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Simple Summary: Regulatory SNPs (rSNPs) are SNPs located within promoter regions that have a
high potential to alter gene expression by changing the binding affinity of transcription factors to
their binding sites. Such rSNPs are gaining importance in the life sciences due to their causality for
specific traits and diseases. In this study, we present agReg-SNPdb, the first database comprising
rSNP data of seven agricultural and domestic animal species: cattle, pig, chicken, sheep, horse, goat,
and dog, and made it usable via a web interface.

Abstract: Transcription factors (TFs) govern transcriptional gene regulation by specifically binding
to short DNA motifs, known as transcription factor binding sites (TFBSs), in regulatory regions, such
as promoters. Today, it is well known that single nucleotide polymorphisms (SNPs) in TFBSs can
dramatically affect the level of gene expression, since they can cause a change in the binding affinity
of TFs. Such SNPs, referred to as regulatory SNPs (rSNPs), have gained attention in the life sciences
due to their causality for specific traits or diseases. In this study, we present agReg-SNPdb, a database
comprising rSNP data of seven agricultural and domestic animal species: cattle, pig, chicken, sheep,
horse, goat, and dog. To identify the rSNPs, we constructed a bioinformatics pipeline and identified
a total of 10,623,512 rSNPs, which are located within TFBSs and affect the binding affinity of putative
TFs. Altogether, we implemented the first systematic analysis of SNPs in promoter regions and their
impact on the binding affinity of TFs for livestock and made it usable via a web interface.

Keywords: single nucleotide polymorphism; regulatory SNP; transcription factor; transcription
factor binding site; gene regulation; database; agricultural animal species; livestock

1. Introduction

The transcriptional regulation of gene expression in higher organisms is essential for
various biological processes. In contrast to the process of translation, the transcriptional
machinery and its regulatory mechanisms are far from being deciphered [1]. These mech-
anisms are mainly governed by a special class of regulatory proteins, the transcription
factors (TFs), and their combinatorial interplay [2,3]. TFs regulate the transcription as a
response to specific environmental conditions by binding to short degenerate sequence
motifs known as transcription factor binding sites (TFBSs) in promoter regions of their
target genes and, thereby, enhance or repress gene transcription. Genomic variations, such
as single nucleotide polymorphisms (SNPs), define and characterize specific populations
or phenotypes and are, hence, used as markers in animal and plant breeding.

Due to the decreasing costs for whole genome sequencing, an increasing number of
variants is detected followed by association studies statistically linking SNPs to specific
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traits or diseases. However, the identification of causal variants and the elucidation of
their regulatory roles is proceeding at a slow rate [4,5]. Today, it is well known that most
disease- and trait-associated SNPs are not located within the coding regions of genes but
in non-coding regions [6–9]. SNPs that are located in regulatory regions can alter TFBSs
leading to a change in the binding affinity of TFs and, in extreme cases, even result in
the disruption of a TFBS or the creation of a new TFBS (Figure 1) and, thus, affect gene
expression. Such SNPs are referred to as regulatory SNPs (rSNPs) [10–12].

Figure 1. Scheme of the disruption of transcription factor (TF) binding due to a regulatory SNP. The
TF can bind to the reference (REF) sequence while it does not bind to the alternate (ALT) sequence (C
instead of A at position 7).

The importance of rSNPs has been studied extensively in humans and they are found
to have a causal role for numerous traits and diseases [13–16]. A recent review on human
rSNPs summarizes different rSNP studies [6]. Due to the great interest in rSNPs, several
tools and databases for the analysis of the effects of SNPs on regulatory elements, e.g.,
TFBSs, have been developed for humans or certain model organisms. Five recent studies
are summarized in Table 1, and a comprehensive overview is given in Table S1.

