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Simple Summary: Infectious diseases have been part of human history. Countless epidemics have
produced high mortality rates in vulnerable populations. With the understanding of the spread of
these types of diseases, population groups have been able to adapt and better cope with infections.
Given the COVID-19 pandemic, one of the strategies used is the modeling of infectious diseases with
the aim of establishing protection measures for people and stopping the spread of the epidemic. Our
study evaluates protection strategies through infectious disease modeling with COVID-19 data in
a commune in Chile. The results of the simulations indicate that the model generates important
protection for the population by recognizing the super-propagating people (bridge nodes). This type
of protection can be key in the fight against COVID-19.

Abstract: Among the diverse and important applications that networks currently have is the model-
ing of infectious diseases. Immunization, or the process of protecting nodes in the network, plays a
key role in stopping diseases from spreading. Hence the importance of having tools or strategies
that allow the solving of this challenge. In this paper, we evaluate the effectiveness of the DIL-Wα

ranking in immunizing nodes in an edge-weighted network with 3866 nodes and 6,841,470 edges.
The network is obtained from a real database and the spread of COVID-19 was modeled with the
classic SIR model. We apply the protection to the network, according to the importance ranking
list produced by DIL-Wα, considering different protection budgets. Furthermore, we consider three
different values for α; in this way, we compare how the protection performs according to the value
of α.

Keywords: edge-weighted graph; SIR model; graph protection; COVID-19

1. Introduction

Infectious diseases have been the focus of multiple fields of research. In public health
and epidemiology, efforts are directed at establishing transmission dynamics, the character-
istics of infectious agents, and the populations most affected by pathogens, among others,
which are of high importance for science [1]. In recent decades, research on infectious dis-
eases has involved the application of complex theories from mathematics and engineering.
In particular, the use of network models has allowed explanations of the spread of diseases
from infected people (nodes) and their links with others (edges) [2].

Network models establish the connection between population groups, which is useful
not only in the field of public health or epidemiology, but also in engineering and social
sciences [3] (see [4–8]). In the health field, being a theoretical approach, the importance
of recognizing the complexities of community structures has been discussed in order
to understand social dynamics in the spread of infectious diseases [9]. For example,
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Magelinski et al. developed a model to estimate the role played by certain nodes in
community structures [10], while Ghalmane et al. included the dimension of centrality in
complex networks [11].

Regarding the COVID-19 pandemic, a series of models have been developed which
allow the projection and establishment of the progress of this infectious disease based on
the data available from different information sources (see, for instance, [12]). In this sense,
Manríquez et al. propose the use of weighted graphs at the edges, giving the network
model, from a stochastic approach, the possibility of identifying the most important vari-
ables in the spread of COVID-19 with real data in a city in Chile [13]. The same authors,
in order to classify the importance of the nodes, propose the generalization of the measure
of importance of the line with the use of degree of centrality (DIL-Wα), improving the
understanding of the network from a local perspective [14].

On the other hand, the same network models have served to search for protection
strategies for populations, generally related to the processes of immunization or isolation
of people (see [15–20]).

Scientific evidence supports immunization strategies being useful in both homoge-
neous and heterogeneous networks [21]. The strategies seek, first, to develop a dynamic
experimental model that includes the classic compartmental systems in epidemiology (SIR,
SEIR, SIS, among others) and then to establish immunization measures across the nodes.
Immunization measures can be applied in static and dynamic networks, in a random or
targeted immunization [22].

Random immunization refers to random strategies, without determining a particular
population in the protection process [23]. In contrast, targeted immunization recognizes
nodes with a higher degree of connection with other nodes [24]. Nian et al. conclude,
through computational simulations in a free scale graph (Model BA), that targeted im-
munization is more effective than randomized [21]. In the same direction, Wang et al.
conclude that, even if the immunization strategy is imperfect or incomplete, it manages
to generate positive impacts on the protection of the network [25]. Another investigation
by Xia et al. determined that targeted immunization in two rounds of selection provides a
greater protective effect compared to progressive strategies [24].

