. biology

Article

Effects of Clipp

ing an Invasive Plant Species on the Growth of

Planted Plants of Two Co-Occurring Species in a
Greenhouse Study

Xiaoqi Ye, Jinliu Meng, Ruixiang Ma and Ming Wu *

check for
updates

Citation: Ye, X.; Meng, J.; Ma, R.; Wu,
M. Effects of Clipping an Invasive
Plant Species on the Growth of
Planted Plants of Two Co-Occurring
Species in a Greenhouse Study.
Biology 2023, 12, 1282. https://
doi.org/10.3390/biology12101282

Academic Editors: Guoqi Chen and
Jiang Wang

Received: 22 August 2023
Revised: 20 September 2023
Accepted: 22 September 2023
Published: 26 September 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Research Station of Hangzhou Bay Wetland Ecosystems, Institute of Subtropical Forestry, Chinese Academy of
Forestry, Hangzhou 311400, China; mengxqi@caf.ac.cn (X.Y.); mengjinliu0542@sina.com (J.M.);
maruixiang(0724@163.com (R.M.)

* Correspondence: hangzhoubay@126.com

Simple Summary: Invasive exotic plant species are threats to native flora and other taxa. No
effective and environmentally friendly approaches are available for controlling Solidago canadensis,
an aggressively invasive plant species in China and Europe. We determined that in addition to the
traditional measure of clipping, planting plants of two co-occurring and competitive species can
further suppress regrowth of clipped S. canadensis plants and both the aboveground and belowground
part of S. canadensis contributed to its suppression effects on planted co-occurring species. These
results suggest that incorporation of utilizing biotic resistance from some highly competitive plant
species and overcoming belowground priority effects of invasive species into a comprehensive
management plan will substantially increase the efficiency of invasive plant control.

Abstract: The restoration of native plants in invaded habitats is constrained with the presence of
highly competitive exotic species. Aboveground removal, such as clipping or mowing, of inva-
sive plants is required for successful restoration. The effects of clipping an invasive plant species,
Solidago canadensis, grown at five densities (1-5 plants per pot), and planting two co-occurring and
competitive species, Sesbania cannabina and Imperata cylindrica, on the growth of both the invasive
species and the co-occurring species were investigated in a greenhouse experiment. The established
S. canadensis suppressed the growth of planted seedlings with 47.8-94.4% reduction in biomass,
with stronger effects at higher densities; clipping significantly reduced 97.5-97.4% of biomass of
S. canadensis and ameliorated the suppression effects (with only 8.7-52.7% reduction in biomass of
the co-occurring plants), irrespective of density. Both the aboveground and belowground part of
S. canadensis contributed to its suppression effects on planted co-occurring species. Seed sowing of co-
occurring species reduced the belowground growth, but not the underground growth of S. canadensis.
S. cannabina appeared to be more effective at reducing the growth of S. canadensis than I. cylindrica.
Therefore, clipping together with planting competitive species that can overcome the belowground
priority effects of S. canadensis could be a promising strategy for controlling S. canadensis invasion
and restoring native plant communities.

Keywords: Solidago canadensis; priority effects; competition; exotic plant invasion; co-occurring species

1. Introduction

Invasive exotic species are non-native species introduced outside their native range ei-
ther naturally or anthropogenically, perform luxuriant growth [1], and pose serious impacts
on the native species and ecosystems [2—4]. The global spread and increasing abundance of
some invasive alien species outside their natural range have caused biodiversity declines,
agricultural yield reductions, and ecosystem service impairments [5-7]. These invasive
exotics perform better in comparison with co-occurring native species, which is consid-
ered a reason behind the successful establishment of these invaders [8,9]. In the invaded
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sites, these invaders cause severe impacts on the biodiversity and harm the flora and have
become a major concern in natural conservation [10-12]. A meta-analysis indicated that
invasive alien plant species caused 50.7% reduction of native plant species diversity [6].
Efficient approaches are urgently required to reduce the negative effects of these species
and restore native ecosystems [7,13]. The suppression effects of established invasive exotics
on native plants are a major constraint to successful restoration, owing to their stronger
priority effects, higher competitive abilities, and asymmetric plant size differences [13-15].
Therefore, reducing the priority effects of the invasive exotics and enhancing growth and
competitive capacity of natives are the key steps of a successful management [13,16,17].

