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Simple Summary: Increasing sheep litter size is essential to improve lamb production efficiency.
In Small Tail Han sheep, the large variation in litter size is determined by segregation of the bone
morphogenetic receptor type 1B (BMPR1B) gene. BMPR1B is the major gene for fertility that affects
the ovulation rate, and a prolific allele is FecBB, also called the FecB mutation. The mechanism of how
the hypothalamus regulates ovulation number increase in sheep with the FecB mutation is not clear.
Using a systems biology workflow in DIABLO, we integrated hypothalamic transcriptomics and
proteomics data to predict the main fertility-related biomarkers (gamma-aminobutyric acid type A
receptor subunit alpha 1, gamma-aminobutyric acid type A receptor subunit beta 2 and FKBP prolyl
isomerase 1A) in the hypothalamus that may regulate changes in the ovulation rate of FecB mutant
sheep by participating in gonadotrophin-releasing hormone synthesis and secretion. These results
may provide potential genetic markers for breeding multi-lambing meat sheep These results also
provide new insight into the reproductive endocrine regulation of fecundity and potential genetic
markers of breeding for prolificacy in meat sheep.

Abstract: The litter size and ovulation rate are different among ewes of different FecB genotypes in
Small Tail Han sheep. These variants in reproductive phenotypes may be regulated by hormones
released by the hypothalamic–pituitary–ovarian axis. However, there have been few reports on the
hypothalamus regarding regulating an increase in ovulation in sheep with FecB mutation at different
estrous stages. Thus, we examined the abundance of hypothalamus tissue protein profiles of six
FecB mutant homozygous (BB) and six wild-type (WW) ewes at the luteal and follicular phases. We
determined this abundance by tandem mass tag-based quantitative analysis and parallel reaction
monitoring methods. Furthermore, an integrated proteotranscriptomic analysis was performed
by the Data Integration Analysis for Biomarker discovery using the latent variable approaches for
Omics studies (DIABLO) framework to examine biological processes and pathway alterations by the
FecB mutant. The abundance of 154 proteins was different between the two estrous stages. Growth
hormone and prolactin were particularly enriched in the neuroactive ligand–receptor interactions, the
prolactin signaling pathway, and the PI3K-Akt signaling pathway which are related to hypothalamic
function and reproduction. We combined proteome and transcriptome data from different estrous
stages and genotypes. There is a high correlation (Pearson correlation coefficient = 0.99) between
the two datasets in the first two components. We applied the traditional single-omic multivariate
approach to obtain differentially abundant proteins and differentially expressed genes. The major
fertility related biomarkers were selected using the two approaches mentioned above. Several
key pathways (GABAergic synapse, neuroactive ligand–receptor interaction, estrogen and MAPK
signaling pathways) were enriched, which are central to gonadotrophin-releasing hormone (GnRH)
secretion and reproduction. A higher level of gamma-aminobutyric acid type A receptor subunit
alpha1 (GABRA1) and gamma-aminobutyric acid type A receptor subunit beta2 (GABRB2) expression

Biology 2023, 12, 72. https://doi.org/10.3390/biology12010072 https://www.mdpi.com/journal/biology

https://doi.org/10.3390/biology12010072
https://doi.org/10.3390/biology12010072
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biology
https://www.mdpi.com
https://orcid.org/0000-0001-7375-8937
https://orcid.org/0000-0002-9516-4782
https://orcid.org/0000-0002-2159-5635
https://orcid.org/0000-0003-3450-738X
https://orcid.org/0000-0002-5164-0310
https://doi.org/10.3390/biology12010072
https://www.mdpi.com/journal/biology
https://www.mdpi.com/article/10.3390/biology12010072?type=check_update&version=2


Biology 2023, 12, 72 2 of 19

was observed in BB ewes as compared to WW ewes. This finding suggested that a greater production
of GnRH during follicular development in BB ewes may explain the higher mature follicle number in
mutant ewes. FKBP prolyl isomerase 1A (FKBP1A), which was a major feature factor in the proteome
selected by DIABLO, was an important switch for activating the transforming growth factor beta
(TGFβ) pathway, and its expression was higher in the WW ewes than in the BB ewes. We suggest that
BB sheep maintain TGFβ pathway activity by reducing FKBP1A protein abundance. This innovative
data integration in the hypothalamus may provide fresh insight into the mechanisms by which
the FecB mutation affects sheep fertility, while providing novel biomarkers related to reproductive
endocrinology in sheep breeding.

