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Simple Summary: The interactions between SNPs, which are known as epistasis, can strongly
influence the phenotype. Their detection is still a challenge, which is made even more difficult
through the existence of background associations that can hide correct epistatic interactions. To
address the limitations of existing methods, we present in this study our novel method MIDESP
for the detection of epistatic SNP pairs. It is the first mutual information-based method that can be
applied to both qualitative and quantitative phenotypes and which explicitly accounts for background
associations in the dataset.

Abstract: The interactions between SNPs result in a complex interplay with the phenotype, known
as epistasis. The knowledge of epistasis is a crucial part of understanding genetic causes of complex
traits. However, due to the enormous number of SNP pairs and their complex relationship to the
phenotype, identification still remains a challenging problem. Many approaches for the detection of
epistasis have been developed using mutual information (MI) as an association measure. However,
these methods have mainly been restricted to case–control phenotypes and are therefore of limited
applicability for quantitative traits. To overcome this limitation of MI-based methods, here, we
present an MI-based novel algorithm, MIDESP, to detect epistasis between SNPs for qualitative
as well as quantitative phenotypes. Moreover, by incorporating a dataset-dependent correction
technique, we deal with the effect of background associations in a genotypic dataset to separate
correct epistatic interaction signals from those of false positive interactions resulting from the effect
of single SNP×phenotype associations. To demonstrate the effectiveness of MIDESP, we apply it on
two real datasets with qualitative and quantitative phenotypes, respectively. Our results suggest
that by eliminating the background associations, MIDESP can identify important genes, which play
essential roles for bovine tuberculosis or the egg weight of chickens.

Keywords: mutual information; epistatic interactions; genome-wide association studies; single-
nucleotide polymorphism

1. Introduction

The development of high-density arrays for genotyping in recent years has allowed
genome-wide association studies (GWAS) to become powerful tools for the detection
of single-nucleotide polymorphisms (SNPs) that are associated with traits of interest.
However, GWAS methods are usually based on the analysis of single loci, ignoring the
potential interaction between genes, and are therefore of limited applicability for traits that
are controlled by multiple genes with possibly complex interactions [1–3]. These genes may
have only a small effect on the phenotype and could therefore be missed by single-locus
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analyses despite having a strong influence based on their interactions [4–7]. While large
parts of phenotype variance are attributed to individual SNP effects, these interactions,
which are commonly referred to as epistasis, have been shown to be of importance for
many complex diseases in humans such as asthma [8], cancer [9] or diabetes [10], as well as
for quantitative traits in animals [3,11–15] and plants [16–20], and could help to explain the
relationship between the genetic variants and the corresponding phenotype [2,13,21,22].

Due to the large number of possible combinations of SNPs even if only pairwise
interactions are considered, the detection of epistasis is a computational challenge, for
which a large number of algorithms have been proposed. These methods can be divided
into different categories depending on their search strategy. Exhaustive search strategies
test every possible combination of SNPs for significance, which often results in a long
execution time and can become infeasible for large datasets. This strategy has been used
by partitioning methods such as the Combinatorial Partitioning Method (CPM) [23] and
the Restricted Partition Method (RPM) [24], as well as several other methods [9,25,26].
Stochastic methods, on the other hand, use random sampling to increase their efficiency,
but their results and performance can depend on variables determined by the user. Bayesian
Epistasis Association Mapping (BEAM) [27], for instance, applies Markov chain Monte
Carlo to compute the posterior probability for association between SNPs and a disease.
Its extension epistatic MOdule DEtection (epiMODE) [28] uses Gibbs sampling with a
reversible jump Markov chain Monte Carlo to find epistatic interactions. Machine learning
methods such as neural networks [29–32], decision trees [33] or random forest [34–37] have
also been utilized for epistasis detection. Step-wise approaches form a fourth category
of algorithms, which first filter out SNPs with a very small or no association signal, and
then test among the surviving SNPs for epistatic interactions. BOolean Operation-based
Screening and Testing (BOOST) [38], as an example, first performs a likelihood ratio
test to filter out unimportant SNPs and then performs an exhaustive search on the others.
Leem et al. [39] utilized a k-means clustering of the SNPs and then searched for interactions
between SNPs in different clusters. Other methods still use the results of lower-order
interactions to find higher-order interactions in an efficient way [40,41].

Several of these methods use information-theory-based measures such as mutual
information to quantify epistatic interactions [39,41–46]. These measures consider the
SNPs and phenotypes as random variables, which allows them to quantify the amount of
information, or uncertainty, that is inherent to an SNP or a phenotype and to compute how
much information is shared between them, and thereby the strength of association [42].
This approach is model-free and therefore has the advantage of not requiring any prior
assumptions regarding the structure of the interactions. By considering all genotype
combinations of the SNPs as separate categories, this strategy also avoids the problem of
choosing an appropriate encoding method for the SNPs and their interactions, which has
been shown to influence the result of regression-based methods [47–49]. Nevertheless, the
application of information-theory-based approaches has so far been limited to case–control
phenotypes. This is because, while the mutual information between two discrete variables
can be efficiently calculated using simple contingency tables, the mutual information
between a discrete and a continuous variable requires computationally more challenging
approaches for an accurate estimation.

