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Simple Summary: Determining the drug–target relationships is the key to modern drug development,
and it plays a crucial role in drug side effects research and individual treatment. However, traditional
drug target identification by bio-experimental methods is often difficult to develop due to limitations
of precision, flux and cost. With the rapid development of bioinformatics and computational biology,
the computer-assisted drug–target interaction (DTIs) prediction approach has attracted great attention
by researchers as an accurate and quick mean of drug target recognition. In this study, combined with
the protein sequence information and drug molecular structure information, a prediction method of
DTIs based on machine learning is developed to achieve the purpose of locking targets and saving
costs for new drug research.

Abstract: As the basis for screening drug candidates, the identification of drug–target interactions
(DTIs) plays a crucial role in the innovative drugs research. However, due to the inherent constraints
of small-scale and time-consuming wet experiments, DTI recognition is usually difficult to carry
out. In the present study, we developed a computational approach called RoFDT to predict DTIs
by combining feature-weighted Rotation Forest (FwRF) with a protein sequence. In particular, we
first encode protein sequences as numerical matrices by Position-Specific Score Matrix (PSSM),
then extract their features utilize Pseudo Position-Specific Score Matrix (PsePSSM) and combine
them with drug structure information-molecular fingerprints and finally feed them into the FwRF
classifier and validate the performance of RoFDT on Enzyme, GPCR, Ion Channel and Nuclear
Receptor datasets. In the above dataset, RoFDT achieved 91.68%, 84.72%, 88.11% and 78.33% accuracy,
respectively. RoFDT shows excellent performance in comparison with support vector machine models
and previous superior approaches. Furthermore, 7 of the top 10 DTIs with RoFDT estimate scores
were proven by the relevant database. These results demonstrate that RoFDT can be employed to a
powerful predictive approach for DTIs to provide theoretical support for innovative drug discovery.

Keywords: drug; rotation forest; target protein; support vector machine

1. Introduction

A critical step in innovative drug development is determining the interactions among
drugs and targets, which is the forerunner of drug design [1,2]. Drugs play an important
role in the human body by interacting with their targets, of which proteins are an essential
target. By inhibiting or enhancing the function of the target protein, the drug achieves the
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goal of treating the disease. Although the advent of high-throughput sequencing methods
has provided technical support for determining DTIs and extensive efforts has been made
by drug developers, few new drugs are still approved by the Food and Drug Administration
(FDA) for marketing each year [3–6]. The main reason is that the identification of DTIs
by wet experimental approaches alone consumes a lot of time and money, and the scale
of identification is small. With the development of computational biology, this situation
can be greatly alleviated. Computer-aided prediction of DTIs can be executed rapidly at
scale, providing reliable candidate drug targets for biological experiments and theoretical
support for new drug development [2,4,7–9].

To date, computer-aided prediction-based models for DTIs have been devised by
numerous researchers, and they can be roughly classified into two groups: the approach
based on network and the approach based on machine learning [10–12]. The approach
based on network approach typically characterizes the association among targets and
drugs as a heterogeneous network, and predict DTI by evaluating network topology node
similarity. For instance, the SDTBNI model designed by Wu et al. [13] predicts DTIs by DTI
networks, drug and entity substructure linkages in unknown network space. Chu et al. [14]
proposed a new DTI prediction method called the DTI-CDF model. This method can
not only extract similarity features between drugs, but also extract similarity features
between target proteins from heterogeneity graph, which greatly improves the prediction
performance. Zhang et al. [15] designed the prediction method of DTIs according to LPLNI,
which makes use of the data of neighborhood re-construction. Chu et al. [16] facilitate multi-
label classification by introducing the community detection method DTI-MLCD for DTI
prediction. The method performs significantly better than other machine learning methods
and other existing methods in the updated gold standard dataset. Zong et al. [17] used
DeepWalk combined with target-target and drug-drug similarities to accurately predict
DTIs with the support of Linked Tripartite Network (LTN) and biomedical related data.
The approach based on machine learning mainly uses computer to extract data features and
combine with classifier to implement DTIs prediction [18,19]. For example, Peng et al. [20]
used a semi-supervised inference way to predict DTIs by combining a PCA-based convex
optimization algorithm with information about drug targets.