Keywords: FecB; Small Tail Han sheep; fertility; hypothalamus; transcriptome; proteome; integration
analysis

1. Introduction

The Booroola fecundity (FecB) gene has a major effect on the litter size and ovula-
tion in sheep, and it was first found in Booroola Merino sheep [1]. In 2001, the causal
mutation affecting sheep ovulation was finely mapped on chromosome 6 to the bone
morphogenetic receptor type 1 B (BMPR1B) gene, which has an A746G mutation in the
coding region. This mutation cause a change in amino acid at position 249 from glutamine
to arginine (Q249R) [2–4]. In recent years, gene-edited sheep with the FecB mutation
(p.Q249R), have been constructed by clustered regularly interspaced short palindromic
repeat (CRISPR)/CRISPR-associated 9 technology. This technology has shown that the FecB
mutation can greatly increase sheep fecundity [5,6]. Our previous work has demonstrated
the FecB mutation is associated with the litter size of Small Tail Han (STH) sheep [7,8].
The FecB mutation in STH sheep greatly increases the litter size and ovulation in mutant
homozygotes [9].

In sheep, the hypothalamic–pituitary–gonadal (HPG) axis is essential for follicle
growth, maturation and ovulation. The central regulator of the HPG axis is gonadotrophin-
releasing hormone (GnRH). GnRH is released by the hypothalamus, and controls the
synthesis and release of luteinising hormone (LH) and follicle stimulating hormone (FSH)
in the pituitary. Prior to ovulation, hormones from the follicles regulate GnRH secretion in
the hypothalamus, followed by altered FSH and LH release in the pituitary [10]. FSH is also
involved in the screening of the dominant follicles, and eventually, a preovulatory LH surge
causes ovulation [11]. The mean plasma FSH concentration is higher in mutant homozygous
(BB) sheep than in the wild genotypes in Merino, Romney and STH ewes [9,12]. Using the
hypothalamic pituitary disconnected ovariectomized sheep model, a study showed that
Romney ewes and Booroola Merino ewes with BB genotype had higher peripheral blood
FSH than wild genotype ewes, possibly due to the induction of GnRH [13]. BMPR1B is
a potent receptor for various BMP factors [14]. BMPR1B regulates the differentiation of
follicles by FSH and also controls progesterone feedback to the hypothalamus and pituitary
gland regulating FSH and LH secretion [15]. The effect of the FecB mutation on BMPR1B
activity in the ovary has not been determined. BMPR1B is expressed in multiple sheep
tissues. Thus, the FecB mutations may function in multiple tissues [16].

In recent years, multi-omics research strategies, such as comparative proteomics
and transcriptomics analysis, have broadened the understanding of the functions of the
hypothalamus and interactions of signal transduction of the hypothalamus involved in re-
production [17–20]. However, this knowledge is incomplete, and the molecular mechanism
of hypothalamic involvement in the regulation of the litter size by the FecB mutation is still
not well known. Systems biology and innovative data integration can unravel complex
biology with new insights [21].

In the present study, tandem mass tag (TMT)-quantitative proteomics coupled with the
parallel reaction monitoring (PRM) method were used to identify changes in the abundance
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of protein in hypothalamus tissue collected from STH ewes with different FecB genotypes
in the luteal and follicular phases of the estrous cycle. Furthermore, an integrated analysis
between proteomic and transcriptomic data from our previous study was used to screen
core biomakers, signaling pathways and biological processes in the hypothalamus that
regulate ovulation by the FecB mutation.

2. Materials and Methods
2.1. Experimental Design and Sample Preparation

Based on FecB genotypes, six ewes with wild (WW) genotype and six ewes with the BB
genotype were selected from the STH core herd in Yuncheng County, Shandong Province
using the TaqMan MGB assays [9]. These selected ewes were approximately 2–4 years
old, of similar weight and not pregnant. They were fed in ad libitum and housed at a
natural temperature and lighting. These 12 selected ewes were placed on controlled internal
drug release (CIDR) (progesterone 300 mg) (InterAg Co., Ltd, Hamilton, New Zealand)
for spontaneous estrous, and injected with vitamins A and D to protect the endometrium.
After 12 days, the CIDR was removed from the ewes while the CIDR withdrawal time
was recorded as 0 h. Then, three WW ewes and three BB ewes were euthanized at 45 h
(follicular phase, F). Subsequently, three WW ewes and three BB ewes were euthanized at
216 h (luteal phase, L). Hypothalamus tissues were dissected immediately after euthanasia
of ewes, and 12 tissues were snap frozen in liquid nitrogen and then transferred to −80 ◦C
for storage until further experiments (Figure 1).

The hypothalamus tissues proteins were extracted using the SDT lysis method [22],
and the bicinchoninic acid (BCA) protein assay (Pierce™ BCA Protein Assay Kit, Thermo
Fisher Scientific, Waltham, MA, USA) was used to quantify protein concentrations [23].
Approximately 200 g of protein per sample was digested by trypsin with the use of a filter
aided sample preparation method [24]. The peptide content was quantitated by ultraviolet
spectrophotometry (optical density: 280) for the further proteomic experiments.