Furthermore, the methods mentioned above do not take into account different types of
obstacles resulting from sample structure, relatedness between the genotyped individuals
or marginal effects of single SNPs on the phenotype [19,50,51]. Such types of obstacles
can lead to background associations between SNP pairs and the phenotype, and thus the
importance of some SNPs in the epistatic interactions could be overestimated. Conse-
quently, the prediction of most existing methods could be biased, potentially impeding
the identification of correct epistatic signals. Hence, elimination of the bias inherent in
the genotype–phenotype datasets is needed to separate the signal caused by functional
interactions from the background associations between SNPs [19,50].
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In this paper, we propose a novel method called Mutual Information-based Detection
of Epistatic SNP Pairs (MIDESP) for the detection of pairwise epistatic interactions, which
extends the previously mentioned mutual information-based approaches by additionally
enabling the identification of epistatic interactions between SNP pairs and quantitative
phenotypes. For this purpose we adopt, in the context of epistasis for the first time, the
mutual information estimator developed by Ross [52], which accurately estimates the
level of epistasis using a kth-nearest neighbor-based approach. Moreover, to deal with the
possible obstacles inside a genotype–phenotype dataset (as mentioned above), our method
incorporates an additional step using the average product correction (APC) theorem [53]
to estimate the expected level of background association for each SNP pair. Finally, the
removal of the estimated background from the measured epistasis values leads to the
detection of correct epistatic signals arising from functional interactions.

In order to demonstrate the performance and functionality of MIDESP, we applied
it on two different types of genotype–phenotype datasets. The first type contains several
hundred simulated datasets, which we analyzed to optimize the parameters used in the
mutual information estimator. On the other hand, the second type contains two further
datasets with a qualitative and a quantitative phenotype, respectively. While the dataset
with the qualitative phenotype is related to bovine tuberculosis, the other one contains the
egg weight of chicken eggs. Our findings show that we are able to successfully reduce
the influence of background associations in the prediction of epistatic interactions, which
leads to the identification of novel markers/genes that are important to the phenotype
of interest.

2. Materials and Methods
2.1. Data

We analyzed two different datasets, one of which had a qualitative (discrete) case–
control phenotype, and the other one had a quantitative (continuous) phenotype. To ensure
the data quality, we applied several filters to the datasets following Ramzan et al. [54,55].
We removed SNPs with a minor allele frequency ≤ 0.01, a genotyping call rate ≤ 0.97, as well
as SNPs significantly deviating from the Hardy–Weinberg equilibrium (p–value < 1× 10−6). A
sample was removed if a phenotype was unavailable for it or if more than 5% of SNPs were
missing. Further, we performed linkage disequilibrium (LD) pruning to obtain epistasis
results without confounding them through LD [56]. Using PLINK [57], we removed all
redundant SNPs with an LD ≥ 0.99, and thus carrying very similar information about the
phenotype. Table 1 gives a short overview of the datasets and their respective sizes.

In the following section, we briefly describe the datasets. Researchers interested in
more details about the bovine tuberculosis data are referred to [58] and about the egg
weight data to [59].

2.1.1. Bovine Tuberculosis (BT)

This dataset was published by Bermingham et al. [58] and consists of 617,885 SNPs
for 1151 cattle. The estimated SNP-based heritability attributable to additive effects for
this phenotype is 21% [58]. The cattle belonged to the Holstein–Friesian breed and were
collected in Northern Ireland. Genotyping was performed using the BovineHD Geno-
typing BeadChip. The supplied phenotype is qualitative (case–control) and represents
the resistance of the animals towards bovine tuberculosis with 592 cases and 559 controls.
Bermingham et al. performed a GWAS on the data to find SNPs associated with resistance
to bovine tuberculosis. Overall, they found eight significantly associated SNPs representing
two different loci in the genome. After applying our filters 616,398 SNPs remained.

2.1.2. Egg Weight (EW)

The dataset relates to the egg weight (EW) in 36-week-old chickens belonging to a line
of Rhode Island Red chicken [59]. While the dataset contains the egg weights for multiple
different ages of the chickens, we decided to only use the data for 36-week-old chickens,
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since this phenotype contains the strongest signal found in previous GWAS [54,59]. For this
trait, the estimated SNP-based heritability is 36% [59]. A total of 1063 birds were genotyped
using the Affymetrix Axiom® 600 K Chicken Genotyping Array, resulting in an initial set
of 580,961 SNPs, which were then filtered. The dataset which was provided by the authors
only consists of the 294,705 SNPs that passed their quality filters. We could not remove any
further SNPs using our filters.

Table 1. Overview of the datasets used in our study.

Dataset Phenotype #Samples #SNPs #SNPs after Filtering #SNPs after LD Pruning

Bovine Tuberculosis Qualitative 1151 617,885 616,398 358,086
Egg weight Quantitative 1063 580,961 294,705 139,101

2.2. Method

Based on the number of samples, N , and the number of SNPs, P , we consider a
genotype × phenotype dataset as a matrix, MN×(P+1), where the rows refer to the samples
and the columns refer to the phenotype and the SNPs. Furthermore, the phenotype of
interest is denoted by YD and YC for qualitative (discrete) and quantitative (continuous)
traits. Let Si be a sample, let X j be the genotype of an SNP and let Yi be the corresponding
phenotype of Si. The entry of M at position (i, j) is depicted by Xi

j. In the following, we
also use X and Y as placeholders for any of the SNPs or phenotypes, respectively.

An overview of the MIDESP pipeline is shown in Figure 1.

Figure 1. Flowchart of the analysis applied in this study.