Recently, rSNPs are gaining attention in life sciences and animal breeding since
they can be causal for specific traits and diseases and could, hence, serve as new targets
for breeding. For this reason, several studies investigated the critical role of rSNPs in
agriculturally important species, such as cattle [17–23], pig [24–26], and chicken [27–29]. As
these studies were focused on the regulatory role of SNPs for a single trait of interest, they
were highly case-specific. Thus, there still exists a lack of systematic analyses of the effects
of rSNPs in agricultural species, and, until now, only a few existing tools and databases
(DBs) are available for livestock.

MotifbreakR [30] and atSNP [11] are both R packages that principally include all
organisms stored in the Bioconductor BSGenome package [31]; however, they require the
user to supply the SNP and TFBS data (represented by position weight matrices (PWMs)),
and experience in R programming is essential. The Ensembl Variant Effect Predictor
(VEP) [32] stores data from experimentally supported and published rSNPs. Due to the
lack of experimentally supported data of regulatory elements in livestock, the VEP mainly
contains data of regulatory elements and variants for human and mouse. Therefore, the
information for livestock stored in the Ensembl VEP is limited to annotations based on the
position of the SNP with respect to a gene, e.g., in the upstream region or in the 5′ UTR,
excluding effects on TF binding.

In order to address the limited knowledge and information available regarding the
crucial functions of rSNPs and their associations with TFBSs in livestock, we systematically
carried out an analysis to detect rSNPs and predicted their effects on TF binding for seven
agricultural and domestic species (cattle, pig, chicken, sheep, horse, goat, and dog). In
particular, we first analyzed the promoter regions (ranging from −7.5 kb to +2.5 kb) of all
annotated genes and obtained the SNPs within these regions. Secondly, we extracted the
flanking sequences for these SNPs and performed a TFBS prediction on the reference as well
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as alternate sequences. Finally, we assigned the identified SNPs to different categories based
on their consequences on TF binding (Figure 2) as suggested in [33,34]. To demonstrate
our results in a proper way, we developed a database, namely agReg-SNPdb, which stores
all predicted regulatory SNPs and their consequences on TF binding for each gene, and
we made it accessible via a web interface (https://azifi.tz.agrar.uni-goettingen.de/agreg-
snpdb, (accessed on 16 August 2021)). Furthermore, we performed a literature survey to
show that our results are in agreement with previous experimental and in silico studies.
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Figure 2. Scheme of the workflow applied for the detection of rSNPs. (1) Definition of the promoter
region as 7.5 kb upstream (5′ direction) and 2.5 kb downstream (3′ direction) of the TSS, and extraction
of SNPs within this region; (2) extraction of the flanking 25 bp around the SNPs from the reference
genome; (3) prediction of the TFBSs for both the reference and alternate sequences; and (4) deriving
the consequences for each SNP-TFBS pair.

https://azifi.tz.agrar.uni-goettingen.de/agreg-snpdb
https://azifi.tz.agrar.uni-goettingen.de/agreg-snpdb
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Table 1. A summary of five recent studies that systematically investigated the effects of SNPs on regulatory elements, such as TFBSs. The analyses were done by either collecting
experimentally supported and published data or by predicting the SNP impact on TF binding using prediction tools.

Name Species DB/Tool Website Characteristics
Experimentally
Supported Data or
Prediction

QBiC-Pred [35] Human Tool

http://qbic.
genome.duke.edu
(accessed on
16 August 2021)

• TFBS prediction with regression models
• Prediction of changes in TF binding using ordinary least squares and evaluation

of correlation between the predicted binding changes and changes in gene
expression

TFBS
prediction

atSNP [11]
atSNP-Search [36]

Human (atSNP:
organisms from
Bioconduc-
tor BSGenome
package [31])

Tool, DB

http://atsnp.
biostat.wisc.edu
(accessed on
16 August 2021)

• atSNP: R package for TF binding affinity testing for rSNPs (needs a SNP and
motif set as input)

• atSNP Search: DB for human SNP-motif pairs and the respective significance
TFBS
prediction

INFERNO [37] Human Tool

http://inferno.
lisanwanglab.org
(accessed on
16 August 2021)

• Inferring causal variants from genome-wide association studies (GWAS) within
annotated regulatory regions as enhancers including tissue context