On the basis of the hypothesis that drugs with chemical similarity have similar bioactiv-
ity, the DTIs prediction method of target protein information combined with drug structure
information has achieved excellent results. Therefore, this paper designs the machine
learning approach for predicting DTIs according to this hypothesis. Specifically, we first ex-
tracted the protein sequence features information using the Pseudo Position-Specific Score
Matrix (PsePSSM) method, then fused them with drug molecular fingerprint descriptors
and finally accurately predicted DTIs with interactions by the feature-weighted rotation
forest classifier (FwRF) classifier. We tested the performance of RoFDT in datasets including
Enzyme, GPCR, Ion Channel and Nuclear Receptor, and compared them with other feature
approaches, classifier approaches and previous methods. The superior results demonstrate
that the proposed model has excellent ability to identify DTIs. The frame diagram of rofdt
is shown in Figure 1.
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Figure 1. Flow framework diagram of RoFDT model.

2. Materials and Methods
2.1. Gold Standard Datasets

In the present study, we validated the performance of RoFDT on four gold standard
datasets, including Enzyme, GPCR, Ion Channel and Nuclear Receptor. These data were
collected from SuperTarget & Matador [21], KEGG BRITE [22], BRENDA [23] and Drug-
Bank [24] databases by Yamanishi et al. [25]. In these four datasets, the number of DTIs
pairs (drug, target) they contain is (445, 664), (210, 204), (233, 95) and (54, 26), respectively,
and the number of DTIs with interaction (positive sample) is 2926, 1476, 635 and 90, re-
spectively [26]. We describe the network of DTIs by a bipartite diagram, where targets or
drugs are presented by nodes and their associations are represented by edges. To construct
the balanced dataset, we use the random strategy to select the same number of negative
samples as positive samples.

2.2. Drug Molecular Descriptor

Drug molecular fingerprinting is widely used to characterize drug compounds because
it can directly represent the association between molecular properties and structure and
does not need their three-dimensional structural information. Drug molecule fingerprinting
manages molecular substructures with dictionary strategy. For a particular molecule, the
corresponding position of its dictionary is set to 1 when it has a certain substructure and 0
otherwise. Thus, the fingerprint descriptor of a given drug molecule can be constructed.
We used molecular fingerprints from PubChem in this study, and the fingerprints property
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is “PUBCHEM_CACTVS_SUBGRAPHKEYS”. The compound molecule is decomposed
into 881 substructures, so its fingerprint feature descriptor is also 881-dimensional.

2.3. Target Protein Descriptor

In this study, PSSM [27] was used to generate descriptors of protein sequences.
PSSM S(i,j) can be characterized as S =

{
∂i,j : i = 1 · · · L and j = 1 · · · 20

}
, which is an

L × 20 matrix, in which the length of sequence is L and the types of amino acids are 20.
Therefore, the formula of S(i,j) is described as shown below:

S =


σ1,1 σ1,2 · · · σ1,20

σ2,1 σ2,2 · · · σ2,20

...
...

...
...

σL,1 σL,2 · · · σL,20

 (1)

where σi,j indicates the probability that the ith residue of the protein is mutated into the jth
amino acid during evolution.

We obtained PSSM through Position-Specific Iterated BLAST (PSI-BLAST) according
to SwansProt dataset [28,29]. PSI-BLAST will calculate the vector indicating the mutational
conservatism of 20 different amino acids. To obtain broad and high homologous protein,
the parameter e-value and iterations are set to 0.001 and 3, respectively.

