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Simple Summary: Alcohol-associated liver disease (ALD) is a global health problem with high
morbidity and mortality. ALD is a multifactorial disease which manifests as lipid accumulation in the
liver, hepatic inflammation, fibrosis, and cirrhosis. Due to the complexity of this disease, and despite
extensive research to find a cure, there is no FDA-approved therapy to date. Cyclic nucleotides are
important second messengers regulating numerous processes in the cells of the body. Their levels
and signaling are tightly controlled by sophisticated molecular networks. We have found that cyclic
nucleotide levels change in the livers of patients with ALD as well as in mice chronically fed alcohol.
These changes are associated with significant alterations in the expression of genes involved in the
regulation of cyclic nucleotide signaling and inflammatory/fibrotic processes. Our findings could
lead to the development of novel targeted therapies for ALD.

Abstract: Background: Cyclic nucleotides are second messengers, which play significant roles in
numerous biological processes. Previous work has shown that cAMP and cGMP signaling regulates
various pathways in liver cells, including Kupffer cells, hepatocytes, hepatic stellate cells, and cellular
components of hepatic sinusoids. Importantly, it has been shown that cAMP levels and enzymes
involved in cAMP homeostasis are affected by alcohol. Although the role of cyclic nucleotide
signaling is strongly implicated in several pathological pathways in liver diseases, studies describing
the changes in genes regulating cyclic nucleotide metabolism in ALD are lacking. Methods: Male
C57B/6 mice were used in an intragastric model of alcohol-associated steatohepatitis (ASH). Liver
injury, inflammation, and fibrogenesis were evaluated by measuring plasma levels of injury markers,
liver tissue cytokines, and gene expression analyses. Liver transcriptome analysis was performed
to examine the effects of alcohol on regulators of cyclic AMP and GMP levels and signaling. cAMP
and cGMP levels were measured in mouse livers as well as in livers from healthy human donors
and patients with alcohol-associated hepatitis (AH). Results: Our results show significant changes
in several phosphodiesterases (PDEs) with specificity to degrade cAMP (Pde4a, Pde4d, and Pde8a)
and cGMP (Pde5a, Pde6d, and Pde9a), as well as dual-specificity PDEs (Pde1a and Pde10a) in ASH
mouse livers. Adenylyl cyclases (ACs) 7 and 9, which are responsible for cAMP generation, were also
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affected by alcohol. Importantly, adenosine receptor 1, which has been implicated in the pathogenesis
of liver diseases, was significantly increased by alcohol. Adrenoceptors 1 and 3 (Adrb), which couple
with stimulatory G protein to regulate cAMP and cGMP signaling, were significantly decreased.
Additionally, beta arrestin 2, which interacts with cAMP-specific PDE4D to desensitize G-protein-
coupled receptor to generate cAMP, was significantly increased by alcohol. Notably, we observed that
cAMP levels are much higher than cGMP levels in the livers of humans and mice; however, alcohol
affected them differently. Specifically, cGMP levels were higher in patients with AH and ASH mice
livers compared with controls. As expected, these changes in liver cyclic nucleotide signaling were
associated with increased inflammation, steatosis, apoptosis, and fibrogenesis. Conclusions: These
data strongly implicate dysregulated cAMP and cGMP signaling in the pathogenesis of ASH. Future
studies to identify changes in these regulators in a cell-specific manner could lead to the development
of novel targeted therapies for ASH.

Keywords: alcohol-associated steatohepatitis; liver; cAMP; cGMP; phosphodiesterases