2.2.1. Background on Information Theoretic Measures

In information theory, the entropy, H(X) = −∑x∈X p(x) log p(x), is a measure for
the uncertainty of a discrete random variable, X, with alphabet X , which depends solely
on its probability function, p(x) = Pr{X = x}, x ∈ X . It can be interpreted as the amount
of information that is necessary to describe the variable on average. By considering the
joint probability function, p(x, y), of two discrete random variables X and Y with alphabets
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X and Y , this concept can be extended to the joint entropy, H(X, Y), of a pair of variables.
Based on these entropies, the mutual information between X and Y is defined as

MI(X; Y) = H(X) + H(Y)− H(X, Y), (1)

which gives the amount of information that is shared between the variables [60]. The
mutual information can be seen as a measure for the association between two variables,
which includes linear as well as non-linear dependencies [61].

However, Equation (1) is not applicable if one of the variables is continuous instead
of discrete. For a discrete variable X and a continuous variable Y the MI(X; Y) can be
estimated using the kth-nearest neighbor-based method developed by Ross [52], which has
been shown to be more robust than the commonly used binning-based approaches. The
mutual information is estimated as

MI(X; Y) =
1
N ·

N
∑
i=1

(ψ(N )− ψ(Nxi ) + ψ(k)− ψ(mi)), (2)

where:

• ψ(·) is the digamma function;
• Nxi for a given sample, Si, refers to the number of samples for which the genotype x

is the same as the genotype xi of Si;
• d is the distance between sample Si and its kth-nearest neighbor Sik with the same

genotype as Si, defined as the absolute difference between their phenotypes Yi and Yik ;
• mi is assigned the number of samples where the absolute difference between their

phenotypes and the phenotype Yi is less than or equal to d, irrespective of the genotypes.

The identification of these values is shown for a small exemplary dataset in Figure 2.

Figure 2. Procedures for estimating the mutual information between a discrete variable X as an SNP and a continuous
variable Y representing a quantitative phenotype using k = 3: (A) Genotype and phenotype values are given for ten samples
S1, S2, ... to S10. (B) Nx is defined as the number of samples where the genotype is equal to x. (C) For each sample, Si, a
sorted list of the samples is created based on the absolute difference between Yi and Yj for sample Sj. (D) The kth-nearest
neighbor is determined for each sorted list by going along the list and counting the samples that have the same X value as
the start sample. mSi can then be defined as the index of the kth-nearest neighbor in the sorted list. For sample S1 which has
the X value AA, the sample with the third-closest Y value and the same X value is sample S8, which has the index 7 in the
sorted list. Therefore, mS1 = 7. Based on the Nx and mSi values, the mutual information can be estimated.

As shown in Figure 2, only the phenotype Y is a continuous variable, hence in general,
we can reuse the sorted tables for every SNP by only changing the values of X. This allows
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for an efficient calculation of mi. Since MI is only estimated, the resulting values can be
outside the range of the valid interval, i.e., [0, H(X)]. Thus, the estimated values outside of
this range are set to the closest interval boundary.

2.2.2. Identification of Epistatic Interactions between SNP Pairs

In previous studies [39,42,46], the epistatic interaction between an SNP pair, Xi and
X j, and a qualitative phenotype, Y, has been successfully identified by employing the MI
metric for which Equation (1) is extended based on the joint entropy H(Xi, X j) as:

MI(Xi, X j; Y) = H(Xi, X j) + H(Y)− H(Xi, X j, Y), (3)

where H(Xi, X j, Y) is the joint entropy of the SNPs Xi and X j as well as the phenotype Y.
However, the concept of MI has not yet been applied to measure the epistatic interaction
between an SNP pair and a quantitative phenotype. To the best of our knowledge, we
apply for the first time the MI metric for this aim using the following equation:

MI(Xi, X j; Y) =
1
N ·

N
∑
l=1

(ψ(N )− ψ(N
xij

l
) + ψ(k)− ψ(ml)) (4)

In Equation (4), xij
l refers to the joint genotype of the SNP pair Xi and X j of sample Sl .

As shown in [53,62,63], the value of the mutual information and its possible range is
strongly dependent on the alphabet size and the marginal distributions of the variables.
A normalization of the values is therefore required to address this influence and to make
them comparable with each other for further analysis. We apply the following normaliza-
tion technique based on the entropy and the maximal possible alphabet size of the SNP
and SNP pair. Consequently, the MI(X; Y)—and MI(Xi, X j; Y)—values are normalized as

NMI(...; Y) = 2 · MI(...; Y)
log (max |X |) + H(...)

(5)

2.2.3. Detection of SNPs with Strong Association Signals

As it can be easily seen, the calculation of the pairwise interactions between all
SNP pairs requires a quadratic runtime. Therefore, the separation of SNPs with strong
association signals from the remaining ones is necessary to reduce the number of pairs
under study.

For this purpose, Gültas et al. [63,64] showed that by extending the standard multiple
testing theory [65,66], the NMI values can be modeled based on three different distribu-
tions: (i) a β distribution F0 (null distribution) representing the background signals; (ii)
a G1 distribution referring to the unrelated associations (in our case between SNPs and
phenotype); (iii) a G2 distribution modeling the strong association signals (in our case
between SNPs and phenotype).

