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Simple Summary: In order for a cell to divide into two cells, it must first copy its DNA. Although the
time required for this process tends not to vary much, many examples of the importance of variability
have been reported. In this review, we discuss the methods used to study this question, present some
of the examples of variation, and attempt to explain the factors that determine the time required in
simple terms. We will show that the overall time depends on the rate of DNA replication within a
region, and on the temporal organization of the regions relative to each other.

Abstract: The duration of the cell cycle has been extensively studied and a wide degree of variability
exists between cells, tissues and organisms. However, the duration of S phase has often been
neglected, due to the false assumption that S phase duration is relatively constant. In this paper,
we describe the methodologies to measure S phase duration, summarize the existing knowledge
about its variability and discuss the key factors that control it. The local rate of replication (LRR),
which is a combination of fork rate (FR) and inter-origin distance (IOD), has a limited influence
on S phase duration, partially due to the compensation between FR and IOD. On the other hand,
the organization of the replication program, specifically the amount of replication domains that fire
simultaneously and the degree of overlap between the firing of distinct replication timing domains,
is the main determinant of S phase duration. We use these principles to explain the variation in S
phase length in different tissues and conditions.
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1. Introduction

In order for a cell to pass its genetic material on to its progeny, it must first make a
complete copy. This process, the synthesis of DNA, is highly regulated in order to ensure
that it is successfully completed every generation. It is customary to divide the cell cycle
into the following four phases: the pre-DNA synthesis phase (G1), the synthesis phase (S),
the post-DNA synthesis phase (G2), and mitosis (M) [1,2]. In bacteria, G1, S and G2 are
known as B, C and D periods, respectively. Although the order in which the genome is
replicated has been studied in intricate detail (for example, see reviews [3–7]), the duration
of replication has only recently been appreciated as important in cell development and fate
(see Section 2.2). In this review, we will aim to take a step back and discuss how we can
study the overall duration of S phase, what is known about this metric, and the factors that
determine and regulate it. We will propose a simple model to explain how the duration of S
phase is determined by the rate of replication of individual replicons, and by the temporal
organization of replicon families.

2. Main
2.1. Measuring S Phase Duration

Measuring the total duration of a cell cycle is relatively easy, and can rely on the
increase in cell number per time [8–11], coupled with methods to quantify the proliferative
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fraction, such as Ki67 labeling [12,13]. However, measuring the duration of individual
stages of the cell cycle is much more challenging.

A rough estimation of the duration of each cell cycle stage can be achieved by FACS-
based DNA content measurements that measure the fraction of the cells in each cell cycle
stage. By measuring the amount of DNA in each cell of a population, it is possible to deter-
mine what percentage of the cells have 2N DNA content (G1), 4N (G2/M), or somewhere
in between (S phase). In unsynchronized culture this is indicative of the relative duration
of each stage (Figure 1A). The limitation of this simple and powerful technique is that it
gives only relative results, namely one can determine by FACS what proportion of the cell
cycle each stage lasts (without distinguishing between the G2 and the M phases) but with
no independent knowledge of the duration of the entire cell cycle, it cannot be translated
into actual units of time.
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Figure 1. Methods to measure S phase duration in an unsynchronized population. (A) Flow Cy-
tometry using a DNA-dye to Quantify the Amount of DNA Present. This allows the percentage of
cells in S phase to be calculated. (B) Cumulative Labeling method. Cells are exposed to increasing
pulses of labelled nucleotides. When 100% of cells are labelled, it can be deduced that the pulse
length was equal to the duration of G1+G2+M. An approximation for the slope can be calculated
following reference [14]. (C) Double Labeling. The proportion of cells labelled only with the second
dye indicates rate of exit from S phase. (D) Percentage Labelled Mitosis. Cells are exposed to a short
pulse of labelled nucleotides (green arrow) and then increasing chases (black dashed arrow). The
percentage of mitotic cells containing labelled nucleotides is tracked over time. (E) Pulse Chase Pulse.
Cells are exposed to short pulses of different colors (green and red arrows), with increasing chases
in between (black dashed arrow). The percentage of S phase cells labelled with both dyes is shown
(F) EdU Intensity. Cells are exposed to increasing pulses of EdU (green arrow). When maximal
intensity is reached it indicates that a population of cells have been exposed to EdU for the entire
length of S phase. Figure created with Biorender.com, accessed on 5 April 2022.