• TFBS prediction with HOMER
TFBS
prediction

rSNPBASE [38],
rSNPBASE 3.0 [10] Human DB

http://rsnp.psych.
ac.cn (accessed
on 16 August 2021)

http://rsnp3
.psych.ac.cn
(accessed on
16 August 2021)

• DB of rSNPs with references to regulatory elements
• Includes proximal and distal regulatory regions, post-transcriptional regulation,

linkage disequilibrium (LD), and expression quantitative trait locus (eQTL)
information

• rSNPBASE 3.0 includes regulatory element-target gene pairs for
regulatory networks

experimentally sup-
ported regulatory
elements

SNP2TFBS [39] Human DB

https://ccg.epfl.
ch//snp2tfbs
(accessed on
16 August 2021)

• DB of human SNPs that affect TFBSs and the prediction of a consequence
• DB can be downloaded as text files or accessed via the website

TFBS
prediction

http://qbic.genome.duke.edu
http://qbic.genome.duke.edu
http://atsnp.biostat.wisc.edu
http://atsnp.biostat.wisc.edu
http://inferno.lisanwanglab.org
http://inferno.lisanwanglab.org
http://rsnp.psych.ac.cn
http://rsnp.psych.ac.cn
http://rsnp3.psych.ac.cn
http://rsnp3.psych.ac.cn
https://ccg.epfl.ch//snp2tfbs
https://ccg.epfl.ch//snp2tfbs
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2. Materials and Methods
2.1. Input Data

The construction of agReg-SNPdb requires: (i) a library of PWMs representing the
TFBSs and, for each animal, (ii) a reference genome, (iii) a SNP catalog, and (iv) gene
annotations. As a PWM library, we used the non-redundant vertebrate matrices provided
by TRANSFAC [40]. The reference genomes, SNP catalogs, and gene annotation files are
downloaded from Ensembl [41]. The respective assembly versions are listed in Table 2.
The SNP catalog was filtered by discarding all insertions and deletions, keeping only the
SNPs. For most genes, more than one transcript isoform was annotated [32], e.g., due to
different splicing variants. This ambiguity was kept during the analysis if the positions of
the transcription start sites (TSSs) and, hence, the derived promoter regions were different.

Table 2. Assembly versions of the input data, including the reference genome, SNP catalog, and gene
annotations. All files were downloaded from Ensembl (release 103).

Animal Assembly Version Download Date

Cattle ARS-UCD1.2 1 March 2021
Pig Sscrofa11.1 9 March 2021

Chicken GRCg6a 25 February 2021
Sheep Oar_rambouillet_v1.0 1 March 2021
Horse EquCab3.0 1 March 2021
Goat ARS1 1 March 2021
Dog CanFam3.1 8 March 2021

2.2. Pipeline

A general workflow of the detection pipeline is shown in Figure 2. In our previous
studies on faba beans [34] and rapeseed [33], we established similar pipelines for the
prediction of rSNPs.

2.2.1. Detection of SNPs within the Promoter Region

The first step of this analysis was to extract SNPs, which are located within the
pre-defined promoter regions. Since there exists no experimentally verified information
regarding the exact location of the promoters and in order to overcome inaccuracies in TSS
prediction, we chose a large promoter region of 7.5 kb upstream and 2.5 kb downstream of
the TSS. Similarly large promoter regions were used in previous studies [10,37,42–48]. This
promoter region can be narrowed by the user during a database search on our website. For
all annotated genes, we extracted the SNPs within this region for further analysis by using
the function foverlaps of the package data.table in R [49].