2.4. Protein Feature Extraction

For better compatibility with the PSSM matrix, we extracted the potential features of
proteins using the PsePSSM designed by Chou et al. [30], which can be denoted as below:

ei,j =
e0

i,j −
1

20 ∑20
k=1 e0

i,k√
1

20 ∑20
v=1

(
e0

i,v −
1

20 ∑20
k=1 e0

i,k

)2
i = 1 . . . 20, j = 1 . . . 20 (2)

where e0
i,j is the score calculated by PSI-BLAST, which score can be positive or negative. The

probability of the appropriate mutation in the protein sequence higher than unexpectedly
expected is indicated by a positive number, otherwise a negative number. However, since
protein sequences of different lengths yield different rows of substrates, we thus need to
convert them to a uniform pattern using the following equation:

MPSSM = [e1 e2 ··· e20]
(3)

and:
ej =

1
L ∑L

i=1 ei,j j = 1 . . . 20 (4)

where ej represents the average score when protein residue P evolves into a j-type amino
acid. To prevent protein P from losing its sequence information during evolution, we
improved the equation by constructing pseudo-amino acids, which are described as follows:

ej =


1
L ∑L

i=1 ei,j j = 1 . . . 20, λ = 0

1
L − λ ∑L−λ

i=1

(
ei,j − ei+λ,j

)2 j = 1 . . . 20, λ < L
(5)

where ej is the correlation factor of j-type amino acids.

2.5. Classification Prediction

In our study, we classify and predict DTIs feature descriptors by FwRF. This classifier
has the advantage of increasing the effective feature weights and removing the noise
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information, which can effectively improve the prediction accuracy. FwRF uses the χ2

statistical method to obtain the weights of different features, and its formula is as follows:

χ2 = ∑n
i=1 ∑2

j=1

(
Yij − βij

)2

βi,j
(6)

where Yij is the number of f j categories with the value vi, and its statistics are as follows:

Yij = count
(

F = vi and C = f j
)

(7)

βi,j is the expectation of vi and f j, and it can be denoted as below:

βi,j =
count(F = vi)× count

(
C = f j

)
N

(8)

where N is the total sample size. In feature F, the sample size whose value is vi is
recorded as count(F = vi), and in class C, the sample size whose value is f j is recorded as
count

(
C = f j

)
.

FwRF first calculates the weights of the features using the χ2 statistical method, then
sorts them in descending order and removes the low-weight features depending on the
parameters, and finally uses the newly obtained feature set for classification prediction.

Rotation forest (RF) [31,32] is a widespread classifier. Given a dataset {xi, yi} con-
taining S training samples, where xi is the data and yi is the label, the data xi consist
of n features, thus forming a matrix of S × n. The decision tree in RF is presented as
D1, D2, . . . , DN , and there are N in total. The execution steps of RF are as follows.

a. The feature set F is grouped into K-independent parts of the number n
k by the

appropriate parameter.
b. The new matrix Xi,j of the training set X is formed using the corresponding feature

columns of Di,j, and 3/4 of the features are selected from it forms matrix X′ i,j with bootstrap.
c. The coefficient matrix Mi,j is obtained through the feature transformation X′ i,j, and

the coefficient matrix Mi,j is rotated to generate the rotation matrix Ri, which is described
as follows:

Ri =



e(1)i,1 , . . . , e(N1)
i,1

0

0

e(1)i,2 , · · · , e(N2)
i,2

· · ·
· · ·

0

0

...

0

...

0

. . .

· · ·

...

e(1)i,k , . . . , e(Nk)
i,k


(9)

In the classification prediction stage, the classifier Di calculates the confidence level
λj(x) of the test sample x using the following formula and discriminates it as the class with
the highest confidence value:

λj(x) =
1
N ∑N

i=1 di,j(XRe
i ) (10)

3. Results
3.1. Evaluation Indicator

To better evaluate the RoFDT performance, we used the general evaluation standard
of machine learning in this study, which can be denoted as below:

Accu. =
TP + TN

TP + TN + FP + FN
(11)
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Sen. =
TP

TP + FN
(12)

Prec. =
TP

TP + FP
(13)

MCC =
TP× TN − FP× FN√

(TP + FP)× (TN + FN)× (TP + FN)× (TN + FP)
(14)

where TP, TN, FP and FN, respectively, represent True Positive, True Negative, False Positive
and False Negative. Moreover, the receiver operating characteristic (ROC) curve [33–35]
and area under the ROC curve (AUC) were also calculated to reflect the performance
of RoFDT.