In bacteria this method is difficult to use, as bacteria can start a new round of replication
before the previous round has completed [15]. However, by synchronizing the culture,
preferably through a non-chemical method, and releasing cells into media with labelled
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nucleotides, it is possible to track the rate of synthesis of DNA and follow when a new
round of replication has started. This makes it possible to calculate the time required for
one round.

In order to simultaneously measure the proportion of cells in S phase and the absolute
cell cycle time, several techniques were developed based on the incorporation of modified
nucleotides (usually BrdU or EdU, or in the past, tritiated thymidine) during replication.

The cumulative labelling method (CLM) uses increasing exposure times to the mod-
ified nucleotide and measures the changes in the proportion of labelled cells over time
(Figure 1B) [14,16–18]. The initial proportion of labelled cells indicates the percentage
of cells in S phase at any given time, and the rate of increase of labelled cells allows the
calculation of total cell cycle time (which can then be used to find S phase duration). A
similar approach, also based on measuring the rate at which cells enter S phase, uses
consecutive pulses of EdU and BrdU in order to determine the fraction of single-labelled
cells. The fraction of cells labelled only with the second color can be used to calculate S
phase duration (Figure 1C). These single-stained cells entered S phase during the time
period of the second pulse, and they show what proportion of S phase duration is occupied
by the second pulse. This in turn makes it possible to calculate the S phase duration. The
advantage of this method over the CLM method is that it allows S phase duration to be
measured in a single experiment and does not require conducting measurements over
multiple time points. However, a key limitation of this method is the assumption that the
sensitivity of incorporation and detection of both analogues is similar. If one analogue is
preferentially detected, one can no longer rely on the fraction of single-labelled cells to
determine S phase duration. In addition, a single time-point method cannot detect whether
the population is uniform or composed of subpopulations with distinct cell cycle features.
In the CLM method, which measures the accumulation of cells in S phase at multiple
time points, a mixture of two populations will be seen as a different rate of S phase cell
accumulation and a change in the slope of the graph.

Other methods are based on measuring the rate of exit from S phase. This can be done
by pulse labelling cells with BrdU followed by a chase of increasing length. Originally, the
exit from S phase was measured by counting the percentage of labelled mitotic (PLM) cells,
which allows the determination of the length of G1, G2 and S phases [19–22] (Figure 1D).
Briefly, cells are observed under a microscope and mitotic cells are identified. For each
timepoint (chase-length), the percentage of the mitotic cells who have incorporated the
signal is calculated. By noting the minimum and maximum chase length for mitotic labelled
cells, the duration of each phase is calculated. Later on, this method was adapted for FACS,
using BrdU antibody as well as a quantitative DNA stain such as PI or DAPI, to determine
the percentage of S phase cells that reach G2 and G1 phases. It is also possible to add a
second pulse after the chase to identify the length of time after which cells labelled with the
first pulse are no longer labelled with the second (Figure 1E) [23]. A variety of formula have
been published to calculate S phase duration from pulse-chase FACS data [24–26], and it
has been adapted to also work as a single-sample assay [27,28]. However, this methodology
is not robust and is very sensitive to the model used.

Another approach is based on EdU intensity, measured by flow cytometry, of cells that
were pulse labelled with EdU for increasing durations. EdU intensity increases only for
pulses shorter than the length of S phase, and reaches saturation when the pulse length
is equal to the length of S phase [29] (Figure 1F). By conducting simple analysis of the
FACS data it is also possible to calculate the time spent in G1 and in G2/M. Although this
method worked well in its proof of concept, it is very sensitive to accurate and quantitative
measurements of EdU intensity, which is not always possible, and it has not been widely
used in recent publications.

A different approach for measuring the duration of cell cycle phases is based on
live-cell imaging of cells labelled differentially in the various cell cycle phases. The FUCCI
system, which genetically fuses fluorescent markers to two different proteins whose ex-
pressions oscillate inversely throughout the cell-cycle, allows measuring G1 and S/G2
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durations [30]). In order to be able to differentiate between S and G2, another marker
was added to the system (PCNA) that allows the detection of S phase cells [31,32]. These
methods are based on live cell imaging of cells grown under the microscope for long times,
conditions which can very possibly affect cell cycle parameters. Moreover, it requires the
generation of specific cells carrying the labelled proteins and thus cannot be conducted in
every system. Yet, it gives the advantage of being able to measure variability within the
population and not only the average durations.