According to the above, a study conducted by Ghalmane et al. proposed an immuniza-
tion strategy considering the influence of the nodes, the number of communities and the
links between them [26]. Along the same lines, Gupta et al. analyzed the importance of pro-
tection strategies using information from community networks [27]. Since edge-weighted
graphs have been an important way of understanding epidemic diseases, Manríquez et al.
measure the effectiveness of DIL-Wα with the recognition of bridge nodes. The effectiveness
of DIL-Wα is high compared to other proposals on four real networks [28].

For all the above, studies that include immunization measures together with com-
munity/local network models are highly relevant for public health, both for establishing
measures to mitigate epidemic diseases and for the development of vaccination optimiza-
tion policies to more quickly achieve herd immunization and, therefore, overcome diseases
such as COVID-19. This is supported by Zhao et al., who argue that this framework allows
for the optimization of immunization resources [29].

This study aims to analyze the protection effect against COVID-19 using the DIL-Wα

ranking with real data from a city in Chile (Olmué-City), obtained from the Epidemiological
Surveillance System of the Ministry of Health of Chile, from which we obtain an edge-
weighted graph, denoted by GE , according to the method proposed in [13]. We apply
the protection to the GE network, according to the importance ranking list produced by
DIL-Wα, considering different protection budgets. For the ranking DIL-Wα, we consider
three different values for α; they are 0, 0.5 and 1. In this way, we compare how the
protection performs according to the value of α. We use a graph-based SIR model, namely,
each individual is represented by a vertex in GE . At time t, each vertex vi is in a state
vt

i belonging to S = {0, 1,−1}, where 0, 1 and −1 represent the three discrete states:
Susceptible (S), Infected (I) and Recovered or Removed (R). Five hundred simulations were
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performed on GE ; the initial population contains one infected node and all the simulations,

considering δ =
1

15
(recovered rate).

This paper is organized as follows: Section 2 contains generalities about graph theory,
includes a graph from a database, and the DIL-Wα ranking is explained. In Section 3, we
obtain the graph from a real database from a city in Chile (Olmué-City), and we set the
protection strategy. In Section 4, the results of the study are presented. Section 5 provides a
discussion of the results and potentialities of the method used. Finally, Section 6 provides
the conclusions.

2. Basic Definitions

In this section, we establish the definitions and elements used throughout this paper.
We summarize the symbols and notations in Table 1.

Table 1. Summary of Symbols and Notations.

Notations Definition and Description

G Graph or network.
(G, w) Edge-weighted graph.

vi Vertex or node.
N(vi) Neighborhood of a vertex v.

eij Edge between vertex vi and vertex vj.
wij Weight of the edge eij.

deg(vi) Degree of the vertex vi.
S(vi) Strength of the vertex vi.

α Real number. Tuning parameter.
Cwα

D (vi) Degree centrality of vi ∈ V of an edge-weighted graph (G, w).
DIL-Wα Ranking based on Degree and importance of line.
Iα(eij) Importance of edge eij.

Wα(eij) Contribution that vi makes to the importance of the edge eij.
Lα(vi) The importance of a vertex vi.
E Database.
Xk Variable of a database.
pk Weight of the variable Xk.
k Protection budget (the number of nodes in graph G that can be protected).
σ Ratio of surviving nodes.

2.1. Graphs

The following definitions come from [30,31].

Definition 1. A graph G is a finite nonempty set V of objects called vertices, together with a
possibly empty set E of 2-element subsets of V called edges.

To indicate that a graph G has vertex set V and edge set E, we write G = (V, E). If the
set of vertices is V = {v1, v2, . . . , vn}, then the edge between vertex vi and vertex vj is
denoted by eij.

If eij is an edge of G, then vi and vj are adjacent vertices. Two adjacent vertices are
referred to as neighbors of each other. The set of neighbors of a vertex v is called the open
neighborhood of v (or simply the neighborhood of v) and is denoted by N(v). If eij and ejk
are distinct edges in G, then eij and ejk are adjacent edges.