1. Introduction

Alcohol-associated liver disease (ALD) is a global health problem with increasing mortal-
ity; this was further exacerbated by the COVID-19 pandemic [1]. It has been reported that of
all liver-disease-related deaths, 50% are due to alcohol use [2]. Despite extensive research and
clinical trials, there are no FDA-approved therapies to date. ALD is a multifactorial disease
characterized by lipid accumulation in the liver (steatosis), inflammation (hepatitis), fibrosis,
and cirrhosis [3,4]. Cyclic nucleotides, cyclic adenosine monophosphate (cAMP), and cyclic
guanosine monophosphate (cGMP) are important second messengers which play a significant
role in signal transduction in every cell in the body. More specifically, cAMP and cGMP signal-
ing modulate numerous processes, including cell proliferation, differentiation, inflammatory
response, gut peristalsis, platelet aggregation, and lipolysis, to name a few [5,6]. cAMP is
generated in response to external stimuli (hormones, neurotransmitters, and cytokines), which
act as ligands to G-protein-coupled receptors (GPCR). Depending on whether this binding
activates inhibitory (Gi) or stimulatory G (Gs) proteins will result in either the activation
or inhibition of adenylyl cyclases (ACs), enzymes catalyzing the production of cAMP from
ATP [7]. The production of cyclic guanosine monophosphate (cGMP), on the other hand, is
catalyzed by soluble guanylyl cyclase (sGC) or particulate guanylyl cyclase (pGC) from guano-
sine triphosphate (GTP) [8]. Four soluble and seven membrane-spanning GCs have been
identified in mammals [9]. Atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP),
and nitric oxide are known activators of GCs. The AC family consists of nine transmembrane
ACs (AC1-AC9) and one soluble AC (sAC) [10]. An increase in cAMP and cGMP levels leads
to allosteric activation of their effectors and downstream signaling. cAMP effector molecules
include protein kinase A (PKA), exchange protein directly activated by cAMP (EPAC) [11],
Popeye-domain-containing (POPDC) protein [12], and cyclic nucleotide–gated ion channels
(CNGCs) [13]. cGMP effectors are represented by the protein kinase G family produced by
two genes, PKGI and PCGII [14,15].

Phosphodiesterases are a large family of enzymes responsible for cAMP and cGMP
hydrolysis to inactive AMP and GMP. Of the eleven members of the family of PDEs,
four specifically hydrolyze and degrade cAMP (PDE3, 4, 7, and 9), three degrade cGMP
(PDE5, 6, and 9) and others have dual specificity (PDE1, 2, 10, and 11) [16]. Numerous clin-
ical and animal studies have shown beneficial effects of PDE inhibitors in attenuating liver
inflammation and fibrosis, strongly suggesting the role of cAMP and cGMP in liver disease
pathogenesis (reviewed in [17,18]). Our previous work has shown that dysregulated cAMP
signaling plays a critical role in the pathogenesis of alcohol-associated liver disease [19–21].
Our first study identified increased PDE4 expression as the underlying alcohol-mediated
“priming” of monocytes and macrophages to produce exaggerated levels of inflammatory
mediators such as TNF [21]. Later studies have shown that alcohol can affect hepatocytes



Biology 2023, 12, 1321 3 of 21

in a similar fashion and decrease intracellular cAMP levels and signaling [19,20]. Work by
others has demonstrated that acetaldehyde-mediated hepatic stellate cell (HSC) activation
is regulated by EPAC1 [22].

Although the role of cAMP and cGMP signaling is strongly implicated in several patho-
logical pathways in ALD, studies examining the changes in upstream and downstream
factors in the metabolism and signaling of these messengers are lacking. Using a mouse
model of alcohol-associated steatohepatitis (ASH) developed by Tsukamoto et al. [23],
we examined the effect of alcohol on the liver transcriptome to evaluate the changes and
regulatory pathways in cAMP and cGMP signaling. We also analyzed publicly available
RNAseq data on liver samples of patients with alcohol-associated hepatitis and normal
liver tissues from hepatic resection [24]. Our findings could have implications in identifying
novel cell-targeted therapies for ALD.

2. Materials and Methods
2.1. Human Study

Five liver tissues from healthy donors and six liver tissues (explants) from patients
with severe alcohol-associated hepatitis (AH) were obtained from the Resource Center at
John Hopkins University (IRB00107893). The mean age of patients with AH was 44 ± 10.1;
there were two females and four males. Donors’ gender and age data were not available.
All studies were approved by the appropriate Institutional Review Boards and written
consent was obtained from all participants.

For the analysis of human samples, raw gene counts for patients with alcohol-associated
hepatitis (n = 10) and normal liver tissue from hepatic resection (n = 11) were retrieved
from the Gene Expression Omnibus (GSE142530; https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE142530; accessed on 11 September 2023) and analyzed.