Intervention of growth of invasive exotics (mostly that of the aboveground part) with
mowing or clipping, prescribed fire, and spraying herbicides are common approaches to
control invasive exotics [18-20]. Aboveground clipping or mowing can weaken priority
effects by reducing their growth vigor and competitive strength with native species [21-25].
For example, harvesting can reduce the dominance of invasive Typha species and promote
native species diversity [26]; long-term repeated mowing converted a site dominated
with invasive Arrhenatherum elatius to a prairie dominated with native grasses [21]; turf
stripping together with native seed addition can achieve a 75% reduction of the invasive
Solidago cover [25]. However, priority effects of some established invasive exotic species
can persist if they are exposed to short-term aboveground disturbance due to the earlier
belowground biomass formation and soil space occupancy [27]. For instance, Li et al. (2015)
found that successful replacement of invasive Ipomoea cairica with native species could
only occur when both the aboveground and belowground parts of the invasive plants
were removed [24]. Furthermore, some invasive exotics have a high and fast regeneration
capacity after aboveground disturbance; consequently, they may re-establish a highly
competitive capacity against native species [28,29]. Van Kleunen et al. (2004) showed that
the partial removal of plant tissues led to temporary growth reductions in invasive Solidago
canadensis; however, this was compensated with increased growth [30]. Huang et al. (2018)
found that some invasive exotics have a higher regrowth capacity and maintain their
performance advantages over native species after clipping [29]. These studies indicate
that there are uncertainties regarding whether invasive plant species can be controlled
successfully using only aboveground disturbances.

In the last decade, applying ecological principles to management of invasive species
and restoration of native plant communities has drawn increasing attention [13,16,17],
as physical removal or herbicide application failed to economically and effectively con-
trol re-invasion and caused secondary environmental problems [31-33]. Biotic resistance
from native vegetation is one of the key determinants of invasion success [16,17,34,35].
Establishing communities with competitive native species can support further suppres-
sion of invasive exotics in addition to traditional approaches [16,17,31]. Some greenhouse
experiments have found that native species may help suppress exotic plants and favor
the growth of desired native perennials [36-38]; however, these studies did not consider
the priority effects of invasive exotic species [13,39,40]. Due to the presence of established
invasive plants, native grass seeding alone could not inhibit the growth of invasive Cirsium
arvense [41]. This suggests that whether planting native plants can significantly suppress
the growth of invasive exotics may depend on the priority effects of the latter. Furthermore,
competition between plants can be significantly altered using density, and higher densities
intensify competition for resources between invasive and native species [42,43]. Invasive
plant species gain increasing density as invasion proceeds, and the successful establish-
ment of planted native plants may highly depend on the density of the invasive exotic
species [44]. However, it remains unclear how clipping alters the density effects of invasive
plants on native plants.

Deepening understanding of the interactions between established invasive exotics
and planted natives and combining these ecological principles with traditional approaches
can be very promising in successfully controlling invasive exotics [13,16,17]. Although the
effects of clipping invasive plants or planting native plants on restoration performance
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have been investigated in different systems [25,45], it remains unclear whether these two
measures can work together to a better control efficiency. In this study, we explored the
possibility of inhibiting the growth of an aggressively expanding exotic plant species,
Solidago canadensis (Asteraceae), which is native to North America but now widespread in
China, Europe, and other parts of the world [46—49]. This species is characterized with a
large number of seed production (ca. 20,000 seeds produced per plant) and fast expansion
with clonally rhizomatous growth, which lead to a very fast population increase rate [46].
Furthermore, this species possesses highly competitive capacities, repels natives, and forms
large monocultural patches and causes substantial biodiversity loss [46—49]. Eradicating the
aggressive Solidago plants is extremely difficult, often resulting in frequent re-invasion [32].
A study indicated that long-term herbicide spraying and mowing together with native
seed addition can reduce Solidago coverage significantly [25]. However, the efficiency
of this measure has to be examined in more studies. We asked the following questions:
(1) Does clipping effectively inhibit the growth of invasive plants and promote the growth
of competitive co-occurring species at different invasive plant densities? (2) Does planting
the plants of the co-occurring species inhibit the growth of invasive plants in addition
to clipping?

2. Materials and Methods

We examined the effects of aboveground clipping and sowing seeds of the two co-
occurring and competitive plant species on biomass accumulation in invasive S. canadensis
plants at five different densities using a randomized block design. The experiment was
designed in a way simulating the circumstances in restoration of invaded habitats with
two stages. In Stage I, the S. canadensis seedlings were cultivated at different densities, to
simulate established S. canadensis populations with different densities in the field and to
establish priority effects of S. canadensis against the planted co-occurring species in Stage
IL. In Stage 1I, the S. canadensis seedlings were subjected to different clipping treatments
(clipping or non-clipping, setting up different priority effects) and treatments of competition
with planted plants of co-occurring species (seed sowing of two co-occurring species, setting
up different biotic resistance), to simulate the competition between established S. canadensis
and planted plants in restoration projects.