From this follows that 1− F0(NMIX) is the corresponding p–value for the association
of a SNP X to the phenotype. The p–value is uniformly distributed over [0, 1] if NMIX
is F0-distributed. However, if X belongs to the G1 distribution of unrelated SNPs, its
corresponding p–value is skewed towards 1. On the other hand, if X is G2 distributed, its
p–value is skewed towards 0 (see Figure 3).

As the next step, based on two tuning parameters, λ1 and λ2, the fraction γ of the
NMIX which belong to the background is estimated using Equation (6):

γ̂ =
number of p–values in [λ1, λ2]

P · (λ2 − λ1)
(6)

so that the fraction of non-uniformly distributed p–values that fall into [λ1, λ2] is negli-
gible [65,67]. These two parameters are dataset-dependent and are automatically tuned
through a trial and error heuristic approach during the analysis [68].
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Finally, an SNP X is deemed as significant if its p–value is less or equal to τ, where
τ is a threshold depending on a user-defined false discovery rate, FDR, estimated using
Equation (7).

F̂DR(τ) =
γ̂ · P · τ

number of p–values ≤ τ
(7)

For the detection of epistatic interactions using the NMI(Xi, X j; Y) metric, for our
further analysis, we only consider SNP pairs where at least one SNP is significant, which
results in a reduction in the runtime.

1 
 

Figure 3. Distribution of p–values: the distribution can be divided in three parts, with G2 representing
the strongly associated SNPs, G1 the unrelated SNPs and F0 the background. SNPs with a p–value
less or equal to τ are deemed as significant.

2.2.4. Reduction of the Background Associations between SNPs and Phenotype

As shown in previous studies [19,50,51], a dataset-dependent background association
exists between the SNPs and the phenotype that may arise due to population stratification
or relatedness of the individuals under study. Such obstacles could interfere with the
identification of the correct epistatic signals, and thus could lead to the detection of false
positive association signals. Another background association could occur in the detection
of epistatic interactions using the NMI metric due to the high level of mutual information
between a single SNP and the phenotype. We introduce this issue by way of an example in
Section 3.2.

To eliminate these issues to some extent, in our study, we applied the average product
correction (APC) introduced by Dunn et al. [53]. The APC theorem is a very successful
information-theory-based approach to estimate the expected level of background associa-
tion between the variables in a dataset. Meckbach et al. [69] showed that this approach is
universally applicable, and thus we adopted it for our method. Following this approach, we
estimated the expected level of the background between the SNP pair and the phenotype
in the calculation of NMI(Xi, X j; Y) as

APC(Xi, X j; Y) = (
NMIXi · NMIX j

NMISNP
) (8)

In Equation (8), NMIXi and NMIX j are the average association levels of SNPs Xi and
X j, respectively, in the epistatic interaction:
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NMIXi =
1
h
·

h

∑
l=1

NMI(Xi, Xl ; Y), (9)

where h is a sufficiently large number (e.g., h > 1000) and the SNPs Xl are randomly
chosen. Further, NMISNP denotes the overall average normalized mutual information
calculated using a sufficiently large number of NMI values.

Finally, we subtracted the APC(Xi, X j; Y) value of an SNP pair and the phenotype
from their initial NMI(Xi, X j; Y) to obtain the corrected NMIapc(Xi, X j; Y).

2.2.5. Validation of the Epistatic Interactions

To identify the genes pertaining to epistatic SNP pairs, in our analysis, we only
considered the p-th percentile of the pairs with an NMIapc value > 0. For the interpretation
of the interactions, we mapped the SNPs to their corresponding genes based on the
mappings provided by the Ensembl database (release 103) [70]. The data were then read
into R and a gene–gene interaction network was created with the genes as nodes and their
interactions as edges using the igraph package [71]. The number of interactions of a node
was termed its degree. In the final step, these degrees were transformed into z-scores and
we consequently defined a gene as MIDESP-significant if its z-score was ≥ 3, as suggested
in [69].

To elucidate the biological functions of these genes, we followed previous studies [55,72]
and utilized the geneXplain platform [73] to perform a gene set analysis based on the
molecular functions of the genes. The results were then visualized in the form of a treemap.

2.2.6. Implementation

The MIDESP pipeline was implemented in Java and is available as a JAR file from
https://github.com/FelixHeinrich/MIDESP (accessed on 14 September 2021), allowing
for easy usage. The calculations were completely parallelized, allowing for an efficient de-
tection of significant epistatic interactions with a multi-core CPU. Genotype and phenotype
information in the form of tped and tfam files were required as input.

3. Results

In this paper, we introduce a novel information-theory-based method, MIDESP, for
the detection of epistatic interactions using genotype–phenotype datasets. MIDESP is able
to analyze both qualitative as well as quantitative phenotypes, unlike previous information
theoretical methods [39,41–46], which are only applicable to datasets with qualitative
phenotypes. Furthermore, our method takes into account the effect of dataset-dependent
background associations and eliminates them to some extent using the average product
correction (APC) technique [53] to separate correct/functional epistatic signals from those
of false positives.

This section consists of four major parts. First, in order to gain insights into the
influence of the prerequisite parameter k used in Equation (4), we systematically analyzed
several simulated datasets to find the most convenient value for it. Second, we introduced,
by way of an example, the possible background association effects in epistatic interactions
to highlight the importance of the APC approach in our method. In the following sections,
we analyzed, by applying MIDESP with a false discovery rate (FDR) of 0.05, two different
datasets with qualitative and quantitative phenotypes to demonstrate its functionality.

