with pairwise deletion and MUSCLE alignment in the MEGA-X
software [41].

Prolactin is a hormone involved in a large number of biological processes, including
growth, reproduction and osmoregulation in fish. The complete cDNA of the blue gourami
PRL (bgPRL) was cloned by RACE PCR [43]. The deduced amino acid sequence of bgPRL
was compared with that of homologous subunits from a number of other fish species
(Table 2). The highest degree of homology was between the gourami and the Perciforms
Perca flavescens, Dicentrarchus labrax, and Sparus aurata, followed by members of the order
Salmoniformes (66%), Siluriformes, and Cypriniformes (Table 2) [43]. The lowest level of
homology was observed with the Anguilliformes (Table 2) [43].

Somatolactin (SL), a specific pituitary hormone belonging to the PRL superfamily,
is involved in environmental adaptation, osmoregulation, reproduction, and fatty acid
metabolism. The cDNA of SL from blue gourami was cloned and subjected to DNA sequence
analysis [44,45]. The partial cDNA sequence of SL was compared to those of other fish
species (Figure 22).
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Table 2. Degree of homology between blue gourami (bp) PRL and PRL of other fish classes.

Species Class/Order Accession no. bgPRL (%)

Perca flavescens

Perciformes

AY332491 79
Dientrarchus labrax X78723 79
Spaurus aurata AF060541 77
Paralichthys olivaceus AF047616 75

Onchorhynchus mykiss
Salmoniformes

M24738 66
Coregonus autummalis Z23114 66
S. salar X84787 66

Heteropneustes fossilis
Siluriformes

AF372653 62
I. punctatus AF267990 62

Hypoththalmichtys molitrix
Cypriniformes

X61052 62
Danio rerio AY135149 61
Cyprinus carpio X12541 61

A. japonica Anguiliformes AY158009 59
A. anguilla X69149 59
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Figure 22. Comparison of cDNA sequences of somatolactin (SL) from blue gourami and various other fish species [44,45].
The phylogenetic tree showing the relationship between SL amino acid sequences compared to those of different teleosts is
presented in Figure 23 [45].
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Figure 23. Phylogenetic tree showing the relationship between SL amino acid sequences from blue
gourami and other fish species. The tree was generated by maximum Clustal W alignment and the
MegAlign program (DNASTAR). All sequences were obtained from NCBI GenBank [44,45]. The
highest degree of homology for SL was between T. trichopterus and the Perciform Perca flavescens and
Cyclopterus lumpus. The lowest level of homology was observed with Anguilla anguilla.

7. Mitochondrial Cytochrome c Oxidase Subunit 1 (COI) Gene as a Variation Marker
for Blue Gourami and Other Anabantoid Fishes

COI is another genetic marker widely used to identify the kinship of fish species
(Figures 24 and 25).
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Figure 24. Phylogenetic tree of the COI-5p gene records of the genus Trichogaster. Twelve nucleotide
sequences from 8 species were retrieved from BoldSystem [46], such that every species is repre-
sented by sequences from unique bins. Tree was constructed using Neighbour-joining method
using Kimura 2 Distance Model, with pairwise deletion and MUSCLE alignment in the MEGA-X
software [47]. A sequence from the genus Ctenops was used as an outgroup. Leaves are marked with
genbank_accession|Bold_bin_id|species. Sequences that belong to the species that appear more than
once in the tree are underlined with the same color. Bins that appear more than once are underlined
with a dotted line.
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Figure 25. Phylogenetic tree of the COI-5p gene records of the order Anabantiformes. Nineteen nucleotide sequences from
different species were retrieved from BoldSystem [46], such that every genus is represented by one sequence. Tree was
constructed using Neighbor-joining method using Kimura 2 Distance Model, with pairwise deletion and MUSCLE alignment
in the MEGA-X software [47]. A sequence from the species Mastacembelus brachyrhinus that belongs to the order Synbranchi-
formes was used as an outgroup. Leaves are marked with genbank_accession |Bold_bin_id|species|genus|subfamily|family.
Sequences that belong to the same taxonomic family are marked with the same color.