2.2. TMT Labeling and Peptide Fractionation Utilizing the High pH Reversed-Phase Approach

We labeled peptides (100 µg per sample) using the six plex tandem mass tag of the
TMT Mass Tagging kit (Thermo Fisher Scientific, USA) according to the kit instructions.
WW ewes at the luteal phase (WWL), BB ewes at the luteal phase (BBL), BB ewes at the
follicular phase (BBF) and WW ewes at the follicular phase (WWF) were labeled with
TMT-126, TMT-127, TMT-130 and TMT-131, respectively. Each group had three biological
repeats (Figure 1).

The labeled peptides of 12 samples were mixed in an equal volume and fractionated
into 10 fractions using the Pierce high pH reversed-phase fractionation kit (Thermo Fisher
Scientific, USA). Briefly, 100 µg lyophilized mixed peptides were diluted to 300 L with
0.1% trifluoroacetic acid. The column was equilibrated using 0.1% trifluoroacetic acid and
acetonitrile in water buffer, and diluted peptide solution was transferred to the column.
We added 300 L of pure water for desalting and centrifuged the solution with a low speed.
Subsequently, 10 peptide fractions were eluted by an increasing acetonitrile step-gradient
elution. After vacuum drying, the eluted samples were re-solubilized with 0.1% formic
acid, and the concentration was determined by measuring the absorbance at an optical
density of 280.
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CIDR withdrawal time was recorded as 0 h. Hypothalamus tissue was collected from three WW 
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WW ewes and three BB ewes euthanized at 216 h (luteal phase) (WWL, BBL). The TMT quantitative 
proteomics analysis was employed to identify changes in the abundance of protein in hypothalamus 
tissues. Finally, bioinformatics analysis was performed in combination with downloaded tran-
scriptomic data from the same samples. 

The hypothalamus tissues proteins were extracted using the SDT lysis method [22], 
and the bicinchoninic acid (BCA) protein assay (Pierce™ BCA Protein Assay Kit, Thermo 
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Figure 1. Sample grouping information overview of processing. Based on FecB genotypes, six STH
ewes with the wild genotype (WW) and six FecB mutant homozygous (BB) were treated with con-
trolled internal drug release (CIDR). After 12 days, the CIDR was removed from the ewes while the
CIDR withdrawal time was recorded as 0 h. Hypothalamus tissue was collected from three WW
ewes and three BB ewes euthanized at 45 h (follicular phase) (WWF, BBF). Subsequently, from three
WW ewes and three BB ewes euthanized at 216 h (luteal phase) (WWL, BBL). The TMT quantitative
proteomics analysis was employed to identify changes in the abundance of protein in hypotha-
lamus tissues. Finally, bioinformatics analysis was performed in combination with downloaded
transcriptomic data from the same samples.
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2.3. Liquid Chromatography–Mass Spectrometry and Protein Data Analysis

The fractions of each sample were loaded for high performance liquid chromatography
separation using the Easy nLC nanoflow liquid chromatography instrument (Thermo Fisher
Scientific, USA). Initially, a C18 Acclaim PepMap100 (100 µm × 2 cm) nanoViper reverse
phase trap column (Thermo Fisher Scientific, USA) was connected to an EASY-Column
C18-A2 reversed phase analytical column (10 cm long × 75 µm inner diameter) with 3 µm
resin (Thermo Fisher Scientific, USA) and balanced using 95% buffer A (0.1% formic acid).
Subsequently, the fraction was injected onto a chromatographic column and separated with
buffer B (0.1% formic acid in 84% acetonitrile) using a linear gradient strategy. The gradient
was set as follows: linear gradient of 0–35% buffer B for 50 min; linear gradient of 35–100%
buffer B for 50–55 min; the last 5 min buffer B concentration was kept at 100%. The flow
speed was controlled by IntelliFlow technology at 300 nL/min.

Mass spectrometry (MS) analysis was carried out on a Thermo Scientific Q Exactive
mass spectrometer (Thermo Fisher Scientific, USA) which was run in the positive ion
mode. MS1 spectra were measured in data-dependent acquisition mode with a scan range
of 300–1800 m/z at a resolution of 70,000 (200 m/z). The automatic gain control target
value was 1e6 and maximum injection time was set to 50 ms, while the dynamic exclusion
duration was set to 60.0 s. After each full scan, 20 fragment patterns of MS2 spectra
were gathered. With regard to MS2 spectra, peptides were fragmented by higher-energy
collisional dissociation with a normalized collision energy of 30 eV, isolation window at
2 m/z and a resolution of 17,500 (200 m/z). The under fill ratio was defined as 0.1%.