2.1. Stage I: Culture of S. canadensis Seedlings at Different Densities

In November 2021, S. canadensis seeds were collected from eight populations in an old
field (30°16’ N, 121°10" E) in Ningbo City, an area where the invasion of S. canadensis is
frequently observed. These seeds were stored at 4 °C until germinated in Petri dishes with
moistened filter paper in a growth chamber (PPFD of 180 umol-m~2:s~1, 24 °C during
the day (12 h) and 18 °C at night (12 h)) on 7 April 2022. One week after germination,
healthy and uniform seedlings with two cotyledons were transplanted into plastic pots in
a partially climate-controlled greenhouse in the experimental garden of the Subtropical
Forestry Institute at the Chinese Academy of Forestry. The seedlings were planted at
five densities: one, two, three, four, and five seedlings per pot, with 36 pots for each
density. The seedlings in each pot were planted at equal distances from each other using a
circular design. Each pot was planted with at least two additional plants to protect against
transplant mortality. After 1 week, appropriate test densities were established with thinning
or the addition of new seedlings of the same age. These plants were cultivated until they
were exposed to different treatments of clipping and sowing seeds of co-occurring species.
Plastic pots (18 cm in diameter and 18 cm in height) were filled with approximately 4 L
of a growth substrate. The substrates consisted of a completely mixed field-collected soil
and organic matter (v/v = 4:1). Soil was collected from the upper 15 cm of the profile
from an abandoned field near where S. canadensis seeds were collected. The pots were
rearranged once per week to minimize the effects of environmental heterogeneity within the
greenhouse. During the experiment period, light intensity inside the greenhouse was about
80% of the ambient light outside, with a daily maximum of 800-1200 umol-m~—2-s~!. Inside
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the greenhouse, the daily maximum air temperature fluctuated in the range of 25-38 °C
during the day and the minimum value fluctuated in the range of 18-28 °C at night. The
day length was 11-14 h. Soil moisture was monitored, and the plants were watered once or
twice a day, depending on the air temperature. The soil contained 10.36 g kg~ ! of organic
matter (completely decomposed plant litters), 0.53 g kg~ ! of total nitrogen, and 0.63 g kg !
of total phosphorus and had a pH of 8.20.

2.2. Stage 1I: Clipping and Sowing Seeds of Co-Occurring Plant Species

An additive design competition experiment [50] was conducted to examine the effects
of clipping and adding seeds of the co-occurring species to S. canadensis. Two common
co-occurring plant species, Imperata cylindrica (Poaceae), a grass with dense ramets and
rhizomes, and Sesbania cannabina (Leguminosae), an annual legume without clonal growth,
were selected as the target species. These species were selected because they are the
dominant plant species that typically form monocultural stands in abandoned fields and
have application potentials in restoring S. canadensis-invaded habitats. Although I. cylindrica
stands are often invaded by S. canadensis, S. canadensis can hardly invade the stands
of S. cannabina, indicating the higher competitive ability of this species. The seeds of
L. cylindrica were collected in June 2021 and the seeds of S. cannabina in November 2021
with the same methods described for collecting the seeds of S. canadensis.

Stage I S. canadensis seedlings were exposed to a combination of three factors:
(1) S. canadensis density (described in Stage I), (2) clipping or no clipping, and (3) sowing of
L. cylindrica or S. cannabina seeds or no sowing. On 25-27 June 2022, half of the S. canadensis
plants from each density treatment were clipped, and the other half were kept intact. For
each half of these plants, five seeds of I. cylindrica, S. cannabina, or no seeds were sown in the
center of the pots, with six replicates for each sowing treatment. Additionally, another five
seeds were sown in each of the ten pots for each species without the presence of S. canadensis
plants as a control. After 5 days, three to five seeds germinated, and the seedlings were
thinned to one seedling after 1 week of growth. During the S. canadensis regrowth period,
air temperature fluctuated between 24 and 38 °C/20 and 30 °C day/night conditions, and
the plants were watered as described in Section 2.1.