8. Discussion

This review presents sequence analysis of genes involved in various growth and repro-
ductive processes that may serve as markers of genetic variation between labyrinth fishes
of the suborder Anabantoidei and other fish species and groups (Summary, Table 3). The
various molecular markers in blue gourami are mitochondrial or nuclear DNA sequences,
but not microsatellites or single-nucleotide polymorphisms. In the present review, most of
the genetic markers were associated with growth (PACAP, GH and PRL) and reproduction
(GnRH1, GnRH2, GnRH3, LH, and FSH). Only two mitochondrial genes (cytochrome b and
12S) were studied. Isozyme markers also have been studied in labyrinth fishes [5]. Thus,
one can compare genomic markers with mitochondrial ones. The similarity of cytochrome b
sequence between labyrinth and other fish species was between 86% and 46%, and of the
12S rRNA gene, between 91% and 40%. Sequence similarities between the blue gourami
and other fish species for the hormone-encoding genes seemed to be lower than for the
mitochondrial genes (Table 3). Among the genes involved in controlling growth and repro-
duction, those with the highest sequence similarity between species were those from the
HPS axis. The findings based on DNA sequence comparison presented in this review are
in agreement with many other studies [1–8,48,49]. All of the tested genes in blue gourami
had high similarity to their counterparts in other fishes in the order Perciformes, to which
the blue gourami belongs [10], and some of them can be useful as genetic markers in other
classes of fish.
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Table 3. Degree of nucleotide sequence similarity (%) of blue gourami (Trichogaster trichopterus) to different species [2,32,35,36,41,43].

Cytochrome b Mitochondrial
RNA 12S Gene

Growth
Hormone Prolactin PACAP GnRH1 GnRH2 GnRH3

Trichopterus trichopterus
(gold) 100%

Trichogaster trichopterus
(gold) 100%

Lates calcarifer
84%

Perca flavescens
79%

Oreochromis mossambicus
94%

Thunnus thynnus
74.3%

Epinephelus bruneus
78.5%

Dicentrar chus labrax
77.4%

Colisa lalia
86.6%

Trichogaster leeri
91.4%

Seriola dumerili
84%

Dicentrarchus labrax
79%

Gadus morhua
97.4%

Epinephelu sruneus
72.3%

Verasper variegatus
74.9%

Pagrus major
70.2%

Trichogaster leerii
86.0%

Colisa lalia
88.4%

Sparus aurata
83%

Sparus aurata
77%

Takifugu rubripes
97.4%

Verasper variegatus
70.5%

Paralichthys olivaceus
73.4%

Cynoscion nebulosus
58.1%

Trichogaster labiosus
85.6%

Betta betta
82.6%

Acanthopagrus butcheri
82%

Paralichthys olivaceus
77%

Haplocho misburtoni
97.4%

Oreochromis niloticus
68.2%

Thunnus thynnus
72.8%

Rachycentron canadum
57.7%

Macropodus opercularis
81.6%

Colisa chuna
41.4%

Oreochromis niloticus
79%

Onchorhynechus mykiss
66%

Epinephelu soioides
97.4%

Morone saxatilis
62.6%

Morone saxatilis
72.2%

Micropog onias undulates
57.5%

Cyprinus carpio
77.9%

Trichogaster pectoralis
40.5%

Morone saxatilis
79%

Coregonus autumnalis
66%

Fundulus heteroclitus
60.8%

Odontesthes bonariensis
65.2%

Sciaenops ocellatus
57.5%

Betta betta
58.9%

Cternopoma setherici
41.1%

Caranx delicatissimus
74%

Salmo salar
66%

Mugil cephalus
59%

Mugil cephalus
65%

Salmo salar
76.9%

Macropodus opercularis
41.1%

Oncorhynchus tshawytscha
69%

Heteropneustes fossilis
62%

Coregonus clupeaformis
54.2%

Fundulus heteroclitus
61.8%

Trichogaster fasciatus
46.2%

Osphronemus goramy
40.5%

Salmon salar
68%

Ictalurus punctatus
62%

Odontesthes bonariensis
22.6%

Coregonus clupeaformis
59.6%

Pangasius pangasius
64%

Hypophthalmi chthys molitrix
62%

Pangasinodon gigas
64%

Danio rerio
61%

Cyprinus carpio
64%

Cyprinus carpio
61%

Carassius auratus
63%

Anguilla japonica
59%
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For example, the cytochrome b sequence was used to study genetic variation of the
genus Capoeta and specifically the species C. damascina [49,50]. C. damascina is one of the
most common freshwater fish species found in a wide range of isolated water bodies
throughout the Levant, Mesopotamia, Turkey, and Iran. Prior to these studies, C. damascina
was not a well-defined species. Likewise, the COI gene is widely used in assessing genetic
variation in both geographical distribution and aquaculture contexts [51,52]. This gene is
suitable for the separation of different species belonging to the genus Trichogaster, but not
of the order Anabantiformes (Figures 23 and 24).
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