3.2. Parameter Evaluation

To maximize the RoFDT performance, the grid search approach is employed to ver-
ify the FwRF and PsePSSM parameters. When data features are extracted using the
PsePSSM algorithm, the information content can be adjusted by changing the param-
eters in Equation (5) to obtain different feature values. We investigate the effect of different
parameters of PsePSSM on the subsequent classification effect in this experiment in order to
select the best combination of parameters. The effect of different parameters of the classifier
on its prediction accuracy in the enzyme dataset is shown in Figure 2. It can be seen from
the figure that the RF classifier achieves the highest accuracy when the feature subset K,
the feature selection ratio r and the number of decision trees L are set to 16, 0.8 and 21,
respectively. Therefore, we apply them as the optimal parameters in the model.
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3.3. Prediction Performance Evaluation

After optimizing the parameters of RoFDT, we evaluate its performance in the Enzyme,
GPCR, Ion Channel and Nuclear Receptor datasets using the five-fold cross-validation
(5FCV) method. Tables 1–4 summarizes the outcomes obtained by RoFDT on the gold
standard datasets. In these datasets, RoFDT achieved 91.68%, 88.11%, 84.72% and 78.33%
prediction accuracy, and its standard variance was 0.84%, 1.01%, 1.94% and 5.34%, respec-
tively. In terms of sensitivity, RoFDT achieved scores of 90.84%, 90.30%, 84.73% and 81.97%
in the four datasets with standard variances of 1.68%, 1.61%, 3.45% and 7.85%, respectively.
RoFDT achieved 83.39%, 79.02%, 74.06%, 65.56% and 91.72%, 88.27%, 85.57% and 75.31%
in the MCC and AUC evaluation metrics, which combine to show predictive performance,
respectively. These excellent results show that RoFDT has good ability to predict DTIs
with strong robustness. Figures 3–6 show the ROC curves acquired by RoFDT in the gold
standard dataset, respectively.
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Table 1. 5FCV prediction results obtained by RoFDT on the Enzyme dataset.

Test Set Accu.(%) Sen.(%) Prec.(%) MCC(%) AUC(%)

1 90.51 89.20 91.27 81.03 90.04
2 92.82 93.22 92.59 85.64 92.96
3 91.62 90.19 92.74 83.28 92.09
4 91.97 89.68 94.40 84.05 91.79
5 91.47 91.90 90.96 82.94 91.73

Average 91.68 ± 0.84 90.84 ± 1.68 92.39 ± 1.37 83.39 ± 1.68 91.72 ± 1.06

Table 2. 5FCV prediction results obtained by RoFDT on the Ion Channel dataset.

Test Set Accu.(%) Sen.(%) Prec.(%) MCC(%) AUC(%)

1 86.61 90.38 83.76 76.76 86.16
2 87.63 91.92 84.78 78.22 87.83
3 88.98 91.61 87.22 80.36 89.68
4 88.31 89.67 87.62 79.33 89.07
5 89.02 87.93 89.47 80.43 88.59

Average 88.11 ± 1.01 90.30 ± 1.61 86.57 ± 2.29 79.02 ± 1.55 88.27 ± 1.36

Table 3. 5FCV prediction results obtained by RoFDT on the GPCR dataset.

Test Set Accu.(%) Sen.(%) Prec.(%) MCC(%) AUC(%)

1 82.28 86.21 77.52 70.73 82.86
2 87.01 88.62 85.16 77.38 88.82
3 86.22 86.52 88.41 76.00 86.72
4 84.63 80.33 86.73 73.83 84.37
5 83.46 81.95 85.83 72.37 85.11

Average 84.72 ± 1.94 84.73 ± 3.45 84.73 ± 4.21 74.06 ± 2.68 85.57 ± 2.28

Table 4. 5FCV prediction results obtained by RoFDT on the Nuclear Receptor dataset.