On 15 September, 3 months after clipping and planting the plants from the two co-
occurring species, all plants were harvested, the roots were carefully rinsed to remove the
soil, and the roots of the two species grown in the same pot were separated. The leaves,
stems, roots, and rhizomes from each plant were separated and dried at 80 °C for 6 days to
constant mass and weighed.

2.3. Data Analysis

The effects of density, clipping, and planting the plants from the two co-occurring
species and their interactive effects on belowground biomass, aboveground biomass, and to-
tal biomass of S. canadensis were analyzed using a three-way ANOVA. Different S. canadensis
density and clipping treatments were combined as a fixed factor, and a one-way ANOVA
was conducted to determine their effect on the biomass of I. cylindrica and S. cannabina.
All analyses were performed using fitting general linear models (GLM). Furthermore, the
biomass of S. canadensis regressed against that of the paired I. cylindrica and S. cannabina
grown in the same pot. When necessary, the data were transformed to meet the assumptions
of normality and equal variance. The Fisher’s least significant difference (LSD) test was
used to examine the differences among treatments at a 5% significance level. All analyses
were performed using Statistical Product and Service Solution (SPSS) software (version
16.0; SPSS Inc., Chicago, IL, USA).
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3. Results
3.1. The Effects of S. canadensis Density, Clipping, and Co-Occurring Species Planting on Biomass
Accumulation of S. canadensis

The treatments of clipping, sowing seeds of co-occurring species, and S. canadensis
density had significant effects on the aboveground, belowground, and total biomass of
S. canadensis (p < 0.05, Table 1). Clipping and seed sowing had significant interactive effects
on belowground and total biomass (p < 0.05), but not on the aboveground biomass of
S. canadensis (p > 0.05). There were significant interactive effects of clipping and density
on the biomass of S. canadensis (p < 0.05). Significant interactive effects of S. canadensis
density and seed sowing were observed only for belowground biomass (p < 0.05). No sig-
nificant interactive effects of S. canadensis density, clipping, and seed sowing were observed
(p > 0.05). The total biomass of S. canadensis per pot increased with S. canadensis density
(Figure 1). Clipping decreased S. canadensis biomass significantly (p < 0.05), independent of
S. canadensis density or seed sowing treatments. Planting the plants of the two co-occurring
species significantly decreased the belowground and total biomass of S. canadensis in the
non-clipping treatments (p < 0.05), but not in the clipping treatments, and S. cannabina seed
sowing had greater effects than I. cylindrica seeds (Figure 1). The biomass of S. canadensis
seedlings was reduced to a greater extent by clipping at higher densities than at lower
densities compared with the corresponding non-clipped plants.

Table 1. The effects of clipping (C), sowing seeds of the two co-occurring species (S), and density of
S. canadensis seedlings (D) on the biomass of S. canadensis seedling.

Total Aboveground Belowground
Biomass Biomass Biomass
D.f. F 4 F 4 F p

C 1 2094.975 0.000 2180.523 0.000 1134.113 0.000

S 2 25.144 0.000 5.678 0.004 72.507 0.000

D 4 31.018 0.000 26.545 0.000 25.248 0.000
CxS 2 5.224 0.007 1.873 0.158 34.010 0.000
CxD 4 20.753 0.000 17.601 0.000 16.271 0.000
Sx D 8 0.840 0.569 0.419 0.908 2.661 0.010
CxSxD 8 0.478 0.870 0.413 0.912 1.991 0.052

C—Solidago canadensis clipping (clipping or non-clipping), S—seed sowing (without seed sowing, Imperata
cylindrica seed sowing, or Sesbania cannabina seed sowing), D—density of S. canadensis seedlings (1, 2, 3, 4, or
5 plants per pot). The bold p value indicate significant effects.