2.2.2. Prediction of TFBSs

For each SNP lying within a promoter region, we extracted the respective flanking
sequence of 25 bp on each side of the SNP resulting in sequences with a total length of 51 bp
and the SNP at position 26 (similar flanking sequences were used in [33,34,43,50]). Sequences
with a length of less than 51 bp or sequences with gaps were discarded. After extracting the
flanking sequences, we created two sequences per SNP, one with the reference and one with
the alternate allele at the SNP position. Both were used as input for the TFBS prediction
tool MATCH™ [51], which scanned the sequences to predict TFBSs using a PWM library
from TRANSFAC with specific cutoff values to minimize the false positive rates. If a PWM
matched a segment of genomic DNA, this sequence motif was referred to as a (potential)
TFBS. As a result, the algorithm provided two scores for each predicted TFBS [40,51]: the
matrix similarity score (MSS), measuring the quality of the match regarding the whole
PWM sequence, and the core similarity score (CSS), measuring the quality of the match
regarding the first five most-conserved consecutive positions of the PWM. Both scores were
within the range [0, 1], where a score of 1 denoted an exact match of the sequence with the
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PWM [51] measuring the quality of the match and indicating the binding affinity of a TF to
the site.

In TRANSFAC, a PWM identifier follows a certain terminology with the structure
V$factorname_version. In our case, each PWM starts with “V$”, which indicates that the
PWM originated from a vertebrate TF. The factorname specifies the name of the TF that is
binding to the DNA motif. Since there can be several PWMs representing the sequence
motif of a specific TF, the version was specified for unique identification [3,40].

2.2.3. Annotation of Consequences

For each SNP, we obtained two sets of predicted TFBSs—one for the reference and
one for the alternate allele. By comparing these two sets, we manually determined the
consequence of a SNP on a TFBS as in our previous studies [33,34]. We differentiated four
different consequences: (i) no effect, (ii) change in binding affinity, (iii) loss of TFBS, and
(iv) gain of TFBS. We defined two TFBS predictions as the same if their PWMs, positions,
and the strand on which they were found were equal for both alleles.

A SNP was considered to have no effect on a TFBS if both scores computed by
MATCH™ were equal for both alleles. A SNP was considered to cause a change in the
binding affinity of a TF if the matrix similarity score computed by MATCH™ differed
for the two alleles. A SNP caused a loss or gain of TFBS if the considered TFBS was only
predicted for the reference or alternate sequence, respectively. In this study, we defined an
rSNP as a SNP that caused a loss or gain of TFBS or a score-change for at least one TFBS.

3. Results
3.1. Database

We created the mysql database [52] agReg-SNPdb, which stores (i) general information
about the SNPs, such as the ID, chromosomal position and the alleles (table snp_info); (ii)
general information about the genes, such as the gene name and chromosomal position
(table gene_info); (iii) the table snp_region connecting the tables snp_info and gene_info by
storing SNPs and their corresponding target genes together with their genomic position
within the promoter region based on the distance to the TSS; and, most importantly, (iv)
for each SNP within a promoter region (i.e., for each SNP in table snp_region), we store
its consequences based on the predicted TFBS binding potential (table TFBS_results). A
summary of the number of entries for each table and animal stored in our database is
shown in Table 3.

Table 3. The number of records stored in the database tables snp_info, gene_info, snp_region, and
TFBS_results.

snp_Info gene_Info snp_Region TFBS_Results

Cattle 88,109,946 21,656 9,335,814 9,074,371
Pig 58,145,647 20,267 4,385,724 4,432,047

Chicken 20,917,836 16,659 3,810,524 3,901,905
Sheep 50,164,898 20,359 3,216,474 3,205,279
Horse 20,331,427 20,499 1,585,207 1,713,395
Goat 31,331,447 19,658 1,987,914 2,015,588
Dog 4,725,021 19,960 494,691 489,292

Total 273,726,222 139,058 24,816,348 24,831,877

3.2. Web Interface

The web interface (https://azifi.tz.agrar.uni-goettingen.de/agreg-snpdb, accessed on
16 August 2021) allows users to query the agReg-SNPdb without SQL knowledge and to
obtain the requested results either on our website directly or by downloading them as CSV
files. The database can be searched by (i) SNP identifiers in the form of rs numbers, (ii)

https://azifi.tz.agrar.uni-goettingen.de/agreg-snpdb
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SNP positions, (iii) SNP regions in a specified chromosome, or (iv) gene identifiers, i.e., the
Ensembl gene stable ID or gene name (Figure 3).