Test Set Accu.(%) Sen.(%) Prec.(%) MCC(%) AUC(%)

1 69.44 83.33 65.22 55.90 72.22
2 77.78 85.00 77.27 64.34 69.69
3 80.56 92.31 66.67 67.47 74.25
4 83.33 77.78 87.50 72.05 75.31
5 80.56 71.43 93.75 68.03 85.08

Average 78.33 ± 5.34 81.97 ± 7.85 78.08 ± 12.56 65.56 ± 6.05 75.31 ± 5.87
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3.4. Comparison of Different Feature Models

To estimate the influence of the PsePSSM algorithm on the RoFDT model, we compare
it with the Local Phase Quantization (LPQ) algorithm model on four gold standard datasets
in this part of the experiment. The LPQ algorithm originally described in the article for
texture description by Ojansivu and Heikkila [36] and is according to the blur invariance
property of the Fourier phase spectrum [37–39]. Table 5 lists the 5FCV outcomes produced
by LPQ combined with FwRF on gold standard datasets. As observed in Table 5, RoFDT
has gained the optimal outcomes in all evaluation indicators. Detailed 5FCV outcomes on
four gold standard datasets are aggregated in Tables S1–S4 of Supplementary Materials.
For a fair comparison, FwRF was set with the same hyperparameters in the experiment.



Biology 2022, 11, 741 9 of 13

From the experimental outcomes, it can be seen that PsePSSM combined with FwRF can
effectively promote the model performance.

Table 5. 5FCV outcomes of the LPQ combined with FwRF model on the four gold standard datasets.

Dataset Model Accu.(%) Sen.(%) Prec.(%) MCC(%) AUC(%)

Enzyme LPQ 89.63 ± 0.39 89.69 ± 1.82 89.64 ± 2.16 79.32 ± 0.79 89.40 ± 0.98
RoFDT 91.68 ± 0.84 90.84 ± 1.68 92.39 ± 1.37 83.39 ± 1.68 91.72 ± 1.06

Ion Channel
LPQ 83.97 ± 2.32 86.93 ± 3.03 81.89 ± 3.66 68.13 ± 4.54 84.66 ± 2.01

RoFDT 88.11 ± 1.01 90.30 ± 1.61 86.57 ± 2.29 79.02 ± 1.55 88.27 ± 1.36

GPCR
LPQ 82.52 ± 2.17 83.87 ± 3.58 81.79 ± 3.78 65.19 ± 4.15 83.19 ± 1.79

RoFDT 84.72 ± 1.94 84.73 ± 3.45 84.73 ± 4.21 74.06 ± 2.68 85.57 ± 2.28

Nuclear Receptor LPQ 66.67 ± 7.35 67.64 ± 16.23 67.97 ± 9.98 35.46 ± 10.89 69.56 ± 6.85
RoFDT 78.33 ± 5.34 81.97 ± 7.85 78.08 ± 12.56 65.56 ± 6.05 75.31 ± 5.87

3.5. Classifier Model Comparison

To investigate further the influence of various classifiers on the RoFDT performance,
we compare it with the SVM classifier model. The parameters of the SVM were refined, and
its hyperparameters g and c were optimized to 0.6 and 0.5, respectively. The optimization
outcomes of SVM parameters are shown in detail in Table S9 of the Supplementary Mate-
rials. As can be seen in Table 6, RoFDT achieved higher scores in all four gold standard
datasets compared to the SVM model. Specifically, RoFDT achieved optimal results in the
four gold standard datasets for accuracy, MCC, sensitivity and AUC, but was only slightly
less precision than the SVM model in the Ion Channel and Enzyme datasets. Detailed 5FCV
experimental outcomes on gold standard datasets are shown in Tables S5–S8 of Supple-
mentary Materials. The experimental results of comparing different classifier models show
that the FwRF classifier used by RoFDT can be better compatible with it, which helps to
increase the model prediction accuracy.