2.4. Proteins Identification and Differential Proteins Abundance Analysis

The MS/MS spectra data were explored using Proteome Discoverer v.1.4 (Thermo
Fisher Scientific, USA) and MASCOT engine v.2.2 (Matrix Science, London, UK). The protein
database, which was used to identify protein was translated from the sequences of the
transcriptomic data of our previous research [25]. The search parameter settings are shown
in Supplementary Table S1. In any group, if protein abundance could not be quantified
for at least two samples, then that protein was filtered. The protein abundance was log2-
transformed and normalized, and the differential protein abundance was calculated with
the linear models for microarray data (LIMMA) (v.3.52.1), using factorial design: ~genotype*
estrous phase [26]. Our experimental design included two factors of the estrous phase (two
levels: F and L) and genotype (two levels: WW and BB) with interactions. For screening
significantly altered proteins, the thresholds were set as a foldchange > 1.2 or <−0.83, and
with a p value <0.05, as described previously [27].

2.5. RNA-Seq Data Analysis

Hypothalamic transcriptomic data of three BBF, three WWF, three BBL and three WWL
from our previous study [25] were obtained from the National Center for Biotechnology
Information Sequence Read Archive (PRJNA672275). These ewes were the same as those
that we used for the proteomics assay. The downloaded data were aligned and assembled
to the sheep reference genome (oar4.0: GCF_000298735.2) by HISAT2 (v.2.0.5) and StringTie
(v.1.3.2d) following the pipeline established in our previous study [28]. The read counts
were calculated using the HTSeq (v.0.6.1) [29]. The DESeq2 (v.1.28.1) [30] was used to
determine normalized counts and the factorial design model was used to identify differ-
entially expressed genes which is consistent with the model used for the identification of
differential abundance proteins.

2.6. Transcriptomic and Proteomic Data Integration

Data obtained by transcriptomic and proteomic methods were integrated by the
Data Integration Analysis for Biomarker discovery using Latent variable approaches for
Omics studies (DIABLO) framework of the mixOmics (v.6.20.0) to determine the correlation
of features between these methodologically and biologically distinct datasets. We also
searched for new biological processes that could not be found in a single dataset [31].
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This method is an extension of the prediction of potential structure (also called partial
least-squares) method. The mRNA count data were normalized to log2 (counts per million)
(logCPM) using edgeR (v.3.38.1) [32]. The transcripts with logCPM < 0 in more than 75% of
samples were then filtered out. The proteomic data is the filtered data mentioned above
for differential protein abundance analysis. In the design matrix, the block linkage was
set to 0.1, and it contained estrous stage and genotype information. The optimum number
of components and variables included within the final model were determined using
the “perf” and the ‘tune.block.splsda’ functions with cross-validation (3 × 5-fold). The
discriminative accuracy of the model was assessed by the area under receiver operating
characteristic curves. The performance of the model was measured by the balanced error
rate and overall misclassification error rate.

2.7. Functional Annotation and Enrichment Analysis of Biomarkers

To explore the potential role of proteins in the luteal–follicular phase transition and
the role of these biomarkers in FecB mutations affecting fertility, Gene Ontology (GO) cate-
gories [33] and Kyoto Encyclopedia of Genes and Genomes (KEGG) [34] over-representation
analyses were ran by clusterProfiler (v.4.4.4) [35]. The parameter of pAdjustMethod was
the false discovery rate (FDR). The top enriched KEGG pathways and GO terms were
visualized using the two clusterProfiler package functions dotplot and cnetplot.

2.8. Quantitative Analysis of Selected Proteins with PRM

To validate the protein abundance obtained by the TMT quantification method, the
abundance of randomly selected proteins in the hypothalamus were quantified using PRM
analysis (Shanghai Applied Protein Technology Co., Ltd, Shanghai, China) [36]. Tryptic
peptides were prepared by following the protocol as described in the TMT analysis. We
then added 20 fmol of stable isotope peptides (SAAGAFGPELSR) as calibration peptides
(Thermo Fisher Scientific, USA) to 1 ug sample peptides as an internal standard refer-
ence. Before reversed-phase chromatography on an Easy nLC-1200 instrument (Thermo
Fisher Scientific, USA), these peptide mixtures were desalted by homemade C18 stage tips
(75 µm × 200 mm inner diameter, 3 µm resin). The liquid phase solution A and solution B
were the same as those in the TMT protocol described above. The 1-h gradient of liquid
chromatography was as below: 0–2 min: the solution B concentration ranged from 5% to
10% for 2–45 min, the solution B concentration ranged from 10% to 30% for 45–55 min,
the solution B concentration ranged from 30% to 100% for 55–60 min, and solution B
was maintained at 100%. The PRM analysis was performed using a Q Exactive HF mass
spectrometer (Thermo Fisher Scientific, USA). The full MS1 scan and PRM scans were
performed using the parameters described in the previous PRM analysis in our lab [27].
The peptide peak areas of each peptide were extracted by Skyline v.3.5.0 [37]. The relative
peak areas of each sample were integrated and then normalized with the peak areas of the
calibration peptides.