3.1. Analysis of Simulated Datasets for Parameter Setting

Today, it is well established that mutual information is an appropriate metric to mea-
sure the association between SNPs and qualitative (case–control) phenotypes [39,44,46,74–77].
However, we apply here for the first time this metric to quantitative traits. Therefore, we
analyzed several simulated datasets to identify a proper value of k, which is necessary for
the MI estimator (see Equations (2) and (4)). For this purpose, we employed the LDAK
software [78] to simulate several hundred genotype and phenotype datasets with three

https://github.com/FelixHeinrich/MIDESP
https://github.com/FelixHeinrich/MIDESP


Biology 2021, 10, 921 9 of 22

different heritability values: 0.05, 0.075 and 0.1. Consequently, we created 500 datasets
consisting of 1000 SNPs, 2000 samples and a continuous phenotype controlled by a single
SNP for each heritability value, respectively. Power was calculated as the proportion of
datasets where the causal SNP obtained the highest MI value. To establish a proper value
of k for the MI estimator, we systematically analyzed each dataset using k-values from 1 to
60. Despite Ross [52] and Kraskov et al. [79] both recommending a low value of k = 3, our
analyses indicate that such small values can be only considered for heritability values > 0.1
(see Figure 4). Further, Figure 4 suggests that simulation datasets with smaller heritability
values require a much higher k-value to successfully detect the causal SNPs of interest.
By systematically analyzing different k-values, we established that a value of k = 30 leads
to the highest increase in power for the estimator based on the heritability values under
study. We did not choose a higher value, since an increase in k results in a longer runtime
for the estimator and may likewise cause problems if the sample size is not large enough.

Figure 4. Analysis of simulated datasets for parameter setting of k.

3.2. Illustration of Background Associations and Its Correction Using APC

In information theory, mutual information (MI) is typically measured between two
variables, X1 and Y. Additionally, based on the chain rule of information [60], it is well
known that the introduction of a new variable, X2, might affect the relationship between X1

and Y, thus increasing the MI between X1 and Y. However, if the introduction of X2 does
not result in any new information, the corresponding MI value will not be affected [60].

In case of SNP×phenotype associations, this property of the MI needs to be consid-
ered since only the introduction of an additional SNP2 which increases the amount of
information between SNP1 and the phenotype Y should be taken into account for the
detection of epistatic interactions. The reason for this is exemplified in Figure 5. It can
be seen in Figure 5 that SNP1 and Y have the maximum MI value of 1, indicating their
perfect association. On the other hand, SNP2 as well as SNP3 have an association value of
0 to Y. Applying Equation (3) clearly shows that the introduction of SNP2 or SNP3 does
not affect the amount of association between SNP1 and Y, but on the other hand leads
to a false interpretation of epistatic interactions. To deal with this problem, we apply the
average product correction (APC) theorem [53], which ensures the elimination of negligible
increments in the MI value of epistatic interactions measured using Equations (3) and (4).

Another important aspect of the usage of the MI metric in the context of epistatic
interactions is its ability to detect the newly created relationship between a SNP pair and
the phenotype, even though the single SNPs themselves might not show any association to
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the phenotype. This property of MI can be considered for measuring the level of association
between SNP2 − SNP3 and Y (see Figure 5).

Figure 5. Example of MI values calculated from genotype data for three SNPs and twelve samples
with a binary phenotype. The table cells are colored based on the genotype value of the SNP for the
corresponding sample.

To demonstrate the importance of the APC in the analysis of epistatic interactions, we
further applied it for the correction of the MI values calculated using Equation (3) regarding
the BT dataset. We considered the top million MI values indicating the epistatic interaction
between the SNP pairs and the phenotype. Afterwards, for each SNP, we determined its
frequency among the interactions. The frequency distribution of SNPs and their single
association to the phenotype is shown in Figure 6A. As mentioned above, the frequency
of several SNPs is over-represented, which arises from their single association to the
phenotype. However, the application of APC dramatically reduces their frequencies in the
epistatic interactions. This finding clearly suggests that, although these SNPs individually
have a strong association to the phenotype, their epistatic interactions are negligible, as
shown with blue points in Figure 6.

3.3. Bovine Tuberculosis Dataset

By applying MIDESP to the BT dataset, we first identified 10,774 single SNPs in total,
with significant association to the phenotype. Taking all SNP pairs that contain at least one
of those significant SNPs into account, for the epistatic interaction analysis, we identified
3,799,984 SNP pairs, which corresponds to 0.1% of all possible pairs under study. After
that, we mapped these SNPs to their corresponding genes using the Ensembl database and
a gene–gene interaction network was created, as suggested in [80]. Finally, according to
this network, we detected 511 genes as MIDESP-significant and investigated their roles in
bovine tuberculosis disease based on enriched Gene Ontology (GO) terms (see treemap
depicted in Figure 7 and Supplementary Table S1).
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Figure 6. (A) shows the distribution of the SNP frequency and their association to the phenotype. The
blue and red points stand for the frequency of the SNPs based on with and without the application of
the APC, respectively. (B) only shows the frequencies for the interactions with APC.

 

2 

 

Figure 7. Gene Ontology (GO) treemap for genes associated with immunity to bovine tuberculosis. The boxes are grouped
together based on the upper-hierarchy GO term, which is written in bold letters.