Definition 2. The number of vertices in a graph G is the order of G and the number of edges is the
size of G.
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Definition 3. The degree of a vertex v in a graph G, denoted by deg(v), is the number of vertices
in G that are adjacent to v. Thus, the degree of v is the number of vertices in its neighborhood N(v).

Definition 4. Let G be a graph of order n, where V(G) = {v1, v2, . . . , vn}. The adjacency matrix
of G is the n× n zero-one matrix A(G) = [aij], or simply A = [aij], where

aij =

{
1 if eij ∈ E(G)

0 if eij /∈ E(G).

On the other hand, an important generalization of the simple graph consists of the
definition of a weighted graph, more specifically an edge-weighted graph. Informally,
an edge-weighted graph is a graph whose edges have been assigned a weight.

Definition 5. An edge-weighted graph is a pair (G, W), where G = (V, E) is a graph and
W : E→ R is a weight function. If eij ∈ E then W(eij) = wij.

Definition 6. The strength of a vertex vi, denoted by S(vi), is defined as the sum of the weights of
all edges incident to it, this is to say,

S(vi) = ∑
vj∈N(vi)

wij.

The following definition comes from [32].

Definition 7 (Degree centrality [32]). The degree centrality of vi ∈ V of an edge-weighted graph
(G, w), denoted by Cwα

D (vi), is defined as

Cwα
D (vi) = deg(vi)

(1−α) · S(vi)
α, (1)

where α ∈ [0, 1].

The parameter α is called the tuning parameter. Notice that, when α = 0, then Cwα
D (vi) =

deg(vi) and, when α = 1, then Cwα
D (vi) = S(vi).

2.2. DIL-Wα Ranking

We briefly describe the DIL-Wα ranking in this Section. The DIL ranking is a tool
for evaluating the node importance based on degree and the importance of lines (DIL)
proposed by Liu et al. in [33] for an undirected and unweighted network. Recently,
Manríquez et al. in [14] propose DIL-Wα rank. This ranking method of node importance
for undirected and edge-weighted is a generalization of the measure of line importance
(DIL) based on the centrality degree (Definition 7) proposed by Opsahl in [32].

The following comes from [14].
Let us consider an undirected weighted graph (G, w) with G = (V, E) and V =

{v1, v2, . . . , vn}.

Definition 8 (Importance edge [14]). The importance of an edge eij ∈ E, denoted by Iα(eij), is
defined as

Iα(eij) =

(
Cwα

D (vi)− pα
i
)
·
(

Cwα
D (vj)− pα

j

)
λα

,

where, for k ∈ {i, j}, pα
k = (p + 1)(1−α) · tα

k with p being the number of triangles, one edge of the
triangle is eij, tα

k is the weight of the sum of the edges incident to vk that form a triangle with eij and

λα =
p(1−α) ·

(
ti + tj

)α

2
+ 1.
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In order to illustrate the above Definition, let us consider the edge-weighted graph in
Figure 1. Moreover, we consider the edges e78 and e75. Notice that they both have the same
weight (three). For this example, we set α = 1. Applying Definition 7, we get:

Cw1
D (v7) = deg(v7)

(1−1) · S(vt)
1 = 1 · 12 = 12 and

Cw1
D (v5) = deg(v5)

(1−1) · S(vt)
1 = 1 · 8 = 8.

From Definition 8:

p1
7 = (1 + 1)(1−1) · tα

7 = 20 · 21 = 2,

p1
5 = (1 + 1)(1−1) · tα

5 = 20 · 11 = 1, and

λ1 =
1(1−1) · (2 + 1)1

2
+ 1 =

5
2

.

Therefore,

I1(e75) =

(
Cw1

D (v7)− p1
7
)
·
(
Cw1

D (v5)− p1
5
)

λ1

=
(12− 2) · (8− 1)

3
2 + 1

= 28.