3. Results
3.1. Data Quality Control

We randomly divided 12 hypothalamus samples into three experimental groups
(n = 4 samples in each experiment). We ensured that each group contained one of BBF,
one of BBL, one of WWF and one of WWL, making them suitable for the six-plex TMT
isobaric labeling strategy. The three proteomic TMT six-plex experiments identified 4938,
4974, and 4824 peptides, to a depth of 5699 unique proteins across all samples, which
were annotated with Oar 4.0 (Supplementary Figure S1a). A list of the hypothalamus
identified proteins with the protein sequence coverage, molecular weights and unique
peptides is provided in Supplementary Table S2. The analysis of protein molecular weight
distribution showed that most of the protein molecular weights were between 10 and
200 kD (Supplementary Figure S1b). Approximately 26% of the protein sequence coverage
was <5% (Supplementary Figure S1c). More than 72% of the determined proteins included
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more than one unique peptide. Among them, the protein XP_004018043.1 contained the
largest number of unique peptides, (n = 212) (Supplementary Table S2).

3.2. Data Validation

On the basis of the abundance of proteins in different groups in the TMT analysis,
we randomly selected some important genes to validate the TMT results using the PRM
method. In the BBF vs BBL and BBF vs WWF groups, prolactin (PRL), growth hormone
(GH), homer scaffold protein 1(HOMER1) and glutathione S-transferase mu 3 (GSTM3)
were selected for the analysis and the log2Fold change (log2FC) values were calculated
in the WWF vs WWL and BBL vs WWL groups, PRL, GH, HOMER1, fatty acid binding
protein 7 (FABP7) and enolase 2 (ENO2) were selected for the analysis, and the log2FC
values were calculated. We found that the PRM results of these selected genes showed the
same trends in directional abundance (up and down) as the TMT results in the different
groups (Figure 2 and Supplementary Table S3).
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Figure 2. Comparison of protein abundance profiles obtained by PRM and TMT protein quantification
techniques. Growth hormone (GH), glutathione S-transferase mu 3 (GSTM3), homer scaffold protein
1 (HOMER1) and prolactin (PRL) proteins were selected for protein abundance validation in the
follicular phase versus the luteal phase of BB ewes (BBF/BBL groups) and in BB ewes compared
with WW ewes at the follicular phase (BBF/WWF groups). PRL, GH, HOMER1, fatty acid binding
protein 7 (FABP7) and enolase 2 (ENO2) proteins were selected for protein abundance validation
in the follicular phase versus the luteal phase of WW ewes (WWF/WWL groups) and in BB sheep
compared with WW sheep at the luteal phase (BBL/WWL groups). The log2fold change values were
calculated between the different groups. The protein abundance measured by the PRM method
compared with the TMT method for the selected genes in all four groups showed the same trend.
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3.3. Global Differential Protein Abundance

To identify differential protein abundance, the data were normalized and analyzed
using LIMMA. A generalized linear model was applied to evaluate the effects of factors
(genotype and estrous phase) and their interactions using the limFit and eBayes functions.
We then extracted the comparisons of interest as contrasts: which proteins change in the
F relative to L in WW sheep (FvsLWW), which proteins change in the F relative to L in
BB sheep (FvsLBB), and which proteins respond differently in BB compared to WW sheep
(Interaction). Using a foldchange >1.2 or <0.83, and p value <0.05 as the threshold, 81 dif-
ferentially abundant proteins (DAPs) were detected in the FvsLWW group. Among them
23 proteins were upregulated and 58 proteins were downregulated in the follicular phase
(Figure 3a and Supplementary Table S4). In the FvsLBB group, 87 DAPs (22 were upregu-
lated and 65 were downregulated) (Figure 3b and Supplementary Table S5) were screened
in the follicular phase. In the interaction group, 106 DAPs (58 were upregulated and 48 were
downregulated in the BB genotype) were detected (Figure 3c and Supplementary Table S6).
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3.4. Focus on DAPs at the Luteal–Follicular Phase Transition