All of these methods are generally applicable and in principle should work in any type
of organism. There are, however, some requirements that have to be met: first, BrdU-based
methods can only work in organisms that can incorporate BrdU. Secondly, the culture must
be unsynchronized in order for the fraction of labelled cells to indicate the population’s cell
cycle dynamics. Finally, most of the methods will work only if the cell have similar S phase
durations and for some methods also similar DNA contents.

2.2. Variability in Duration of S Phase

For over 50 years there have been reports of variability in S phase duration between
cells [33,34], but these used to be thought of as anomalies and the S phase duration was
broadly viewed as constant [35,36]. Yet, accumulating information suggests that there is a
high degree of variability in S phase duration (Table S1). Recently it has been proposed
that variability in S phase duration may play a regulatory role and be associated with
cell fate transitions, with shortened S phases associated with changes in cells fate such
as differentiation, whereas longer S phases are correlated with stem cell maintenance
(reviewed in [37]). This realization has mirrored the understanding that phenotype is not
just a result of the linear DNA sequence, but involves multiple layers of regulation. This
has led to the understanding that the role of S phase is not just to replicate the genome, but
also to package it appropriately. DNA replicated at different stages of S phase has different
chromatin structure which would indicate that the passage of a cell through S phase can
affect and reflect its functionality.

Different organisms differ in the time it takes to replicate their genomes. Available data
indicates significant variation between phyla and between developmental stages. Table S1
includes representative data for a range of bacteria, archaea, plants, metazoan and diatoms.

Many metazoans undergo a series of very rapid cell divisions shortly after the embryo
is fertilized, requiring startlingly quick replication of their genomes. The quickest recorded
genome replication is found in early Drosophila embryos, where the entire 240 Mbp of DNA
is replicated in around 3–4 min [38]. Xenopus laevis embryos divide on average once every
35 min for the first 12 divisions [39] and a similar phenomenon has been seen in a variety
of organisms including Bufo cognatus [40], Hydractina [41], and zebrafish [42]. Relatively
rapid embryonic cell cycles can be found in all phyla [43] including in mammals, which
complete their entire cell cycle in around 2.2-h in early embryonic mice and rats (6.5 and
8.5 days, respectively) [44,45].

In animals, after the rapid embryonic divisions most organisms tend to have much
slower S phases. For example, the frog cell line A-6 has an S phase of 13.8 h at 28 ◦C [46],
and the Drosophila Kc cell line requires 10 h, a stark contrast with the earlier rapid cycles.
The fastest somatic mammalian cells which we have seen reported are activated CD8+ T
cells who have S phases of under 5 h ex vivo [47] and in vivo CD8+ T cells can complete
their whole cell cycle in under 2 h [48]. The vast majority of mammalian S phases are
around 8–10 h (see Table S1).

2.3. Genome Size

A naïve yet appealing assumption would be that S phase duration is associated
with the size of the genome. Intuitively, the more DNA present in a cell, the longer the
synthesis should take. Indeed, initially, a correlation between genome size and S duration
has been shown in a variety of plants [49–51], though other studies failed to find a clear
correlation [52–55]. It is possible that the association with genome size is found only in
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organisms including Allium and Tradescantia, with massive genomes of tens of Gbp [53].
Regardless, genome-size cannot be the sole determinant of S phase duration, as despite
containing 200 times more DNA, human S phases are only approximately 35 times longer
than those of budding yeast. Similarly, the differences in S phase duration between tissues
in the same organism (see previous paragraph), demonstrates the involvement of other
factors, other than genome size, in determining S phase duration. We have attempted
to collate a wide variety of known measured S phase durations (see Table S1. which is
certainly not exhaustive, but aims to be representative of all organisms) and it appears
that broadly speaking there is no correlation, with the exception of some of the very large
plant genomes. It is possible that in the extremely large genomes the mechanisms usually
employed to maintain S duration (such as organization of families of replicons, discussed
below) are insufficient.