3.2. The Effects of Clipping and Seedling Density on the Biomass of I. cylindrica and S. cannabina

The combination of clipping and S. canadensis density significantly affected the biomass
of I. cylindrica (D.£.10, 56, F = 23.746, p < 0.001) and S. cannabina (D.£.10, 53, F = 17.646,
p <0.001). S. canadensis suppressed the biomass accumulation of I. cylindrica and S. cannabina
under all density treatments. The biomass of L. cylindrica and S. cannabina decreased signifi-
cantly with increasing biomass of S. canadensis in the mixed culture treatments (p < 0.001;
Figures 2 and 3). The presence of non-clipped S. canadensis sharply decreased the biomass
of I. cylindrica and S. cannabina (p < 0.05). In the non-clipping treatments, the biomass of
L. cylindrica and S. cannabina decreased with the increasing density of S. canadensis, but
this was only significant for S. cannabina (p < 0.05). Clipping significantly mitigated the
suppression of S. canadensis biomass accumulation on I. cylindrica and S. cannabina in all
S. canadensis density treatments (p < 0.05). In the clipping treatments, the biomass of
L cylindrica and S. cannabina growing with one or two S. canadensis seedlings was close to
that of the corresponding monocultures (Figure 3).
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Figure 1. Biomass of the invasive Solidago canadensis seedlings exposed to different treatment of
densities, clipping, and sowing seeds of the two co-occurring species. (A) Aboveground biomass;
(B) belowground biomass; (C) total biomass. NC-CK, without clipping and seed sowing; NC-IC,
without clipping and with Imperata cylindrica seed sowing; NC-IC, without clipping and with Sesbania
annabina seed sowing; C-CK, clipping, without seed sowing; C-IC, with clipping and I. cylindrica seed
sowing; C-SC, with clipping and S. cannabina seed sowing. The data are the means + standard error
and different letters indicate significant differences (p < 0.05) between the different treatments within

each S. canadensis seedling density.
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Figure 2. Regression of biomass of the plants of the co-occurring species with biomass of the Solidago
canadensis seedlings. (A) Imperata cylindrica and (B) Sesbania annabina. The data were pooled from all
the treatments in which S. canadensis was grown together with planted L. cylindrica or S. cannabina.
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and clipping treatments of the Solidago canadensis seedlings. (A) Imperata cylindrica and (B) Sesbania
cannabina. CK, the I. cylindrica and S. cannabina seedlings were grown alone as a control (one seedling
per pot). NC-1, NC-2, NC-3, NC-4, NC-5, and the I. cylindrica or S. cannabina seedlings were sown
into the pots with 1-5 non-clipped seedlings of S. canadensis per pot, respectively. C-1, C-2, C-3, C-4,
C-5, and the I. cylindrica or S. cannabina seedlings were sown into the pots with 1-5 clipped seedlings
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4. Discussion

The major purpose of this study is to investigate whether biotic resistance from planted
plants of co-occurring species may further increase suppression effects on invasive exotics
in addition to clipping. The experiment did find that planting the plants of co-occurring
species suppressed the belowground growth of S. canadensis, although the effects were
not significant when the plants were clipped. It suggested that combined treatments of
clipping invasive exotic plants and plants of co-occurring species with high competitive
abilities are promising in effectively controlling these aggressively expanding species.

4.1. The Effects of Clipping and Planting Plants of the Co-Occurring Species on Biomass
Accumulation of S. canadensis

Aboveground removal has long been commonly applied as the primary control mea-
sure of invasive exotic species [18-20]. In our experiment, the biomass of S. canadensis could
be reduced by up to 90% by clipping, indicating the high effectiveness. These results are
consistent with those of Knudson et al. (2012) and He et al. (2018), who observed that clip-
ping effectively inhibited the growth of some invasive exotic species [41,45]. The efficiency
of clipping in reducing plant growth highly depends on the regrowth potential, which
may be affected by plant size and the pool size of nutrient reserves stored in belowground
parts [51-53]. Larger plants have more nutrients stored underground that are ready to be
remobilized to support a higher regrowth capacity [54]. In our experiment, S. canadensis
seedlings were relatively small (two months old, in contrast to their long-lived perennial
growth habit), which may explain their relatively high sensitivity to clipping and limited
regrowth potential.