Table 6. 5FCV outcomes of different classifier models on the four gold standard datasets.

Dataset Model Accu.(%) Sen.(%) Prec.(%) MCC(%) AUC(%)

Enzyme SVM 84.20 ± 0.60 69.90 ± 1.70 98.00 ± 0.50 71.50 ± 1.00 84.30 ± 1.20
RoFDT 91.68 ± 0.84 90.84 ± 1.68 92.39 ± 1.37 83.39 ± 1.68 91.72 ± 1.06

Ion Channel
SVM 81.90 ± 1.20 69.70 ± 3.70 92.40 ± 2.20 66.00 ± 1.90 81.70 ± 1.20

RoFDT 88.11 ± 1.01 90.30 ± 1.61 86.57 ± 2.29 79.02 ± 1.55 88.27 ± 1.36

GPCR
SVM 70.00 ± 2.10 50.40 ± 7.80 82.30 ± 3.30 42.80 ± 4.90 70.10 ± 2.70

RoFDT 84.72 ± 1.94 84.73 ± 3.45 84.73 ± 4.21 74.06 ± 2.68 85.57 ± 2.28

Nuclear Receptor SVM 63.30 ± 3.60 57.60 ± 7.90 67.50 ± 14.60 29.60 ± 7.40 61.80 ± 5.80
RoFDT 78.33 ± 5.34 81.97 ± 7.85 78.08 ± 12.56 65.56 ± 6.05 75.31 ± 5.87

3.6. Comparison with Previous Models

Using the powerful computing power of computer to predict DTIs on a large scale
has become increasingly important in the field of new drug research and development.
Numerous researchers have constructed different computational models to solve this
problem. To further evaluating RoFDT’s capabilities, we compare it with these excellent
models. Among these excellent models, we chose the model that is also implemented
in the four datasets and evaluated using 5FCV. The AUCs generated by these models
are listed in Table 7. As seen in table, RoFDT performed well overall, achieving the best
results on Enzyme and the second highest outcomes on Ion Channel and GPCR. However,
constrained by the sample size of Nuclear Receptor, RoFDT is not sufficiently trained and
performs generally in it.
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Table 7. Comparison with previous excellent models on the four gold standard dataset.

Dataset NetCBP [40] KBMF2K [41] RFDT [26] SIMCOMP [42] RoFDT

Enzyme 0.8251 0.832 0.915 0.863 0.9172

Ion Channel 0.8034 0.799 0.890 0.776 0.8827

GPCR 0.8235 0.857 0.845 0.867 0.8557

Nuclear Receptor 0.8394 0.824 0.723 0.856 0.7531

3.7. Case Studies

To verify the power of RoFDT to predict unknown DTIs, all known DTI pairs are
used to train RoFDT and predict in its unknown space. We validate the top 10 DTIs with
the highest prediction scores in SuperTarget [21] and the drug target pairs validated in
the SuperTarget database do not contain the data used for training. SuperTarget is a drug
target database with a collection of 332,828 DTIs. The outcomes of the case studies are
listed in Table 8, where 7 of the top 10 with the best prediction scores were validated by this
database. The case study reveals that RoFDT has the capability to competitively predict
unknown DTIs. It is interesting to note that although the remaining three pairs of DTIs are
not substantiated by the current database, there is a possibility that their relationship will
be proved as the study progresses.

Table 8. Top 10 DTI pairs predicted by RoFDT on the SuperTarget database.