In the same way with the edge e78, we obtain

I1(e78) = 96.

In conclusion, edge e68 is more important than edge e75.
The latter is reasonable because the edge e78 is a bridging edge of the graph.

Figure 1. Simple graph.

Definition 9 (Contribution [14]). The contribution that vi ∈ V makes to the importance of the
edge eij, denoted by Wα(eij), is defined as

Wα(eij) = Iα(eij) ·
Cwα

D (vi)− wα
ij

Cwα
D (vi) + Cwα

D (vj)− 2wα
ij

,

where wij is the weight of eij.
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We have calculated the importance of the edge e78 of the graph in Figure 1. The contri-
bution that v7 makes to it is given by Definition 9:

W1(e78) = I1(e78) ·
Cw1

D (v7)− w1
78

Cw1
D (v7) + Cw1

D (v8)− 2w1
78

= 96 · 12− 3
12 + 8− 2 · 3

=
432
7

.

In the same way, the contribution that v8 makes to I1(e78) is:

W1(e87) = I1(e78) ·
Cw1

D (v8)− w1
78

Cw1
D (v7) + Cw1

D (v8)− 2w1
78

= 96 · 8− 3
12 + 8− 2 · 3

=
240
7

.

The above means that the node v7 contributes more to the edge e78 than node v8.

Definition 10 (Importance of vertex DIL-Wα [14]). The importance of a vertex vi ∈ V, denoted
by Lα(vi), is defined as

Lα(vi) = Cwα
D (vi) + ∑

vj∈N(vi)

Wα(eij).

Remark 1. From the definition of Degree centrality (Definition 7) proposed by Opsahl in [32], we
can see that, when the tuning parameter α is 0, the Definitions 8–10 are the same than the proposed
by Liu et al.

In order to illustrate the above Definition, we compute the importance of v7 and v8 in
the graph of Figure 1.

L1(v7) = Cw1
D (v7) + ∑

vj∈N(v7)

W1(e7j)

= 12 + W1(e71) + W1(e72) + W1(e73) + W1(e74) + W1(e75) + W1(e78)

= 12 + 12 + 12 + 24 +
75
7

+ 18 +
432
7

= 78 +
507
7

=
1053

7
,

and

L1(v8) = Cw1
D (v8) + ∑

vj∈N(v8)

W1(e8j)

= 8 + W1(e87) + W1(e8,10)

= 8 +
240

7
+

136
5

= 8 +
2152
35

=
2432

35
.
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Since L1(v7) < L1(v8), then node v7 is more important than node v8 (according to
DIL-W1 ranking).

2.3. Graph from a Database

The authors of [13] provide a way to obtain an edge-weighted graph from a database,
which we briefly detail.

Let V = {v1, v2, . . . , vN} be a set of people registered in a database, denoted by E ,
with K different variables, denoted by Xk. These variables are separated into two categories:
the characteristic variables (CHAR) and the relationship variables (REL) (which are those
that allow us to assume that some person meets another). Let us denote by K1 the number
of relationship variables and EPI(i, k) the response of the person vi to the variable Xk.

Definition 11. We will say that a person vi is related to a person vj if and only if there exists
Xk ∈ REL for k ∈ {1, 2, . . . , K1} such that EPI(i, k) = EPI(j, k) and i 6= j.

To define the weight of each link between two persons, we assume that each X ∈
REL has an associated inherent weight, this is to say, it is possible to discriminate some
hierarchical order between the variables. Let pk be the weight associated to the variable
Xk ∈ REL for k = 1, . . . , K1.

Definition 12. We will say that for Xj,Xt ∈ REL, Xj is related to Xt, denoted by XjRXt, if and
only if pj = pt.

Definition 13. Let A1, A2, . . . , Ac be the different classes that are defined by the different weights
p1, p2, . . . , pc and α1, α2, . . . , αc and its respective cardinalities. Hence,

pj =
αj

K1
, (2)

for all j ∈ {1, 2, . . . , c}.