The search results will contain, at maximum, four tables: (1) a table showing general
SNP information (table snp_info); (2) a table showing general gene information (table
gene_info); (3) a table linking the SNPs to the genes, more specifically to the promoter
regions, if they are positioned within a promoter region (table snp_region); and (4) for all
rSNPs, a table with the predicted TFBSs overlapping each rSNP, the MATCH™ scores, and
the respective consequence (table TFBS_results) for both alleles. An example output can
be seen in Figure 4. In all tables, we provide links to sites with additional information
for the SNPs and genes, and, for each PWM, we display the respective sequence logo
if desired. Apart from the search site, the complete database tables can be downloaded
chromosome-wise on the summary page of the respective animal.

Figure 3. Search page of agReg-SNPdb. Search options are (1) by SNP ID, (2) by SNP position, (3) by
chromosomal region, and (4) by gene.

3.3. Statistical Analysis of the Data

To give a brief overview of the data stored in agReg-SNPdb, we show the distribution
of SNPs, genes, and rSNPs in the promoter regions along the chromosomes in an exemplary
manner for the species chicken. The distributions for the remaining animals can be found
in Figures S2 and S3. The distributions of SNPs and genes along the chromosomes are
shown in Figure 5. As expected, the number of SNPs and genes decreased largely with
increasing chromosome number and, hence, with decreasing chromosome size.
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Figure 4. Example of a search result from agReg-SNPdb. The search was performed by the SNP id rs41566363 of cattle. The
result tables contain, first, general SNP information; secondly, general gene information; thirdly, information about the SNP
region, in particular the promoter region and distance to the TSS; and lastly, the overlapping TFBSs (represented by PWMs)
for the SNP with predicted consequences.

Regarding the promoter regions, the number of SNPs in promoters is dependent on
the number of genes (Figure 5B) for each chromosome. To overcome this dependency,
we calculate the average number of rSNPs per gene in the upstream as well as the down-
stream promoter region. The average numbers of rSNPs for each chromosome in chicken
revealed that most chromosomes had approximately 120 rSNPs per gene, while, on some
chromosomes, only very few rSNPs per gene were found (Figure 6). Overall, by dividing
the total number of rSNPs by the total number of genes, we identified on average 95.04
rSNPs within the promoter region (10 kb) of one gene in chicken.

To obtain further insight into the distribution of rSNPs in the promoter regions, we
investigated their genomic positions relative to the TSS for the whole promoter region
(−7.5 kb to +2.5 kb) and for a smaller section (−750 bp to +250 bp) for chicken (see
Figure 7A,B, respectively; the figures for the remaining species are given in Figures S4). For
chicken, we observed a similar finding as in our previous study on rapeseed [33] and as
previously shown in rice [53]. While there are few rSNPs in close proximity to the TSS, the
number of rSNPs increases with increasing distance to the TSS. Interestingly, in cattle (as
well as in dogs), we observed the opposite tendency. Many rSNPs were found around, and
especially directly downstream, of the TSS, while the number decreased with the distance
to the TSS (the distribution of cattle rSNPs is shown in Figure 8).
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Figure 5. The total number of SNPs and genes for each chromosome of chicken. (A) The number of
SNPs per chromosome. (B) The number of genes per chromosome. In total, 20,917,836 SNPs and
16,659 genes were reported. For plotting, the R package ggplot2 [54] was used.
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chicken, divided into upstream and downstream promoters. The orange whiskers denote the mean
plus one standard deviation.
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Figure 7. Distribution of the distances between rSNPs and the TSS of chicken. (A) The counts for the
whole promoter region (−7.5 kb to +2.5 kb) in 500 bp intervals. The enlargement in (B) shows the
proximal promoter region (−750 bp to +250 bp) in 50 bp intervals.
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Figure 8. Distribution of the distances between rSNPs and the TSS of cattle. (A) The counts for the
whole promoter region (−7.5 kb to +2.5 kb) in 500 bp intervals. The enlargement in (B) shows the
proximal promoter region (−750 bp to +250 bp) in 50 bp intervals.