The functional classification of these genes indicates that several of the GO categories
represented in the treemap play essential roles in the immune responses towards bovine
tuberculosis. Especially, metal ion transmembrane transporter activity and gated channel
activity are the most significantly enriched terms, shown in the green and purple boxes in
the treemap (Figure 7) obtained from the GO analysis, indicating the function of transmem-
brane proteins involved in the transportation of ions across membrane layers. Particularly,
ion channel blockers are known for their therapeutic implications in drug-resistant my-
cobacterial infection, especially voltage gated calcium channels, which are important for the
regulation of immunity against pathogens [81–84]. In this regard, increasing calcium influx
by inhibiting the voltage gated channels in immune cells such as macrophages is highly
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associated with protective immunity, particularly in increasing the expression of genes
involved in pro-inflammatory responses [84]. Other significant GO terms including actin
binding, Rho GTPase binding, glutamate receptor activity and postsynaptic neurotrans-
mitter receptor activity were also enriched in the treemap and their roles associated with
Mycobacterium tuberculosis are described below. Firstly, actin filament, which is an important
constituent of the cytoskeleton [85], is mainly associated with pro-inflammatory responses.
A primary aspect of mycobacterial infection is the manipulation of actin filaments [86],
notably inside the macrophages (immune cells engulfing the pathogens) of the host [87–89],
thereby pointing out the importance of actin-binding protein regulation for enhancing the
immune responses of the host. Several recent studies reported that neurotransmitters play
essential roles in the activation or suppression of immune responses through the regulation
of T-cell activity [90,91]. It is well known that T-cells play an important part in the defense of
the host against mycobacterial infections [92–94]. Specifically, the neurotransmitter taurine
was identified in relation with the susceptibility of cattle towards bovine tuberculosis [95].
Glutamate is likewise a neurotransmitter known for its effect on the immune system for
the regulation of T-cell activity [96,97]. Finally, Ras homology GTPases (Rho GTPase) are
proteins involved in the critical regulation of signaling pathways upon bacterial entry at the
site of infection, and therefore are involved in innate immune responses, particularly in the
multiplication of immune cells. It is essential to coordinate the immune responses at this
point to prevent the neighboring tissue from taking damage from inflammation. Involved
in the tight regulatory roles of multiple immune functions, these signaling proteins have
been reported as targets of Mycobacterium tuberculosis during the host cell invasion, which
might facilitate the pathogenesis of the bacteria [98–100].

3.4. Egg Weight Dataset

Similarly to the previous dataset, MIDESP was used to analyze the EW dataset, which
contains a quantitative phenotype. As a first step, we detected 3116 single SNPs that were
significantly associated with the trait. Based on these SNPs, we measured the epistatic
interactions between the SNP pairs and the phenotype and obtained 1,071,464 SNP pairs in
total that equate to 0.25% of all possible pairs under study. After mapping these pairs to a
gene–gene interaction network, we were able to identify 211 genes as MIDESP-significant.
The analysis of their roles regarding egg weight was again carried out using their enriched
GO terms (see treemap depicted in Figure 8 and Supplementary Table S2).

For egg weight, one of the major GO categories that emerged as a result of the gene set
analysis was the fatty acid ligase activity. Fatty acid ligases belong to the ligase family of
enzymes that take part in the biosynthesis of lipids [101]. Lipids constitute a major portion
of the nutrients found in egg and are primarily contained in egg yolk, which constitutes
31% of the total egg weight [102]. Multiple genes encoding fatty acid ligases have been
reported to play important roles in the laying performance of birds [103–105]. In this
regard, we were able to discover many genes with molecular functions associated with
acyl-CoA ligases, a group of enzymes, which are known to play important roles in the lipid
synthesis by making the chemically inert fatty acids undergo activation into acyl-CoA [106].
This activation comprises an ATP-dependent reaction catalyzed by ligase enzymes in the
presence of Mg2+ and CoA [107]. The usage of ATP and Mg2+ in this process can also
explain the role of adenyl nucleotide binding and magnesium ion binding, two other
categories identified in our analysis. Gated channel activity is another important GO term
found in this analysis. These genes ensure the transportation of nutrients and minerals,
which are required for the development of the egg. More importantly, for the synthesis
of the eggshell, which contributes around 9% to the total egg weight [102], large amounts
of calcium ions are supplied to the uterine fluid by transepithelial transport [102,108].
This transepithelial transport occurs with the help of ion channels, ion pumps and ion
exchangers in the reproductive tract of birds and the energy required for these processes
is provided by the metabolisms of ATP molecules [108]. Both nucleotide binding and
gated channel activity have been reported in association with egg weight and eggshell
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development in chicken [54,55]. Furthermore, genes related to protein transmembrane
transport activity were also identified in our analysis, which can regulate the transportation
of the large number of proteins found in an egg [102,109]. The gene set analysis further
reveals other activities pertaining to molecular bindings at different levels, which can play
roles crucial for the development of egg.

1 
 

Figure 8. Gene Ontology (GO) treemap for genes associated with egg weight. The boxes are grouped together based on the
upper-hierarchy GO term, which is written in bold letters.