We denoted by hi,j the number of times that one person is related to another (or the
number of variables that matches between them).

Definition 14. Let vi, vj ∈ V be such that vi is related to vj and pkr is the weight of the variable
in which vi and vj match, for r = 1, . . . , hi,j. We will say that

w̃ij =

hi,j

∑
r=1

pkr , (3)

is the weight of the link between vi and vj.

Finally, the weighted adjacency matrix, which defines the graph obtained from the
database, is the n× n matrix A(G) = [aij], where

aij =

{
w̃ij if eij ∈ E(G)

0 if eij /∈ E(G).

Example 1. In the following example, Table 2 simulates a database with 20 registered people.
The data hosted correspond to the city in which they live (City), the workplace (considering school
and university as a workplace), gender (Gen.), age, extracurricular activity (EC activity), address,
whether they drink alcohol (Drin.), whether they are smokers (Sm.) and marital status (MS). Let
us consider A and B as two different cities, and x, y, z, w, u, v, r, s, q, t, p, k, d, g and h as different
people’s addresses. Moreover, in the table, Y = Yes, N = No, IC = in couple, M = married, S = single,
W = widower.
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Table 2. Database E .

Person City Workplace E. C. Activity Address Sm. Dri. Gen. M. S Age

1 A Workplace 1 Theater y Y Y F IC 35
2 A Workplace 3 Cinema y Y Y M IC 35
3 B School B Football z N N F S 10
4 B Workplace 1 Photography x N N F M 48
5 A Workplace 5 Does not have u Y N F W 65
6 A Workplace 4 Does not have v Y Y M IC 27
7 B Workplace 2 Does not have x Y N M M 46
8 A University 1 Photography v N N M IC 29
9 A University 2 Does not have w Y Y M IC 19

10 B School B Karate x N N M S 10
11 A Workplace 4 Ping-pong r Y Y F M 54
12 A School A Football s N N M S 8
13 A Workplace 5 Dance r Y Y F M 57
14 B School A Handball q N N M S 11
15 A University 1 Does not have t N N F S 25
16 A Workplace 7 Singing p Y Y F S 60
17 A Workplace 8 Music k N Y F S 28
18 A Workplace 3 Does not have d N N M S 47
19 B School A Music g N N F S 8
20 A Workplace 6 Does not have h Y Y M S 30

From Table 2, we have that EPI = {X1,X2,X3,X4,X5,X6,X7,X8,X9}, where X1 = City,
X2 = Workplace, X3 = E.P. activity, X4 = Address, X5 = Sm., X6 = Dri., X7 = Gen., X8 =
M.S. and X9 = Age. Then, we obtain the sets:

1. REL = {X1,X2,X3,X4} and
2. CHAR = {X5,X6,X7,X8,X9}.

In our criteria, the hierarchical order of the variables X1,X2,X3,X4 in descending form is
X4,X2,X3, and X1. Moreover, we consider that the variables X4 and X2 have the same weight.
Hence, A1 = {X2,X4}, A2 = {X3}, and A3 = {X1} are the different classes that are defined by
the different weights. Hence, by Definition 13

p1 =
1
2

, p2 =
1
4

, p3 =
1
4

.

To construct the graph, we must resort to Definition 11. For instance, person 17 is related
to all the people who live in city A or who work at Workplace 8 or who have music as an extra
curricular activity or whose address is k. With respect to the weights of the edges, Equation (6) in
Definition 14 gives us the answer. For instance, person 6 matches person 11 in the answers of the
variables X1 and X2, this is to say, both people live in city A and have the same workplace. Then,
the edge v6v11 has weight w6 11 = 0.5 + 0.25 = 0.75. Figure 2 shows the obtained graph.
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Figure 2. Graph obtained from E .

3. Method

The data that are modeled correspond to the city of Olmué (Valparaíso region, Chile)
and were obtained from the database of the Epidemiological Surveillance System of the
Ministry of Health of Chile, which included the notified cases (positive or negative) and
their contacts from 3 March 2020 to 15 January 2021 with a total of 3866 registered persons.