It would seem that we could easily resolve the question of whether S phase duration is
correlated with genome size by looking at polyploid models. An easy example of this is in
plants where it is possible to compare different ploidy within a species. In Zea mays roots it
has been demonstrated that diploid and tetraploid cells have the same S duration [56], and
the same has been seen in other plants [57]. However, ploidy is not conclusive proof that
genome size does not affect duration of S phase because if the DNA content is doubled, there
will be twice as many copies of the genes for replication factors and therefore replication
factor concentrations will increase (assuming equal activity of genes in different ploidy
nuclei). Indeed, human and monkey haploid and diploid embryonic stem cells have similar
S phase durations [58] (Nissim Benvenisty, personal communication). Accordingly, one
would expect that aneuploid cells will have shorter or longer S phase duration due to
imbalance between replication resources and genome size. This helps explain the increased
heterogeneity in S phase duration in aneuploid yeast cells [59].

2.4. Rate of Local Replication and Replication Organization

In order to consider the factors which determine the time taken to replicate a genome,
we find it helpful to use the analogy of a simplified construction of a new neighborhood.
For the sake of simplicity, we will consider the following parameters (with their biological
counterparts in parentheses): the number of bricklayers per house (the density of replication
origins), the speed of each bricklayer (replication fork rate), the availability of bricks
(availability of replication factors), the subdivision of the neighborhood into smaller areas
(the number of replicon temporal families), and the presence or absence of worker strikes
(replication checkpoints). The total time required is dependent on two principal factors:
how long it takes to build each house (or the rate of house buildings), and the average
number of houses being built simultaneously. Each of these two considerations depends
on two further things. The house building rate is determined by the number of bricklayers
working on the house, and how fast each of them is working.

The average number of houses being built simultaneously is determined by how many
areas the neighborhood is divided into, and also by how staggered the starts of these
areas are from each other. The more areas we divide the neighborhood into, the fewer
resources (e.g., builders and bricks) the whole neighborhood will need at any given time.
For example, if there were no subdivisions at all, and all of the houses were considered to
be one area, all of the houses will be started at the same time and the neighborhood will be
completed in the minimum time. If, however, there are three projects of houses, and only
one is being worked on at any given time, the neighborhood will require much longer to be
built. It is clear that if all the workers were told to strike for a day, the time taken for the
entire neighborhood to be built would increase.

In this analogy, the rate of house building represents the local replication rate (LRR),
or 1/the time required to replicate one replicon. We normally measure this as an average of
multiple genomic regions in multiple cells, by using DNA combing techniques. This gives
us the replication fork rate (FR) which is equivalent to how fast the builder is working,
and the inter-origin distance (IOD) which represents the number of builders working on
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one house (or the number of origins within a domain; Figure 2A). The average number
of houses being built is the number of active replication forks genome wide (and not just
within one domain). This is determined by the number of replicon temporal ‘families’ the
genome is divided into, and the extent to which these families are staggered or overlap
(Figure 2B). Finally, the worker strike is analogous to a pause in DNA replication due to the
activation of the intra-S check point.
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Figure 2. Illustration of factors which can potentially determine S phase duration. (A) Local repli-
cation rate (LRR). The left DNA replication domain has got a fast fork rate (hence, large replication
bubbles), and a high origin density (and therefore short IOD). This means that it has a high LRR
and will therefore be replicated quickly. The domain on the right has got a slow fork rate and low
origin density. This means that it has a low LRR and will therefore take a long time to be replicated.
(B) Global replication organization. Each nucleus is a snapshot of the middle of S phase. Each stretch
of DNA represents one domain, and the legend and color code are explained at the bottom of the
figure. In the left nucleus, the temporal families are big, with 3 domains in orange and 3 in pink.
In addition, there is an overlap between the replication of the pink domains that start replicating
before the completion of the replication of the orange domains. This demonstrates a short S phase.
The nucleus on the right has no overlap of replication and also only has 2 domains per family, both
of which mean that S phase will take longer. Figure created with Biorender.com, accessed on 5
April 2022.

It is interesting to note that, in our house building example, the number of houses
in the neighborhood has no effect. If you add more houses to the pre-existing housing
projects, the neighborhood will still be completed in the same amount of time, provided
that the house-to-builder ratio is maintained. However, if you were building just one house
and only had one builder to do it, then the required time would depend on the size of the
single house, and the speed at which the builder worked. This matches our discussion in
Section 2.3 regarding the lack of correlation between genome size and S phase duration.
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In bacteria the entire genome is replicated by a single origin [60] (for a review of the
number of origins in archaea, see [61]) and therefore the LRR is determined only by the
fork rate. In addition, with only a single origin there cannot be multiple replicon families,
and therefore the organization of active replication forks cannot determine the duration
of the period required to synthesize DNA. Accordingly, the time needed to complete the
replication in bacteria can only be a function of FR and of the size of the genome. Indeed,
it has been shown that changing nucleotide levels can modulate both prokaryotic FR and
C period [62]. We are not aware of any studies comparing the time taken to replicate one
copy of the bacterial genome with the genome size, but we assume that these would be
highly correlated, and any discrepancies must be explainable by the LRR, which in turn
depends solely on FR.