We focused on protein abundance differences in the luteal–follicular phase transition
that may be participating in the selection and maturation of the dominant follicles. The
overlaps between the FvsLWW and FvsLBB groups were visualized using an online tool
(http://jvenn.toulouse.inra.fr/app/example.html (accessed on 25 October 2022)) [38]. The

http://jvenn.toulouse.inra.fr/app/example.html
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intersection of FvsLWW and FvsLBB groups had 14 DAPs (Figure 4a). A total abundance of
154 DAPs identified in these two groups were then subjected to hierarchical clustering heat
map analysis, and the 14 DAPs in both groups showed the same trend. Except for SDC3
protein, all the proteins were down-regulated during the follicular phase (Figure 4c). We
annotated all DAPs in these two groups and enriched them with GO and KEGG enrichment
(Supplementary Tables S7 and S8). The networks of the top 10 KEGG enrichment terms were
visualized by cnetplot (Figure 4b). Pathways of neuroactive ligand–receptor interaction
and complement and coagulation cascades were linked together, and this linkage contained
13 proteins, involving PRL, GH, GABA receptors of gamma-aminobutyric acid type A
receptor subunit alpha1 (GABRA1) and gamma-aminobutyric acid type A receptor subunit
beta2 (GABRB2). PRL and GH are members of a common ancestral gene. They share
common structural, functional and binding properties and have a wide range of biological
functions [39]. The cnetplot also depicted linkages of three KEGG enriched terms (proximal
tubule bicarbonate reclamation, alanine, aspartate and glutamate metabolism, peroxisome)
and eight proteins involved in these terms to generate a network (Figure 4d), which were
related to hypothalamic function and GnRH secretion.
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FvsLWW and FvsLBB groups. pAdjust: false discovery rate (FDR). (c) Hierarchical cluster of DAPs in
the FvsLWW and FvsLBB groups in which all of the abundance values of proteins were normalized
and scaled. (d) Networks of the top 10 KEGG enrichment terms were visualized by cnetplot. FvsLWW:
follicular phase relative to the luteal phase in WW sheep; FvsLBB: follicular phase relative to the
luteal phase in BB sheep.

3.5. Integrated Analysis of the Transcriptome and Proteome Screening of Potential Biomarkers
Involved in STH Sheep Fertility

To identify highly correlated multi-omics (proteome and transcriptome) fertility-
discriminating signatures between the WW and BB genotypes, the DIABLO framework
was used to integrate mRNAs and proteins from matched samples (extracted from the
same sheep). This supervised learning approach was enabled to filter optimal classification
feature variables in mixed data.

When samples of the transcriptome and proteome were plotted individually (Figure S2a),
there was no overlap among the four groups (BB and WW genotypes in the follicular and
luteal phases). Similarly, no overlap was observed in a diagnostic scatterplot (plotDiablo)
(Figure S2b). Proteomic and transcriptomic datasets were highly correlated, with a Pear-
son’s correlation score of 0.99 on two components (Figure S2b). Additionally, a scatterplot
showed that the four groups were distinguishable from each other by the biomarkers
obtained from the integration of the two omics datasets. The overall error rate and balanced
error rate results obtained from cross-validation (3 × 5-fold) indicated that the sPLS-DA
model achieved the best performance when ncomp = 3 (Figure S2c). The positive or nega-
tive correlation (Supplementary Table S10) between the abundance of protein and mRNA
expression were visualized using a Circos plot (Figure 5) with ncomp = 1–3 and a correla-
tion cutoff is 0.9. Nineteen pairs of protein-mRNA interactions were screened, of which
eight pairs were negatively correlated, and 11 pairs were positively correlated. PCSK2
protein abundance was strongly correlated with the expression of seven mRNAs (DEDD,
LOC101107878, LOC106991801, MAP1S, SMG5, STRN4, STXBP5L) and all of them were
negatively correlated except for the positive correlation exhibited with the STXBP5L gene.