We denote by Epi the database of the Epidemiological Surveillance System of the
Ministry of Health of Chile. From the total of variables included in Epi (K = 279) 7 of them
are relationship variables (K1 = 7). They are: full address (X1); the street where the people
live (X2); town (X3); place of work (X4); workplace section (X5); health facility where they
were treated (X6) and the region of the country where the test was taken to confirm, or not,
the contagion (X7).

In our criteria, the hierarchical order of the seven variables in descending form is
X1,X2,X3,X4,X5,X6,X7. Moreover, we consider that the variables X1,X2 and X3 have the
same weight. In the same way, we also consider the variables X4 and X5 with equal weight.
Hence, A1 = {X1,X2,X3}, A2 = {X4,X5}, A3 = {X6} and A4 = {X7} are the different
classes that are defined by the different weights. Hence, by Definition 13.

p1 =
3
7

, p2 =
2
7

, p3 =
1
7

, p4 =
1
7

.

Figure 3 shows the obtained graph.

Figure 3. Graph obtained from database of Olmué city, Chile, with 3866 vertices and 6,841,470 edges.
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Let us denote by GE the graph obtained from database Epi.

Strategy Protection

In this section, we provide definitions of the protection of a graph when disease
spreads on it. Moreover, we state the protection strategy used in the graph GE obtained in
the previous Section. The following definitions come from [28].

Definition 15. Protecting a vertex means removing all of its corresponding edges. (See Figure 4).

It is also possible to find in the literature that protecting a vertex means removing the
vertex from the graph. See, for instance, [20].

Figure 4. The left side shows a graph without protection or infection. On the right side, we see an
infected node (red) and a protected node (blue) in the same graph.

Definition 16. The number of vertices that are allowed to protect is called the protection budget,
denoted by k.

Definition 17. We will say that the survival rate, denoted by σ, is the ratio of vertices that remain
uninfected at the end of the disease over the total numbers of vertices.

Therefore, our problem is: given a graph G = (E, V), SIR model, and a protection
budget k, the goal is to find a set of vertices S ⊆ V, such that

θ∗ = arg max
S⊆V

σ, (4)

with |S| = k. However, the problem (4) is NP-Hard (see [34]).

Our chosen protection strategy corresponds to the DIL-Wα ranking (see [14]). It is well
known that an index to measure the connection of a graph is the efficiency of the networks
(see [35]). High connectivity of the graph indicates high efficiency. In [14], the authors show
that the DIL-Wα ranking provides good results regarding the rate of decline in network
efficiency (for more detail see [36]), when it comes to eliminating the best positioned nodes
by this ranking. One of the good qualities of the DIL-Wα ranking is that it recognizes the
importance of bridge nodes (see more in [37]). This quality is inherited from the version
of the DIL ranking for graphs not weighted at the edges (see [33]). Furthermore, [28]
evaluated the effectiveness of the DIL-Wα ranking in the immunization of nodes that
are attacked by an infectious disease that spreads on an edge-weighted graph using a
graph-based SIR model.

Finally, in order to illustrate in a simple way why the DIL-Wα ranking has been chosen,
let us consider the graph of Figure 5 with 16 edges, 15 nodes, and the respective weights
on the edges. When we apply the DIL-W1 ranking, the first 3 places are occupied by nodes
3, 5 and 1, respectively. These nodes are precise bridge nodes and, when protecting them,
according to Definition 15, the graph loses connectivity (see Figure 6). If we apply the
Strength ranking, the first three places are occupied by nodes 3, 1 and 4, respectively. Note
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that the order in which it positions the nodes and the importance it gives to node 4 makes
the loss of network connectivity lower than the loss when applying DIL-W1 (see Figure 6).

Figure 5. Graph with 15 nodes, 16 edges, and the respective weights.