In eukaryotes the situation is much more complex. Because there are multiple repli-
cons, the LRR is affected not only by speed (FR) but also by the number of forks simultane-
ously active. The contribution of replication organization to S phase length depends on both
the length of the longest replicons, and on the timing of activation of the different origins.
Although we tend to use measurements for FR and IOD which measure the averages, some
replicons might be more responsible for the duration of S phase than others.

With this in mind, we will examine each of these factors and summarize known
regulators of each.

2.5. Eukaryotic Local Replication Rate Depends on FR and the Number of Active Origins

The overall amount of DNA synthetized per unit of time (also known as replication
capacity or replication potency) depends on the fork rate (FR), and the number of active
origins (Figure 2A). While measuring FR is simple using the DNA combing methodology,
the estimation of the number of active origins is more complex. In recent years it has
become possible to use super-resolution live microscopy to visualize individual replicons
in real time [63]. By multiplying replication foci numbers by intensity, it is possible to
directly measure the amount of replication in a domain, at any given moment, which could
previously only be inferred. An indirect way to infer the number of active origins is to use
DNA combing to measure the average IOD [64]. A decrease in the IOD means that more
origins are active in a region, yet it fails to measure what is happening at that time in other
regions of the genome.

Restricted replication resources limit both LRR and the total number of active replicons.
In other words, the raw materials can limit the amount of building per house, but also the
amount of building in the neighborhood as a whole.

Interestingly, the LRR of the cells seems to be robust to changes in either FR or IOD,
since FR and IOD are usually coupled and can compensate for each other [65–69]. Decreas-
ing FR, for example by decreasing the nucleotide levels with hydroxyurea (HU) [70–72]
or by interfering with DNA polymerase activity with aphidicolin [73–75], is followed by a
decrease in IOD. The opposite is also true—interfering with origin firing, for example by
depleting Cdc7 or Orc1 in yeast, causes an increase in FR [76]. Similarly, in an osteosarcoma
cell line, both FR and IOD increased by approximately 50% as a consequence of knocking
down various proteins involved in origin firing, such as Treslin [77]. Inhibiting the check-
point protein ATR causes a decrease in FR [69] that is thought to be a consequence of the
activation of additional origins, further demonstrating the coupling between origin density
and FR. The change of IOD as a consequence of modifying the FR can be explained as a
passive mechanism—a slowed FR gives more time for dormant origins to be activated [67],
while faster forks reduce the likelihood of activation of neighboring origins due to their
passive replication by the ongoing fork [65,68,76,78,79]. On the other hand, the opposite
association, namely the effect of changing the IOD on FR, cannot be explained by a passive
mechanism, which suggests that there are cellular mechanisms to ensure LRR homeostasis.
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2.6. Fork Rate

The actual FR depends on several factors. (i) the intrinsic rate of the polymerase;
(ii) concentration of nucleotides and other replication factors; (iii) chromatin that needs to
be evacuated by the fork; (iv) obstacles (such as DNA damage and transcription machinery)
that slow down the fork, pause it or even cause fork collapse. We will summarize what is
known about each of these components.

The intrinsic replication processivity of the polymerase varies for different polymerases
(reviewed in [80]), can be affected by mutations [81,82] and by aphidicolin, a drug that
interferes with B-family DNA polymerases activity by competing with their ability to
incorporate nucleotides [75,83]. In addition, it can be affected by temperature as has been
seen in a variety of organisms [84–86].