3.5. Comparisons with Existing Methods

To investigate the performance of our new method, we were further interested in mak-
ing pairwise comparisons between the results of our MIDESP, PLINK [57], GBOOST [110],
epiGPU [111] and MatrixEpistasis [112]. Although all these methods take a genotype–
phenotype dataset as input and report epistatic SNP pairs as result, their applicability
differs based on the phenotypes. While MIDESP and PLINK can be applied to qualitative
as well as quantitative phenotypes, the other methods are restricted to one type. GBOOST
only deals with qualitative phenotypes, while epiGPU and MatrixEpistasis only analyze
quantitative phenotypes. We chose these tools since they have previously been used for
pairwise epistasis detection on real datasets, as well as for comparison studies [41,113–119],
and ran them with their default parameters. It is important to note that for this comparison
study, we applied MIDESP with and without APC correction. While the MIDESP without
APC is in line with the conventional mutual information (MI)-based methods for epistasis
detection [39,46,80,120], the incorporation of the APC approach is completely novel and
necessary to separate the correct epistatic signals from the background.

The results of this comparison are twofold. First, we compared the results of our
method using the BT dataset with those of PLINK, GBOOST and the conventional MI-based
metric, since the existing MI-based approaches are only applicable to qualitative pheno-
types [39,46,80,120]. Second, we compared the predictions of MIDESP on the quantitative
EW dataset with those of PLINK, epiGPU and MatrixEpistasis. However, our attempt
to apply MatrixEpistasis to this dataset was not successful due to its very high memory
consumption (700 GB of memory was not enough).



Biology 2021, 10, 921 14 of 22

The application of these methods results in the detection of strongly varying numbers
of SNP pairs as epistatic interactions, which are given in Table 2.

Table 2. Number of SNP pairs that were found to be an epistatic interaction by the different methods.
BT and EW stand for bovine tuberculosis and egg weight, respectively.

Dataset #MIDESP #MIDESP_NoAPC #PLINK #GBOOST #epiGPU

BT 3,799,984 3,799,984 4,982,695 346,632 -
EW 1,071,463 1,071,463 1,817,817 - 572,914

To make the predictions of the methods comparable, in this comparison analysis for
both types of the traits, we considered 346,632 and 572,914 epistatic SNP pairs, which
corresponds to the minimum numbers of SNP pairs found by GBOOST and epiGPU for the
BT and EW datasets, respectively (see Table 2). Based on these top SNP pairs, we further
performed an overlap comparison between the methods and visualized the results using
UpSet plots in Figures 9 and 10, respectively. Although all of these methods perform a
search for epistatic SNP pairs, Figures 9 and 10 clearly show that they provide quite distinct
results, with only little overlap between them. This finding is in line with the comparison
study performed in [113], which also reported divergent results between different methods
for epistasis detection. The reason for that may be explained due to differences in the
underlying algorithms, even though the three other methods are ultimately based on
logistic and linear regression, respectively. While PLINK performs a regression with an
interaction term and tests whether the coefficient for the interaction is significant, GBOOST
considers the difference in the likelihood of a linear model with interaction compared
to that of a model without as a sign for epistasis using approximations to speed up the
process and filter out SNP pairs. On the other hand, epiGPU treats the different genotype
combinations as different classes and calculates differences in the class means compared to
the population mean.

Consequently, the results of this overlap analysis clearly demonstrate that these
methods carry quite distinct information about epistatic interactions, due to the different
measures they use. The finding of this comparison analysis is also in agreement with the
previous study [113] and indicates that each of these methods takes into account a different
manner of epistatic interactions, and thus they can work complementarily with each other.

Figure 9. Number of epistatic SNP pairs detected for the BT dataset and their overlap between four
methods represented in matrix layouts using the UpSet technique [121]. Black circles in the matrix
layout indicate which methods are part of the intersection.
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Figure 10. Number of epistatic SNP pairs detected for the EW dataset and their overlap between four
methods represented in matrix layouts using the UpSet technique [121]. Black circles in the matrix
layout indicate which methods are part of the intersection.

4. Discussion

It has previously been shown that information theoretical methods based on mutual in-
formation (MI) are powerful approaches for the detection of epistatic interactions [39,41,43–46].
Not only here, but also in many other fields, mutual information has been used as an effec-
tive measure for the association between variables including linear as well as non-linear
relationships [53,61,63,69,122–125]. However, the general applicability of a method, partic-
ularly in the field of animal and plant breeding, requires it to be usable for qualitative as
well as quantitative phenotypes. For this reason, an extension of the previous MI methods,
which are only suitable for qualitative traits, is required, and thus we adapted the estimator
developed by Ross [52] for the case of MI between discrete and continuous variables. As
shown in Section 3.1, the estimator can be successfully used to detect associations between
SNPs and quantitative phenotypes. Surprisingly, we found that a higher k value improves
the power of the measure when it comes to the detection of associations involving traits of
a low heritability (see Figure 4), although previous studies recommended a small value of
k for this purpose [52,79].

The progress over the last decade in the field of genome sequencing and genotyping
arrays has increased the amount of available genotype data tremendously. With the ever-
increasing amount of data, however, comes the challenge to provide tools that can handle
such datasets in a feasible computation time. To address this challenge, redundant SNPs can
be removed through LD pruning with a high threshold [56] (see Section 2.1) but there are
still very high numbers of SNPs in a dataset to analyze all possible pairs. A commonly used
approach to reduce the computational effort is to preselect sets of SNPs that are deemed
as important and only analyze those, as is performed by BOOST and other methods
[38,126,127]. Such an approach can potentially eliminate some SNPs which nevertheless
influence the phenotype in interaction with another SNP. To overcome this problem, in
our proposed method, we consider all SNP pairs where at least one SNP shows a strong
association signal to the phenotype, which ensures a tractable computational time for
MIDESP. For this step, we followed the approach outlined by Gültas et al. [63,64] to separate
the SNPs with strong association signals from the remaining SNPs (see Section 2.2.3).