The low efficiency, high cost, or environmental problems limit application of traditional
measures, such as clipping, mowing, or fire and herbicide application, to control invasive
exotic species [18-20]. Evidence indicates that restoring native cover can enhance invasion
resistance [16,17,31,37]. We also observed significant effects of planting the co-occurring
species on the growth of S. canadensis. Generally, the negative correlation between the
biomass of S. canadensis and that of planted seedlings (Figure 2) indicated that there
was strong competition between the planted seedlings of co-occurring species and the
established S. canadensis plants. The seed sowing interfered with belowground growth but
not aboveground growth of S. canadensis, suggesting intensive competition for root growth
spaces, nutrients, or water. The findings comply with Szymura (2016), Ni (2018), and Ren
(2019) [48,55,56], who found that roots play important roles in competition between native
and invasive exotic species. The growth reduction regarding S. canadensis was significant
in the non-clipping treatments but not in the clipping treatments. One explanation for the
insignificant differences in the growth of clipped S. canadensis among the different sowing
treatments is that the growth of these clipped plants is highly dependent on the number of
dormant buds resprouting at the stem bases and the capacity to mobilize nutrient reserves
in the rhizomes and coarse roots [46]. In contrast, in the non-clipping treatment, the major
constraint for growth of S. canadensis may be the interference of planted seedlings of the
co-occurring species. Despite the nonsignificant effects observed in the clipping treatments
(Figure 1), regrowth of S. canadensis can be further reduced by planting seedlings of the
co-occurring species, in addition to clipping. S. canadensis seemed to be more suppressed
by S. cannabina than 1. cylindrica, which was probably due to the larger plant size and
faster biomass accumulation (Figure 3) of the former species, as competitive intensity
is supposed to be dependent on neighbor biomass [57]. Interspecific variations in the
suppression of exotic species using different native species have been observed [38,48],
and selecting species with faster growth rates may enhance success in the initial stages of
invaded ecosystem restoration [43,58]. Although S. cannabina is listed as an invasive species
in China [59], it is a typical leguminous nitrogen-fixing species [60] and there is a long
history of cultivation of S. cannabina as green manure to improve soil quality, especially
that of saline or alkaline soil, by increasing soil organic matter and decreasing soil salinity
and alkalinity [61,62], as forage for domesticated animals, and as a herbal medicine and a



Biology 2023, 12,1282

9of 12

source of a food additive [63,64]. As S. cannabina serves as a multipurpose species in China
currently, it can potentially be used in controlling S. canadensis.

4.2. The Effects of S. canadensis on Biomass Accumulation of the Co-Occurring Species

Our experiment indicated that there were strong priority effects of S. canadensis over
the co-occurring species, which have been observed in many other invasive exotics [39,65].
The two co-occurring species responded to the treatments of clipping and the density of
S. canadensis similarly. However, the growth of I. cylindrica seemed to be more affected,
probably because of the lower competitive capacity of this species [66]. These results
suggest that there are variations in competitive tolerance between different co-occurring
species and that screening co-occurring species with high competition tolerance may
promote initial restoration success [58]. The mechanisms for the suppression effects of early
established plants on later arriving plants may include shading from invasive plants [67,68],
early pre-emption of essential resources in soil [69,70], suppression of native plants using
allelopathic effects [71,72], and an altered soil biota community [73,74]. S. canadensis
exhibited significant inhibiting effects on the growth of the two co-occurring species when
they were not clipped or when clipped at a higher density, which offers an explanation for
their dominance in the field [66,75]. Clipping significantly ameliorated the suppression
effects, suggesting shading played an important role. But belowground parts of the invasive
plants may also contribute to the suppression effects [27,35]. There were few significant
differences between the aboveground biomass of clipped S. canadensis plants in the different
density treatments (Figure 1), but biomass accumulation of S. cannabina and I. cylindrica
was indeed lower in the higher S. canadensis density treatments, suggesting that there were
stronger priority effects of the roots or rhizomes [27]. Denser roots and rhizome clumps
may inhibit root growth and nutrient uptake in newly grown seedlings due to limited root
growth space [27,35]. The results suggested that clipping alone may have very limited
effects on the belowground priority effects. This may explain frequently observed fast
regrowth of some invasive exotics and suppression of growth of planted natives in fields.

The findings from this study offer some implications for future studies and invaded
habitat restoration. The results highlighted the importance of applying competitive native
species and overcoming belowground priority effects of invasive exotic plants in restoration
of native cover. Therefore, different components of the priority effects (belowground vs.
aboveground; belowground components, such as nutrient competition, allelopathy, soil
biota, etc.) and their contributions need to be identified, dissected, and quantified (13, 71)
in future studies. Furthermore, interspecific variations in response to these components
in different native plant species need to be clarified for optimized species selection. For
restoration projects, spraying systemic herbicides with stronger effects on belowground
parts, selecting native species with less sensitivity to the belowground priority effects of
invasive exotics, and optimizing timing of control can be the most important components
in future management plans [13,16,17,31].

5. Conclusions

The study indicated that in addition to clipping, planting co-occurring and competitive
plant species can increase biotic resistance to further invasion of S. canadensis and both the
aboveground part and belowground part of S. canadensis contributed to its suppression ef-
fects on planted co-occurring species. In the future, studies identifying the key components
contributing to the priority effects of the established invasive exotic species over planted
natives to optimize precise timing and selecting native species with high competitive
capacities are extremely important for designing a successful restoration management.
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