DNA replication consumes dNTPs and therefore its rate depends on a constant supply
of nucleotides [87]. dNTP levels increase by a factor of 3–6 in S phase compared to G1 [88],
yet they are still limiting and at any given moment, the nucleotide pool is sufficient to
replicate only 2% of the genome [89]. Thus, during replication a constant nucleotide
supply, facilitated by RNR (ribonucleotide reductase) activity, is required to maintain the
required dNTPs levels [90]. In normal, unperturbed S phase, ATR activity is responsible
for maintaining dNTPs. Cells do not sense nucleotide levels prior to S phase, and instead
they use ATR pathways (activated by nucleotide imbalance even without significant DNA
damage) to increase nucleotide levels during S phase [91,92] as a result of the imbalance
caused by the start of DNA synthesis [90]. HU is an RNR repressor, which reduces dNTP
levels consequently reducing fork speed [70], which can be rescued by supplementing
the cells with dNTPs. In addition, perturbations in dNTP pool levels have been achieved
by RNR mutations [90,93,94], checkpoint activation [95,96]), and by artificially adding
nucleotides [78].

The FR can be regulated by additional replication factors asides from dNTPs. Another
factor which has been implicated as being key in controlling LRR by regulating FR is
levels of the E2F family of transcription factors [97]. E2F-dependent transcription is known
to upregulate transcription of replication factors, and is a key factor in the regulation of
nucleotide concentrations [98].

Other known regulators of FR include the licensing protein MCM2 [99], ISG15 (known
to regulate the RECQ1 helicase [100]), the PrimPol polymerase [79], Mrc1 (as discussed
below regarding organization), the SUMO deubiquitinase USP7 and the p53/p21 path-
way [77].

The FR can be increased by knocking down proteins associated with firing of origins,
such as Treslin and MTBP, or proteins involved in the regulation of replication such as LIG1,
FEN1, and DNA damage response like p21 or PARPi (e.g., Olaparib) [77]. The same is true
of depletion of Orc1 and Cdc7 in yeast, both involved in origin activation [76]. In these cases,
it is thought that the FR increases through an indirect increase in restrictive replication
factors (less replication allows higher dNTP concentrations for the remaining forks).

Eukaryotic DNA is packed into chromatin and the replication fork must evacuate the
histones before replication and allow time for their reassembly following replication [101].
In contrast, prokaryotes lack histones and this has been suggested to be the reason for the
large difference between eukaryotic and prokaryotic FR (e.g., prokaryotes 20–60 kb/min;
eukaryotes 1–3 kb/min [102,103]). In yeast, knocking down the acetyltransferase Rtt109 causes
FR acceleration, probably by affecting nucleosome reassembly post-replication [104,105]. Live
cell microscopy was used to directly measure the replisome progression in individual
yeast cells and it was seen that the Winged Helix Domain (WHD) of the Cac1 histone
chaperone complex is important for maintaining FR [106]. In addition, a number of proteins
involved with chromatin transcription and nucleosome remodeling have been implicated
in modulation of FR [101].

DNA damage causes stalling and in severe cases, collapse, of the replication fork,
thereby affecting the actual speed at which the replication proceeds. Indeed, many factors
that cause DNA damage affect FR in a checkpoint-independent manner [107]. Interestingly,
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HU affects FR not only through the dNTP pool but also by its effect on the reactive oxygen
species (ROS) balance which causes DNA damage (reviewed in [108]). ROS are found to be
elevated in cancer cells [109], and this leads to slower fork progression [110].

The checkpoint protein ATR is also known to have both a role in regulating nucleotide
balance, and in limiting DNA damage by activating the intra-S checkpoint [76], both of
which can affect FR [65,111].

Asides from the perturbations of FR which we have listed, there are various reports of
natural regulation of FR. It has been shown that as cells progress to become pluripotent the
FR increases, possibly through regulation of the level of available replication factors [112].
Similarly, the FR may change along S phase. Early studies showed a 3-fold increase in FR at
late S phase compared with early S phase in mammals [113,114] and plants [115], however
more recent findings have shown no such trend [116].

In addition to its role in establishing replication capacity, it is possible that fork rate can
serve as a regulator of cell fate even where it does not change S phase duration [112]. It was
shown that the slowing down of FR through a number of different techniques, stimulated
embryonic stem cells to become totipotent. The slow FR and the higher density of origins
was also accompanied by replication timing (RT) changes in specific regions of the genome.