Figure 6. In the left, the first 3 protected places generated by the DIL-W1 ranking. On the right,
the first 3 protected places generated by Strength ranking.

In summary, we apply the protection to the GE network, according to the importance
ranking list produced by DIL-Wα, considering different protection budgets. For the ranking
DIL-Wα, we consider three different values for α; they are 0, 0.5 and 1. In this way, we
compare how the protection performs according to the value of α.

4. Results

In this paper, we use a graph-based SIR model in the same way as in [13,28], namely,
each individual is represented by a vertex in GE . At time t, each vertex vi is in a state
vt

i belonging to S = {0, 1,−1}, where 0, 1 and −1 represent the three discrete states:
Susceptible (S), Infected (I) and Recovered or Removed (R). We set

NI(vi) = {v ∈ N(vi) : v ∈ I}. (5)

At time t + ∆t, the vertex vi will change state according to probabilistic rules:

1. The probability (PI(vi)) that a susceptible vertex vi is infected by one of its neighbors
is given by

PI(vi) = ∑
vj∈NI(vi)

ρ∆t · wij, (6)

where ρ is a purely biological factor and representative of the disease and wij is the
weight of the edge eij.
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2. The probability (PR(vi)) that an infected vertex vi at time t will recover is given by

PR(vi) = δ∆t, (7)

where δ is the recovery rate.

Moreover, we assume that the disease is present for a certain period of time and that,
when individuals recover, they are immune, that is, reinfection is not considered.

The initial population contains one infected node and all the simulations that consider

δ =
1
15

. Five hundred simulations were performed on GE with ρ = 0.00121. Figure 7
shows the average infected curve and the real infected data in Epi. Moreover, it shows a
curve fitted to the data following the SIR model; for this, we used the classic method of
least squares to compare with our proposal.

Figure 7. Real infected data (black), fitted curve (red), and infected curve obtained in the spread on
GE (cyan).

The graph GE was protected with different protection budgets according to the impor-
tance of the DIL-W0, DIL-W0.5 and DIL-W1 rankings. Protection is carried out in week 1,
this is to say, at the beginning of the spread of the disease. Figure 8 shows the results.

We can see the survival rate in Figure 9.
Figure 10 shows the relationship between the real infected (450 people) and those

immunized according to our proposal.
We can see that 80% of the real infected are located in 60% of the top ranked according

to DIL-Wα. We think that this is a way to recognize those who will get sick; however, it is
not the solution.

Another element that we have considered investigating is the time at which the
protection takes place. We modified the protection in the graph as the weeks advanced.
In Figure 11, we can see the different infected curves, considering the 10% protection
according to the DIL-Wα ranking.

Figure 12 shows the relationship between the survival rate and the week in which the
protection is carried out with our proposal.

The survival rate is clearly decreasing.
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Figure 8. Infected curves obtained according to different values of k.
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Figure 9. Survival rate of each ranking.

Figure 10. Relationship between the real infected and those immunized according to the different
DIL-Wα ranking.

Figure 11. Cont.
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Figure 11. The different infected curves, considering the 10% protection according to the DIL-Wα

ranking and carried out in different weeks.
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Figure 12. Survival rate of each ranking.

5. Discussion

The results of the present investigation are directed towards the analysis of the effec-
tiveness of immunization using the DIL-Wα ranking with real COVID-19 data from the
city of Olmué-in Chile. Depending on the importance of the rankings, the immunization
results were similar, despite the percentage of protection proposed in the simulations. Our
method, therefore, goes in the direction of finding new optimization algorithms in network
protection strategies [38].

At the level of protection, it is evident that when the percentage of initial coverage is
higher, the epidemic ends with a smaller fraction of people affected by COVID-19. This
event is related not only to the random increase in immunization, but also to the possibility,
in the model, of recognizing the bridge nodes to increase the effectiveness of vaccination.
This is consistent with other investigations that indicate that the recognition of central
nodes or high-risk individuals improves the efficiency of immunization strategies in real
networks, a situation that favors the protection of the network and the best use of vaccine
doses [39,40]. The best use of doses is a challenge for the current scenario of vaccine
shortages worldwide, mainly in poor nations [41].