4. Biological Validation Based on Case-Studies

In order to validate the data stored in agReg-SNPdb, we performed literature research
and assessed the importance of our findings based on selected published studies, which
identified putative rSNPs that are associated with a trait under study and affect TF binding,
either by prediction or as evaluated in a biological experiment.

4.1. Milk Protein and Fat Content in Dairy Cattle

Lum et al. [23] studied the molecular mechanism of different expression levels of the
ß-Lactoglobulin (LGB) gene (also known as MBLG or PAEP), which plays an important role
in the milk casein, protein, and fat content in dairy cattle. They described one rSNP in the
LGB promoter with a G to C conversion 450 bp upstream of the TSS that was found within
an activator protein-2 (AP-2) binding site. Measuring the different AP-2 binding affinities
with DNase-I footprinting, they measured increased protein binding in the A promoter
(G allele).

In our database, we identified the same rSNP (rs41255679, C/G), which was located
in the proximal upstream promoter region of PAEP and caused a gain of the AP-2 binding
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site with the G allele (Table 4) [55]. This supports the findings of different studies reporting
that AP-2 binding as well as LGB gene expression is enhanced by the G allele and that
rs41255679 could be an important regulator of LGB expression [23,55–57].

Table 4. Consequences of SNP rs41255679 (C/G), located upstream of the TSS of the bovine LGB gene.
Allele 0 refers to a predicted TFBS in the reference sequence, while allele 1 stands for the alternate
allele. A SNP causes a loss of TFBS if the considered TFBS (represented by a PWM) is only predicted
for the reference allele. Consequently, a SNP causes a gain of TFBS if the TFBS is only predicted for
the alternate allele.

SNP ID Allele PWM Consequence
rs41255679 0 V$CTCF_01 Loss of TFBS
rs41255679 1 V$AP2ALPHA_03 Gain of TFBS

4.2. Fat-Related Beef Quality Traits in Cattle

Matsumoto et al. [19] investigated the role of different bovine fat-related genes,
including the gene encoding the fatty acid-binding protein 4 (FABP4). Within the FABP4
upstream promoter, they identified two SNPs in linkage disequilibrium (FABP4 g.-295A>G
and FABP4 g.-287A>G) that were associated with several fat-related traits, such as the
carcass weight and beef marbling score. Using TFSEARCH [58], they predicted TFBSs
overlapping the SNPs and altering their binding sites. In agReg-SNPdb, we identified
two SNPs within the FABP4 promoter region at a distance of 8 bp to each other and
A to G conversions (respectively, T to C conversions, due to the gene’s location on the
minus strand).

For the first SNP rs110055647, located 123 bp upstream of the TSS, we predicted a loss
of TFBS for the Sex-Determining Region Y Protein (SRY) binding site, which is in line with
the results of Matsumoto et al. [19]. For the neighboring rs109682576 (-115 bp from the
TSS), we did not observe the CCAAT/enhancer-binding protein beta (cEBP/β) binding
site predicted in their study; however, the TFBSs for Zinc finger proteins 333 (ZNF333) and
105 (ZFP105) were lost with the alternate allele, which can be seen as an extension to the
results of Matsumoto et al. (Table 5) [19].

Table 5. Consequences of the SNPs rs110055647 and rs109682576 in the bovine FABP4 upstream
promoter with a T to C conversion. Allele 0 refers to a predicted TFBS in the reference sequence,
while allele 1 stands for the alternate allele. A SNP causes a loss or gain of TFBS if the considered
TFBS is only predicted for the reference or alternate allele, respectively. A SNP is considered to cause
a score-change if the TFBS is predicted on both alleles (0,1) with a difference in the matrix similarity
score computed by MATCH™ .