2.2. Animal Experiments

Male C57Bl/6 mice 8 weeks of age were subjected to the alcohol-associated steato-
hepatitis (ASH) regimen as described [23] (n = 6 pair-fed control and n = 7 alcohol-fed).
Briefly, mice were fed a solid Western diet high in cholesterol and saturated fat (HCFD)
or regular chow ad libitum for two weeks, followed by the intragastric (iG) feeding of
ethanol and a high-fat liquid diet (36%Cal corn oil) at 60% of their total caloric intake
plus ad libitum intake of HCFD for the remaining 40% of calories. The ethanol dose was
increased to 27 g/kg/day over an eight-week period, and pair-fed (PF) control mice were
fed an isocaloric high-fat liquid diet. Additionally, mice were subjected to a weekly alcohol
binge (5 g/kg), starting from the second week of iG feeding forward. Mice were eutha-
nized between 10:30 am and 1:00 pm one day after the final binge by inferior vena cava
exsanguination, and liver tissues were removed under general anesthesia with Ketamine
and Xylazine. All experimental protocols were approved by the University of Southern
California Institutional Animal Care and Use Committee (20068), in accordance with the
National Institutes of Health Office of Laboratory Animal Welfare Guidelines.

2.3. Measurement of Liver Injury Markers

Plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST)
levels were measured using colorimetric enzymatic assay kits (cat# MAK052 (ALT)
and cat# MAK055 (AST), Millipore Sigma, St. Louis, MO, USA), according to the
manufacturer’s instructions.

2.4. Cytokine Measurement by MSD Platform

For cytokine measurement, 30–50 mg liver tissue was homogenized in a lysis buffer
containing 150 mM NaCl, 20 mM Tris, pH 7.5, 1 mM EDTA, 1 mM EGTA, and 1% Triton
X-100 completed with protease and phosphatase inhibitor cocktail. Lysates were incubated
overnight on 96-well plates coated with a mixture of antibodies. The plate was read with a

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE142530
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MESO QuickPlex SQ 120 imager and analyzed using Discovery Workbench v4.0 software.
Data were normalized to the amount of protein per lysate and presented as pg/mg protein.

2.5. MPO Activity Assay

After 30–50 mg liver tissue had been homogenized, myeloperoxidase (MPO) activity
was measured per the manufacturer’s instructions (HycultBiotech, Wayne, PA, USA). Data
were normalized to the protein content in assayed tissue lysate.

2.6. Measurements of cAMP and cGMP Levels

cAMP measurements were performed using cAMP complete ELISA (Enzo Life Sci-
ences, Farmingdale, NY, USA, cat# ADI-900-163) and cGMP complete ELISA kits (Enzo
Life Sciences, Farmingdale, NY, USA, cat# ADI-900-164). Subsequently, 30–50 mg liver
tissue was homogenized in 0.1 N HCl to inhibit phosphodiesterase activity. Homogenates
were vortexed and centrifuged for 10 min at >600× g to pellet the debris. Levels were
normalized by protein content.

2.7. Liver Histopathology and Sirius Red Staining

Briefly, 5 µm paraffin sections were de-paraffinized in CitriSolv hybrid (Decon Labs, Inc.,
King of Prussia, PA, USA) and rehydrated in a series of ethanol and water, stained with
hematoxylin (Sigma, cat# GHS3) and eosin (Sigma, cat# HT110306) for 1 min each. The
sections were then dehydrated and mounted. Sirius Red staining solution was used to stain
tissues for 30 min at room temperature. All images were taken using an Olympus BX41
microscope with 10× and 20× objectives.

2.8. Statistical Analysis

Statistical analyses were performed using GraphPad Prism version 6.07 for Windows
(GraphPad Software Inc., La Jolla, CA, USA). Differences between the two groups were
analyzed using the unpaired t-test. Results were expressed as the mean ± SD; p < 0.05 was
considered statistically significant.