2.7. Inter-Origin Distance (IOD)

IOD reflects the replicon size and can be measured directly using DNA combing. The
IOD can vary between species and tissues. In yeast the average IOD is around 38 kb, in
Chinese hamster, Drosophila and vascular plant cells the average is around 65–75 kb [117–119].
A comparison of cancerous and normal human keratinocytes found mean IODs of 124 kb
and 120 kb respectively [68], while HeLa cells have been reported to have an IOD of
188.7 kb [63]. Two mouse cell lines, fibroblasts and stem cells, have IODs of 136 kb and
139 kb, respectively [118]. The Drosophila early embryonic stage has a very short IOD of
3.4 kb, and a remarkably short S phase, as discussed below [38].

As mentioned above, there is a strong coupling between FR and IOD which makes it
difficult to identify factors that only affect one of them. However, separate effects on IOD
and FR can be explored by chemical inhibition of origin activity (through a Cdc7 kinase
inhibitor) or of DNA synthesis (via the DNA polymerase inhibitor aphidicolin) [79].

Some of the proteins previously mentioned as regulators of FR are associated with the
firing of origins. In these cases, it is thought that the main process which changes is the
IOD, and the FR increases through an indirect increase in limiting replication factors (less
replication allows higher concentrations for the remaining forks) [76]. For example, IOD
has been shown to decrease when the Treslin binding partner MTBP, Orc1 or Cdc7 (the
kinase sub-unit of DDK, vital for replication initiation) were knocked down.

2.8. Replication Organization

In eukaryotes in which there are multiple replicons, not all replicons fire simultane-
ously. We can simplify the situation and imagine that there is a finite number of families of
replicons, and each family is activated at a different stage of S phase. Therefore, the length
of S phase can be determined by how many of these families there are, and the degree
of staggering between these families (Figure 2B). It is also the case that the activation of
the intra-S checkpoint will extend S duration by increasing the gaps between activation of
different replicon families.

The RT program has been studied at a variety of resolutions, using many different
protocols, and is known to be a highly regulated, cell-type specific epigenetic marker [5].
Replicons are organized in clusters or domains) that fire simultaneously, separated by
temporal transition regions (TTRs) that are most probably replicated by a single replication
fork [120,121]. However, the relative order of different regions of the genome does not
determine the duration of S phase. To return to our analogy, if the developers decided to
swap the order in which the various areas are built, this does not need to affect the overall
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time required. In addition, it is not trivial to detect changes in the staggering of origins
using existing RT data when the order of origin activation is unaffected.

2.9. Examples of S Phase Duration Regulation

By studying examples where S phase length changes, we can try and identify the
relative contributions of LRR, and staggering/replicon families.

In most known cases where S phase duration changes, this is not achieved by a change
to the LRR, which is generally robust to changes, often due to the effects that the IOD and FR
have on each other, as discussed above (although the compensation is not always sufficient
to fully preserve S phase duration [23]). In addition, the RT program does not normally
change much despite variance in the duration of S phase. By a process of elimination, it is
often possible to conclude that the main factor responsible for determining S phase duration
is the staggering of activation of domains, or a change in the number of replicon families.
In addition, pausing replication by activating the mid-S checkpoint will lengthen S phase.
It should be noted that both overlap between families and changing the number of replicon
families depends on the presence of sufficient nucleotides and other replication factors.

The dramatic change in S phase duration during midblastula transition (MBT) in
which cells transit from an extremely short S phase stage (termed cleavage cycles) to regular
length S phase have been extensively studied. Those changes are probably a consequence
of a change in the DNA/cytoplasm ratio [39], since there is no expression of new proteins
yet at this stage, which changes the availability of key replication factors. Both LRR
and replication organization play a role in these dramatic changes in S phase duration.
The early embryonic divisions exhibit very short IODs, and the origins are much more
regularly spaced than somatic origins [122]. The regular spacing of origins, especially
in Drosophila where there is an origin every 3.4 kb [38], is thought to be instrumental in
ensuring the short S phase. Similarly, the FR of early embryonic stages is 3 times faster
than FR of somatic cells [123]. Yet, these changes in LRR cannot explain the dramatic
difference in S phase duration alone. Indeed, replication organization is also changed at
MBT by increased overlap of origin firing, with early and late replication domains firing
almost simultaneously at the early embryo stages. The delay of late replicating origins is
introduced at MBT, as a consequence of Rif1 activation by Cdk1 which causes a delay in
the replication of heterochromatin. The decreased overlap appears to be in part achieved
by titration of a few key replication factors, but not dNTPs [64], leading to the activation of
the intra-S ATR/Chk1 checkpoint [124]. In addition, after Xenopus MBT, S phase duration
increases despite no immediate change in local IOD [64].