However, the sole consideration of SNPs with strong association signals could lead
to a wrong interpretation in epistasis analysis since the NMI values are influenced by the
association of the single SNPs with the phenotype, as we demonstrated by means of an
example in Figure 5. This can result in the detection of false positive interactions that are
only found due to the effect of one SNP. To minimize this influence, the application of the
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average product correction (APC) is essential, which was developed by Dunn et al. [53].
Moreover, Meckbach et al. [69] showed that the APC is universally applicable to MI-based
methods to estimate the expected (background) association level of a variable. Although
the concept of the APC theorem seems to be suitable for our purposes, its application would
require a huge additional computational overhead. Therefore, we followed a strategy based
on the three different distributions of the SNPs (see Section 2.2.3) for the efficient estimation
of the expected level of background associations of SNPs. In particular, in Equation (9) we
randomly choose the SNP Xl from the set of SNPs that follow the G2 distribution. This
process ensures that the expected background level of SNP Xi is clearly higher than it
would be if estimated based on the whole set of SNPs. Consequently, the removal of the
estimated background associations (APC values) from the obtained NMI values results in
the separation of correct epistatic signals caused by SNP pair and phenotype interactions
from background signals. Being of particular interest, in our analysis, we illustrated the
effectiveness of the APC based on the BT dataset in Figure 6. This analysis reveals that the
over-representation of SNPs with a large single effect among the pairs with the highest
NMI values can be considerably reduced based on the application of APC, which in turn
results in the detection of further associated genes.

The results we present in this study for the two different genotype–phenotype datasets
show that the functional analysis of the detected genes provides essential information to
decipher the genetic background of the traits under consideration. Surprisingly, we were
able to clearly identify higher numbers of associated genes for the bovine tuberculosis
dataset with a qualitative trait than for the egg weight dataset with a quantitative trait.
The reason for this can be explained due to the large difference in the initial numbers of
SNPs in both datasets (see Table 1). In comparison to the large numbers of associated genes
detected by MIDESP, both original studies [58,59], in which the datasets were published,
were only able to find two significantly associated genes for the respective dataset using
standard GWAS approaches.

To further investigate the impact of the APC theorem in the epistasis analysis and to
gain more insight into its influence on the detection of genes, we analyzed both datasets
with and without the application of the APC (see Figure 6). It can be assumed that without
the APC, the results of MIDESP are in line with previous methods that utilized MI for the
detection of epistatic interactions for qualitative phenotypes [39,46,80,120]. The analysis
reveals that the application of the APC leads to a considerable increase in the number
of associated genes for both datasets. For example, only 135 and 177 significant genes
were found for the BT and EW datasets without using the APC, respectively. However,
the correction of the background association using the APC results in the detection of 511
and 211 associated genes, respectively. The comparison of these genes showed that while
59 genes overlap for the BT dataset, 51 overlapping genes are found to be significant for
the EW dataset. The functional analysis of these genes based on their GO categories reveals
that many of the identified genes are involved in the regulation of the immune system
regarding bovine tuberculosis, with several of the functions having a reported association
with mycobacterial infections. The genes that were detected for the egg weight dataset, on
the other hand, are mainly related to the production of important components of the egg
and the transportation of these components to the uterine fluid. Overall, our results indicate
that MIDESP is an effective method for the detection of epistatic interactions that for the
first time enables the analysis of quantitative phenotypes using MI and further extends
the existing information theoretical methods by correcting the influence of background
associations of the SNPs through the application of the APC theorem.

5. Conclusions

Today, it is well established that MI-based methods are suitable and effective ap-
proaches for the detection of epistatic interactions for qualitative phenotypes. However,
these approaches are not directly applicable for quantitative phenotypes, although epistatic
interactions for quantitative traits are of great interest in life sciences. To address this
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limitation of the existing MI-based methods, we extend their applicability for the first time
in this regard to quantitative phenotypes using a kth-nearest neighbor-based estimation
technique. Another important challenge for the detection of epistatic interactions is the
control of the effect of background associations in the genotype–phenotype datasets, which
lead to false interpretation and thus the overestimation of the role of some SNPs in the epis-
tasis. To deal with this issue, in our proposed method, MIDESP, we additionally modeled
these background associations by adopting the APC theorem, which we extended for the
multivariate mutual information. Our findings show that the MIDESP algorithm is appli-
cable to genotype–phenotype datasets with qualitative as well as quantitative phenotypes
in a tractable computational time. For example, the analysis of the BT dataset took only
36 minutes, while the analysis of the EW dataset was completed in 105 minutes. These
runtimes were achieved on a dual Intel® Xeon® Gold 6138 Processor using 70 threads.
Our results further indicate that the biological processes of the identified genes in the BT
and EW datasets are strongly related to both bovine tuberculosis and the egg weight of
chickens, respectively. To the best of our knowledge, MIDESP is the first method that
models epistatic interactions using the MI metric for both qualitative and quantitative
phenotypes and explicitly corrects for background associations. The program is written in
Java and is freely available as a JAR file from https://github.com/FelixHeinrich/MIDESP,
accessed on 14 September 2021.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biology10090921/s1, Table S1: results of the gene set analysis for the BT dataset, Table S2:
results of the gene set analysis for the EW dataset.
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