SNP ID Allele PWM Consequence
rs110055647 0,1 V$RHOX11_01 Score-Change
rs110055647 0 V$SRY_Q6 Loss of TFBS
rs109682576 0 V$ZNF333_01 Loss of TFBS
rs109682576 0 V$ZFP105_04 Loss of TFBS

4.3. Chicken Egg Production

The prolactin (PRL) gene product is considered as an important reproductive hormone
involved in diverse biological functions in vertebrates. In laying hens, it is an impor-
tant regulator of egg production since an increased PRL secretion induces broodiness
behaviour [28]. Liang et al. [29] examined the PRL 5’ promoter region and, using several
populations of Chinese native Yuehuang, Taihe Silkie, and White Leghorn Layer chick-
ens, they identified different rSNPs overlapping the predicted binding sites, including
GATA-binding factor 1 (GATA-1), nuclear factor 1 (NF-1), and activator protein 1 (AP-1).
Particularly for SNP rs313497646 (A/G conversion, 2048 bp upstream of the TSS), we
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observed the same pattern with respect to TF binding in agReg-SNPdb: only the A allele
allows the binding of the NF-1 factor.

Furthermore, it has been shown that the pituitary transcription factor 1 (PIT-1) is an
important activator of the PRL gene expression [28,29,59]. In agReg-SNPdb, we store a SNP
(rs731078272, G/T), located -3086 bp from the TSS and causing a loss of the PIT-1 binding
site in the T allele. This result suggests that this SNP might be an important regulator of
PRL expression where the T variant could repress PRL expression, which is an important
indication for further studies.

4.4. Fatty-Acid Composition Related Traits in Pigs

Ballester et al. [24] studied the expression of apolipoprotein (apo-) A-II (APOA2), a
protein involved in the triglyceride, fatty acid, and glucose metabolisms, and identified
several SNPs associated with APOA2 gene expression and fatty acid composition traits.
Four SNPs were located in the promoter region (rs322246820, rs335066625, rs339777757,
and rs333406887), among which they only found one (rs333406887, C/G) influencing a
predicted TFBS—in this case, a NF-1 binding site.

Similar to their result, in agReg-SNPdb, we found the SNP rs333406887 overlapping
TFBSs, such as the NF-1 binding site. Furthermore, in addition to the reported change in
the binding score for NF-1, we can predict several other TFBSs that are affected by this SNP.
It causes, for instance, a loss of TFBS for the kruppel-like factor 6 (also called CPBP) and a
gain of TFBS for zinc finger protein X-linked (ZFX) (Table 6).

Table 6. Consequences of the SNP rs333406887 (C/G) located -238 bp from the porcine APOA2 TSS.
Allele 0 refers to a predicted TFBS in the reference sequence, while allele 1 stands for the alternate
allele. A SNP causes a loss or gain of TFBS if the considered TFBS is only predicted for the reference
or alternate allele, respectively. A SNP is considered to cause a score-change if the TFBS is predicted
on both alleles (0,1) with a difference in the matrix similarity score computed by MATCH™ .

SNP ID Allele PWM Consequence
rs333406887 0,1 V$NF1_Q6 Score-Change
rs333406887 0,1 V$AP2ALPHA_03 Score-Change
rs333406887 0 V$CPBP_Q6 Loss of TFBS
rs333406887 1 V$ZFX_01 Gain of TFBS

5. Discussion

Today, it is widely known that protein–DNA interactions govern the level of gene
expression in all higher organisms to a great extent. The binding of TFs to the DNA
mainly occurs in the regulatory regions, such as promoters, which are found close to the
transcription start of genes [60]. The effect of rSNPs on the binding of TFs has been studied
extensively in single case studies in different species, and, for humans, many tools and
databases exist to facilitate these analyses (see Tables 1 and S1).

However, there is limited information available for livestock, and, to the best of our
knowledge, there is no comparable data source for evaluating the effect of rSNPs. To
address this lack of information, we systematically carried out a genome-wide analysis to
detect rSNPs and to evaluate their consequences for TF-binding in seven animal species,
which can be accessed via a web server. We showed that, by substituting a single base in a
predicted TFBS, a SNP can lead to a major change in the binding affinity of the TF and, in
an extreme case, even result in the disruption of the TFBS or the creation of a new TFBS.