The synthesis of DNA immediately prior to meiosis takes on average twice as long as
mitotic synthesis in a number of organisms [125]. Evidence in yeast shows that the LRR in
yeast premeiotic S phase is the same as the normal LRR, and that the RT program of origin
activation is also similar [126], suggesting that the slow S is a consequence of decreased
overlap of replicon family activation. However, there are organisms, such as the newt
Triturus cristatus, in which the lengthening of the premeiotic S phase is probably in part a
consequence of a decrease in the LRR, through increased IOD [127].

Another interesting example of S phase extension is found in some cancer cells. There
have been reports that S phase in cancer cells tends to be around twice as long as that
of normal cells [128]. A study which measured the overall global replication activity (or
‘potency’ in their words), found fewer simultaneously active forks. This explained the
slower S phase despite an increase in FR [129].

In the meristem roots of vascular plants, it was shown that IOD and FR are not
correlated with S length, and the S length is instead regulated through replicon family
staggering [119], where the late origins are fired after a ‘tempo-pause’ [130]. The presence
of a correlation between vascular plant S phase duration and genome size (see above) is
due to relatively strict limits on the number of replicons simultaneously active in a plant
nucleus. This means that more families have to be introduced to deal with larger genomes.
If, however, in animal cells the families are not near full occupancy, there can be enough
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flexibility to ensure that there is no need to change the number of families or the extent of
staggering even when dealing with large genomes.

Multiple genes associated with S phase duration have been found, most notably
through a genome-wide screen for replication mutants. 14 yeast genes extended S phase
duration when knocked down. These genes included genes related to cell-cycle progression,
the DNA replication machinery, and nucleotide metabolism. Interestingly, it was shown
that for most mutants the relative order of origin firing was maintained and the extension
of S was due to coordinated delay in the activation time of all middle and late origins. This
is a good example of the staggering of replication organization. By delaying the activation
of later domains, the total amount of replication at a given time decreases, although not
necessarily the local capacity. Strikingly, the scaling of the replication timing program
was completely lost in mrc1 cells in which only a small fraction of origins, confined to the
very end of S phase, were delayed, causing a two-fold extension in S phase duration [131].
In mammals, certain replication factors are known to be involved in controlling FR, as
discussed above.

It has been suggested for 50 years that nucleotide availability could be a key regu-
lator of S phase duration [132]. This has been shown chemically and genetically and is
commonly explained by the effect of nucleotide concentrations on LRR. Overexpression
of RNR increases nucleotide levels which can increase FR and in turn shortens S phase in
bacteria [62], where the capacity is determined solely by FR, as discussed above. However,
as mentioned above, changing FR in multi-origined lifeforms leads to compensation by
IOD [65,66]. Therefore, we believe that a main pathway through which nucleotides could
regulate S phase duration is by affecting the ability of the cell to replicate more origins
simultaneously, whether by decreased overlap, or by decreased number of replicon families.
In a case where the concentration of nucleotides, or other replication factors, is restricting
the organization, an increase or decrease in concentration could result in a change to the
length of S phase, as observed in budding yeast [78,90]. Indeed, it has been shown that
increased dNTP levels can cause late origins to be activated early [91].

3. Conclusions and Open Questions

We have highlighted the importance of replication organization in determining S
phase duration. This conclusion was achieved mainly through the elimination of other
potential factors that may influence S phase length, rather than by direct measurement
of replication organization. This is due to the lack of methods to measure the mesoscale
organization of the replication program which has limited our knowledge about the number
of replication domains that are simultaneously firing and the degree of overlap between
them. Further study is needed to highlight this important aspect of the organization of
the replication program. The ability to quantify the total amount of DNA replication at a
given time, on a single-cell basis, might lead to an increased ability to explore the cases
where the replication program appears unchanged despite a change in S phase duration. In
addition, recent advances in the understanding of the 3D compartments of DNA might
be useful in exploring the replicon families as a limiting factor in S phase duration. These
compartments may be separated from the rest of the nucleus through a phase separation
process and further research is needed to assess the contribution of phase separation to the
organization of DNA replication and S phase duration. In the future it might also become
more convenient to measure the concentrations of replication factors within individual
replication foci which would increase the ability to separate between LRR and staggering.
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