Drug Name Drug ID Target Protein Name Target Protein ID Validation Database

Dihydroxypropyltheophylline D00691 PDE7A_HUMAN has5150 SuperTarget
Isotretinoino D00348 RXRA_HUM hsa6256 SuperTarget
Xanthotoxine D00139 CP1A1_hasAN hsa1543 SuperTarget

Loxapinsuccinate D02340 DRhasHUMAN hsa1812 SuperTarget
Prochlorpermazine D00493 has2A_HUMAN hsa3356 unconfirmed

Bromochlorotrifluoroethane D00542 CP2E1_HUMAN hsa1571 SuperTarget
Mifepristone D00585 ESR1_HUMAN hsa2099 SuperTarget
Olanzapine D00454 DRD2_HUMAN hsa1813 unconfirmed

Transdermal Nicotine D03365 ACHA4_HUMAN hsa1137 SuperTarget
Epoprostenol D00106 PE2R3_HUMAN hsa5733 unconfirmed

4. Discussion

In the present study, we propose a reliable DTI prediction approach RoFDT by com-
bining protein sequence and drug molecular structure. We first transformed the protein
sequence information numerically by PSSM based on its sequence information, and ex-
tracted its hidden features using PsePSSM. The drug structure is then encoded as the
digital descriptor based on molecular fingerprinting techniques. Finally, the performance
of RoFDT was verified using FwRF on four benchmark datasets, and its prediction results
were confirmed by the authoritative databases. All these exceptional outcomes show that
RoFDT is a valid approach for predicting DTIs and can provide new insights for potential
drug discovery.

RoFDT exhibits competitive advantages over previous DTI prediction models. The
reason for this is that RoFDT considers that protein sequences provide rich information
support for DTI prediction, and its PSSM descriptors are well compatible with PsePSSM fea-
ture extraction method to extract its potential features to the maximum extent. In addition,
the molecular fingerprint descriptors of drug structures can faithfully represent different
drug substructure properties, and thus, have a high characterization capability. Under the
above circumstances, RoFDT was able to predict DTI more accurately and provide a more
reliable theoretical basis for drug development.

However, RoFDT still has some limitations. For example, the utilization of protein
sequence information by RoFDT relies mainly on PSSM, and its richer description needs



Biology 2022, 11, 741 11 of 13

to be further explored. Second, although the feature extraction method used by RoFDT
has achieved better results, it still requires more manual experience to support, and the
automation process needs to be better improved. Finally, RoFDT requires more data for
training and is not very sensitive to newly discovered drug targets. In future research,
we intend to explore more intelligent feature characterization methods to overcome the
above-mentioned shortcomings and further enhance the RoFDT performance.

5. Conclusions

As a pioneering step in drug development, the reliable prediction and identification
of DTIs plays an essential element in innovative drug research. In the present study, we
combined protein sequence and drug molecular structure to design a computational model
for DTIs prediction. The proposed model achieves excellent results in the gold standard
datasets including Enzyme, GPCR, Ion Channel and Nuclear Receptor. The model also
exhibits strong powerful in comparison with extraction algorithm models, classifier models,
and previous methods. In addition, 7 of the top 10 DTIs predicted by the proposed model
have been verified by relevant database. These outcomes suggest that the RoFDT model
can be employed as a stable and dependable tool to provide valuable target candidates for
innovative drug research.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biology11050741/s1, Table S1: 5FCV results of FwRF combined
with LPQ on Enzyme dataset, Table S2: 5FCV results of FwRF combined with LPQ on Ion Channel
dataset, Table S3: 5FCV results of FwRF combined with LPQ on GPCR dataset, Table S4: 5FCV
results of FwRF combined with LPQ on Nuclear Receptor dataset, Table S5: 5FCV results of the
SVM classifier model on enzyme dataset, Table S6: 5FCV results of SVM classifier model on Ion
Channel dataset, Table S7: 5FCV results of SVM classifier model on GPCR dataset, Table S8: 5FCV
results of SVM classifier model on Nuclear Receptor dataset, Table S9: The results of SVM parameter
optimization using grid search method on Enzyme dataset, Figure S1: The effect of different PsePSSM
Parameters on classifier performance, Figure S2: The effect of different feature selection ratio on
classifier performance.
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