The plotLoadings function was visualized by the loading weights of each feature vari-
able in three components of two omics datasets (Figure 6a–d and Supplementary Table S9).
The first component provided eight proteins and transcripts, the second component pro-
vided 40 proteins and 20 transcripts and the third component provided 150 proteins and
120 transcripts. Within each component, the feature variable at the bottom provides the
greatest contribution to classification accuracy (Figure 6a–c). To further examine the genes
in the transcriptome that respond differently in BB compared to WW sheep (Interaction
group) 40 differentially expressed genes (DEGs) were selected from the transcriptomic data
(fold change (FC) > 2 and p value < 0.05, padj < 0.05) (Supplementary Table S11). Then,
the DAPs and DEGs screened in the interaction group were compared with discriminat-
ing variables (DIABLO_protein, DIABLO_mRNA) selected by DIABLO (Figure 6e). The
feature variables determined by DIABLO were very different from those determined by
traditional single-omic multivariate approaches. GABRB2 was present in three datasets
(DIABLO_protein, DIABLO_mRNA and DAPs), and cellular retinoic acid binding protein
1 (CRABP1) was the intersection of these four datasets. Fourteen proteins selected by DIA-
BLO were also DAPs in the interaction group. Only two mRNAs (NPSR1 and TMEM132D)
selected by DIABLO were also differentially expressed in the interaction group.
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The proteins and mRNAs from the four datasets were annotated according to KEGG
enrichment analysis (Supplementary Tables S12–S15). The top 30 KEGG pathways are pre-
sented in Figure 7. It is interesting to note that some pathways were related to hypothalamic
function and reproduction-related processes, such as MAPK, PI3K-Akt, the neuroactive
ligand–receptor interaction, ErbB signaling pathways and GABAergic synapse. There were
also several hormone-related pathways such as the prolactin signaling pathway, estrogen
signaling pathway and GnRH secretion. The important biomarkers GABRB2 and PRL were
enriched in the neuroactive ligand–receptor interaction pathway.
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Figure 6. Targeted protein and mRNA panel and classification performance. DIABLO predicted the
importance of multi-omics biomarkers, which were calculated on the basis of the absolute value of the
loading vector weights shown for each block (protein and mRNA) and each component (component
1 (a), 2 (b), 3 (c)). Each biomarker is color-coded according to its association with genotype and
estrous stage. (d) Receiver operating characteristic area under the curve (ROC AUC) provides results
of 1.00 separately using mRNAs and proteins from the three components in the classifier model.
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(e) Overlap between biomarker panels identified using DIABLO and traditional single-
omic multivariate approaches. This upset plot was plotted using the online tool ChiPlot
(https://www.chiplot.online/ (accessed on 1 November 2022)). BBF: sheep with BB genotype in the
follicular phase, BBL: sheep with BB genotype in the luteal phase, WWF: sheep with WW genotype
in the follicular phase, WWL: sheep with WW genotype in the luteal phase.
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pathways for DIABLO_protein group. (b) KEGG enrichment pathways for DIABLO_gene group.
(c) KEGG enrichment pathways for DAPs of interaction group. (d) KEGG enrichment pathways for
DEGs of interaction group.

4. Discussion

The hypothalamus is an important regulator involved in the HPG axis and it or-
chestrates the complex neuroendocrine regulation of reproduction [40]. During follicular
development, in FecB mutant sheep, GnRH accelerates preovulation follicular maturation
and increases ovulation by regulating FSH and LH [11]. With the development of pro-
teomics technology, TMT-based proteomics analysis can detect low abundance proteins
with good reproducibility. Whole hypothalamic tissue of different FecB genotypes at dif-
ferent stages of follicular development were used to obtain hypothalamic protein profiles
in our study. A single omic technology cannot comprehensively reveal the role of key
biomarkers in the hypothalamus in the regulation of ovulation number by FecB mutations.
To overcome this limitation, we introduced transcriptomic data. An integration analysis
of proteomic and transcriptomic data was performed using the machine learning-based
DIABLO framework, which reduces the complexity of the dataset generated via different
platforms, and it obtained the features of important pathways.

Quantitative proteomic analysis experiments do not provide a comprehensive profile
of biological regulatory networks [41]. Studies have been conducted to combine proteomic
and transcriptomic data from the same sample to screen for valuable breeding genes [42,43].
In previous studies, the correlation between transcriptome and proteome data was poor
owing to post-transcriptional regulation and post-translational modifications as well as
experimental technical errors [44,45]. In general, mRNA splicing, changes in protein
turnover and protein degradation may result in a weak correlation between the expression
pattern of mRNA and the abundance of its translated proteins in tissues [46]. In multi-omics
integration, mRNA expression and protein abundance data (p data points) are usually
much more than the achievable sample size (n samples). In this study, to address the
p � n problem, we reduced the complexity of the data by selecting a subset of variables
(DIABLO) [47]. Overall, our integration of two biological data types, proteomic and
transcriptomic, provided greatly enhanced, powerful biological insights.

Our multi-omics approach identified several essential pathways as central to GnRH
secretion and reproduction. These pathways centered on the neuroactive ligand–receptor
interaction pathway, GABAergic synapse and the estrogen signaling pathway. Transcrip-
tomic studies on pigs [48,49], goats [50] and sheep [51] have shown that neuroactive
ligand–receptor interactions play a critical role in the control of reproductive processes.