On the other hand, the level of effectiveness of the DIL-Wα ranking, given the per-
centage of protection, is established in the recognition of the bridging nodes in a regular
vaccination process. The results using the α parameters of DIL-Wα indicate a high survival
rate. DIL-W1 achieves better results with 70% protection and is positioned with the best
survival rate, but DIL-W0 and DIL-W0.5 show good results. The difference between the
different values of α is marginal and can be explained by the adequate representation that
the DIL-Wα model has and by the values of α, which do not generate excessive differences
in the ranking. This is similar to the results of the research by Ophsal et al. who, through
Freeman’s EIES network, mention that the centrality degree (Definition 7) is relatively
stable among the different α parameters [32].

In a real and regular immunization strategy situation, such as the administration
of vaccines, determining the population that infects most frequently is relevant since it
allows optimization of these processes. Among our findings, it stands out that 80% of
the real infected in the Olmué-Chile commune were located in 60% of the top of the DIL-
Wα ranking. Consequently, our proposal recognizes the heterogeneity of the network,
approaching the reality of human interactions and achieving similar results in complex
homogeneous networks [40].

Regarding immunization with 10% protection, a decrease in the survival rate is
established by 4% from weeks 5 to 45 of protection. Likewise, with the same percentage of
protection, the effectiveness of the immunity strategy tends to be important until week 20.
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After 20 weeks, the fraction of infected is similar with or without protection. Consequently,
our model is strongly effective as a measure of rapid recognition of the epidemic outbreak
in a given territory.

Therefore, according to the findings of our research, there are two important variables
for the success and effectiveness of immunity strategies against COVID-19: (1) Recognition
of bridging nodes (people with the highest probability of contagion) to apply measures of
protection; and (2) the development time of this strategy.

Regarding the recognition of bridging nodes, there is evidence to support that targeted
immunization schemes significantly reduce epidemic outbreaks [42]. This opens the
possibility of changing the traditional perspective of immunization by protecting a small
proportion of the population over a long period of time [43]. It is important, therefore,
not only to direct COVID-19 immunity efforts towards the population most affected by
mortality, but also in those population groups that tend to infect with greater force.

The time of development of the immunization strategy continues to be a variable
under discussion in the scientific community regarding the slowness worldwide of the
vaccination process, which risks not achieving herd immunity [44]. In summary, both at a
theoretical and empirical level, the execution time of immunization strategies is important
in overcoming the COVID-19 pandemic.

Finally, our model helps to establish a ranking of bridge nodes in a non-homogeneous
network, so it is highly replicable with real COVID-19 dissemination data and it is useful
to establish more focused strategies given the reduced number of vaccines available.

6. Conclusions

In this paper, we evaluate the effectiveness of the DIL-Wα ranking in the immunization
of nodes that are attacked by an infectious disease (COVID-19) that spreads on an edge-
weighted graph obtained from the database of the Epidemiological Surveillance System of
the Chilean Ministry of Health, using a graph-based SIR model.

Considering survival rates, the DIL-W1 ranking performs better (by a small margin)
than DIL-W0.5 and DIL-W0 rankings, subject to the protection budget being equal to 10%
of the network nodes.

The period in which immunization or protection is given plays a key role in stopping
the spread of the disease (see Figure 11) since around week 25 immunization does not
generate a great impact and as time progresses the survival rate decreases almost linearly.

An interesting and complex task to solve is to determine which value of α to choose
in the network so that the ranking generated is the optimal one. The same value does not
always make the performance the best. One way to explore this is to continue with the
ideas proposed in [45], where the selection standard of the optimal turning parameters
is proposed for the centrality degree, but is not for DIL-Wα ranking. However, when
considering this method, there are as many rankings as there are numbers between 0 and 1.
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