These predictions can be of great use for scientists who have conducted: (i) an asso-
ciation analysis and want to reveal the underlying mechanisms caused by a SNP being
significantly associated with a trait (e.g., in [19,23,33,34]); (ii) a gene expression experiment
and want to identify candidate SNPs influencing the expression rate of a specific gene or a
set of genes (e.g., in [24,29,33]); or (iii) a combination of both, i.e., an expression quantitative
trait locus (eQTL) analysis (e.g., in [17]).
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Even though our predictions are in line with many biologically tested results, as
shown in the biological validation in Section 4, we note that the binding affinity of the
TFs to the DNA sequence is one of the most important factors for TF binding but might
not be sufficient for in vivo binding in higher organisms. Other influencing factors might
include the chromatin accessibility, TF concentration, or other enhancing or repressing
protein-DNA interactions, such as competitive or cooperative TF binding [3,39,61], which
could not be considered in the prediction pipeline.

TF binding often occurs in a complex interplay and also includes cooperation between
proximal and distal regulatory elements (promoters and enhancers) [2]. Thus, in addition
to the binding of TFs in the proximal promoter regions, regulatory processes via TF-
DNA interactions are also controlled by distal enhancer regions. Due to the limited
knowledge of enhancer regions in livestock species, we could not incorporate these distal
regulatory regions.

For our analysis pipeline, we defined a relatively wide promoter region of 7.5 kb
upstream to 2.5 kb downstream of the TSS. Similarly large promoter regions were defined in
previous studies ranging from 10 kb upstream to 10 kb downstream of the TSS [10,37,42–48]
in order to overcome inaccuracies in the TSS prediction [53] and to ensure the inclusion
of the biological promoter. The user has to be aware that the biological promoter region
is usually smaller [53], and our website gives the opportunity to filter for smaller, user-
defined promoter regions for each single gene. These considered promoter regions and
the definition of rSNPs in our study (see Section 2.2.3) led to a relatively large number of
rSNPs per gene—for instance, an average of 95.04 rSNPs per gene in chicken.

Interestingly, our results regarding the distribution of genome-wide rSNPs relative
to the TSS showed two different patterns. In chicken, pig, sheep, horse, and goat, we
observed that the region around the TSS was rather protected from sequence variations
(Figure 7) as it was found in previous studies [33,53]. However, the data for cattle and dogs
revealed a different picture, and we found an accumulation of SNPs and rSNPs around the
TSS (Figure 8). This observation shows that the data stored in public databases, such as
Ensembl, can show completely different patterns for different species, which could create
biases for specific analyses.

6. Conclusions

To the best of our knowledge, agReg-SNPdb is the first database of regulatory SNPs for
animal species of agricultural importance. It allows the users to investigate the predicted
effect of an allele change on TF binding. The release of the database is an important step
toward the understanding of gene regulation in the life sciences. Knowing whether a SNP
causes a change in the binding affinity or even disrupts a TFBS or creates a new TFBS can be
of predominant importance in order to interpret the results, from, e.g., GWAS experiments,
gene expression experiments, or population studies.

The newly gained information can be used to help in genomic selection and marker
establishment by identifying possibly causal rSNPs and revealing the underlying regulatory
mechanisms of specific traits or diseases. Due to the regular updates of genomes as well as
gene and SNP annotations, the database will be updated regularly, and, as future work, we
will include several plant species with agricultural importance in agReg-SNPdb.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/biology10080790/s1, Table S1: A comprehensive overview of recent studies that investigated
the effects of SNPs on regulatory elements (extension of Table 1), Figure S2: Number of SNPs and
genes per chromosomes for all species, Figure S3: The average numbers of rSNPs per gene for each
chromosome for all species, Figure S4: Distribution of the distances between rSNPs and the TSS for
all species.
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