GnRH neurons coordinate their activity and display intrinsic electrical activity, which
requires intracellular signaling and mechanisms. Functionally, the “GnRH pulse generator”
depends on a complex relationship between neurons containing norepinephrine, dopamine,
5-hydroxytryptamine, GABA, neuropeptide Y, glutamate and alanine. Glutamate and
norepinephrine stimulate the HPG axis, while GABA inhibits the reproductive axis [52].
GABRA1 and GABRB2 are important biomarkers screened by combined proteomic and
transcriptomic analyses, and they are enriched in the neuroactive ligand–receptor interac-
tion pathway and GABAergic synapse pathway. These two genes belong to the GABAa
receptor subunit genes (GABRs), which are heteromeric pentameric ion channels assem-
bled from 19 different subunit heterodimers [53]. All fast GABAergic transmission occurs
through the GABAa receptor in in the central nervous system [54]. GABAa receptor knock-
down in GnRH neurons appears to affect the negative feedback mechanism of estrogen in
mice [55]. A considerable change in the transmission of GABA to GnRH neurons occurs
during an estrous cycle. In mice, GABAa receptor expression was found to be higher in
L than in F [56], which is in agreement with our results. In our research, GABAa receptor
expression was higher in luteal phase type BB than in WW, which suggests that an increased
sensitivity for the ligand might be facilitating the GnRH surge.
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PRL and GH are both endocrine hormones that are synthesized and secreted into the
systemic circulation by the pituitary gland and can affect female reproductive function [57].
In this study, PRL was an important signature factor in the transcriptome that was identified
by the DIABLO method, in both proteomic and transcriptomic results. PRL was also highly
expressed in the luteal phase, where it was enriched in most pathways related to hypotha-
lamic reproductive endocrine system, such as in neuroactive ligand–receptor interactions,
cytokine–cytokine receptor interactions, prolactin and PI3K-Akt signaling pathways. PRL
is expressed in the hypothalamus [58,59]. Although GH is not an important biomarker, its
expression in the proteome is much higher in the luteal phase than in the follicular phase,
and GH mRNA expression is detected in the lateral hypothalamus of the rat brain and is
not associated with pituitary GH expression. GH transcripts have also been detected in the
hypothalamus and extrahypothalamus regions in the chicken brain [60]. Furthermore, GH
and PRL are extrapituitary hormones that can play an autocrine/paracrine role in health
and disease [59]. The identification of GH and PRL in the hypothalamus suggests that these
two endocrine hormones, can play important biological functions in the hypothalamus as
local growth factors in paracrine/autocrine forms in the sheep hypothalamus for regulating
the estrous cycle and ovulation.

FK506-binding immunoaffin (FKBP4 and FKBP5) is enriched in the estrogen signal-
ing pathway. FKBP4 and FKBP5 share a similar gene structure and are involved in the
regulation of steroid hormone receptor activity [61]. High FKBP4 expression can cause
infertility [62]. FKBP5 may regulate the cellular response to progesterone through a short
feedback loop [63,64]. In the present study, the FKBP5 gene in the follicular phase was
significantly more highly expressed in sheep with the BB genotype than those with the WW
genotype. The reason for this finding could be due to the feedback regulation of FKBP5
through progesterone, which causes the pituitary gland to secrete more FSH. By combined
proteomic and transcriptomic analysis, we identified FKBP prolyl isomerase 1A (FKBP1A)
as an important feature factor in the proteome, and it belongs to the FKBPs (FK506 binding-
protein). FKBP1A is a common inhibitor of type I receptors of the TGF-β family [64].
FKBP1A is an important switch for TGF-β pathway activation. BMPR1B binding to lig-
ands or non-covalent binding of molecules such as FK506 to FKBP1A can dissociate the
inhibitory protein FKBP1A from BMPR1B. Subsequently, the phosphorylatable site in the
GS region of BMPR1B is exposed [65]. This site is activated and phosphorylated [66], and
then passes the phosphate group to the substrate R-Smad to eventually activate the TGF-β
pathway [67]. The sheep FecB mutation (residue Q249R) is localized at the C-terminal
end of the αC helix of the GS structural domain of the BMPR1B protein, which is linked
to FKBP1A. This mutation enhances the binding capacity of FKBP1A and BMPR1B thus
reducing TGF-β pathway activity [2]. Our study showed that FKBP1A protein abundance
was lower in the BB sheep than in the WW sheep. However, there was no difference in
BMPR1B protein abundance between the two genotypes; therefore, we speculate that BB
sheep maintain TGF-β pathway activity by reducing FKBP1A protein abundance.

5. Conclusions

This hypothalamic proteomic analysis shows the abundance of protein profiles in the
hypothalamus at different estrous stages with the FecB mutation. Extrapituitary hormones
(GH and PRL) were found to be present in the hypothalamus. A combination of proteomic
and transcriptomic datasets using DIABLO enabled efficient screening of important fertility
biomarkers in the hypothalamus. The GABAa receptor may play a key role regulating the
GnRH surge. We suggest that BB sheep maintain TGF-β pathway activity by reducing
FKBP1A protein abundance. The findings of our multi-omics analysis in the hypothalamus
provide fresh insights into the mechanisms by which the FecB mutation alters fertility
through endocrine regulation. Our results also provide candidate biomarkers for sheep
breeding related to reproductive endocrinology.
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