2.9. RNA Sequencing and Statistical Analysis

Total RNA was isolated from 30–50 mg mouse liver tissues (n = 5 pair-fed and
n = 7 alcohol-fed) using TRIzol Reagent (Invitrogen, Carlsbad, CA, USA). The TruSeq
Stranded mRNA LT Sample Prep Kit with poly-A enrichment was used to prepare to
RNA libraries from 1 µg of sample. Validation of the library was performed qualitatively
using an Agilent Bioanalyzer and quantitatively using MiSeq Nano (300 cycles) test runs.
Two sequencing runs were performed on the University of Louisville Center for Genetics
and Molecular Medicine’s (CGeMM) Illumina NextSeq 500 using the NextSeq 500/550
1× 75 cycle High Output Kit v2. Quality control was performed using FastQC (v.0.10.1) [25].
Sequenced reads were of good quality, and no sequence trimming was necessary. The se-
quences were aligned to the mouse reference genome assembly (mm10) using the TopHat2
aligner (v.2.0.13) [26] with alignment rates above 97.5%. Gene read counts were gener-
ated using Cuffnorm [27] with FPKM normalization. Differential expression analysis was
performed using Cuffdiff2 (v.2.2.1) [27], which utilizes a negative binomial model in the
determination of differentially expressed genes. The log2 fold change for differentially
expressed genes was input to Pathview [28] for highlighting selected KEGG pathways [29].

For the analysis of human samples, raw gene counts for patients with alcohol-associated
hepatitis (n = 10) and control patients with a healthy liver (n = 11) were retrieved from
the Gene Expression Omnibus (GSE142530) [24]. Differential expression was performed
with DESeq2 [30], which uses relative log expression (RLE) as its normalization method.
DESeq2 uses a negative binomial model to determine differentially expressed genes, similar
to Cuffdiff2 described above.
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3. Results
3.1. Mice Developed Severe Liver Injury, Inflammation, Steatosis, and Pericellular Fibrosis in the
ASH Model

Chronic alcohol feeding resulted in significant liver injury and steatosis (Figure 1A). As
expected, ASH mice had very high levels of liver enzymes ALT and AST (Table 1). Alcohol-
fed mice exhibited significant neutrophil infiltration, resulting in increased MPO activity
and increased inflammatory markers (Table 1). There was also evidence of increased stellate
cell activation and pericellular collagen deposition typical of ALD fibrosis (Figure 1B).
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Figure 1. Alcohol-fed mice develop severe hepatic steatosis and pericellular fibrosis. (A) Paraffin-
embedded liver sections were stained with hematoxylin and eosin. Representative images of liver
tissues from pair-fed (PF) and alcohol-fed (AF) mice subjected to intragastric feeding as described in
the Section 2. (B). Sirius Red staining showing pericellular collagen deposition in the livers of AF
mice as compared with PF counterparts, demonstrating fibrotic processes in alcohol-fed mice.

Table 1. Plasma levels of liver injury markers ALT and AST, hepatic MPO activity, and cytokine levels
in mice.

Pair-Fed Alcohol-Fed

ALT, U/L 15 ± 5.8 348.3 ± 169.01 **

AST, U/L 53.5 ± 8.9 289 ± 190.4 *

MPO activity, Units/mg 9.6 ± 1.97 32.4 ± 16.68 *

TNFα, pg/g 4.3 ± 2.63 10 ± 3.8 *

IP-10, pg/g 156.8 ± 25.69 367.5 ± 117.97 **

KC-GRO, pg/g 155.3 ± 27.18 362.7 ± 106.15 **

GM-CSF, pg/g 0.15 ± 0.05 0.3 ± 0.08 *
Data are presented as the mean ± standard deviation, n = 5 in pair-fed, n = 7 in alcohol-fed groups, * p < 0.05,
** p < 0.01.

RNA sequencing analysis of liver tissues confirmed that inflammatory and fibrogenic
pathways were activated in ASH mice (Figures 2A and 2B, respectively). Importantly,
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comparison of RNAseq findings in mice with those of publicly available AH human liver
RNAseq data [24] showed similarities for five proinflammatory genes as well as fifteen
genes involved in fibrosis (Figures 2C and 2D, respectively). Interestingly, the expression of
interleukin-1 receptor antagonist (IL1RN) was decreased in patients with AH, whereas it
was increased in ASH mice (Figure 2A,C).
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Figure 2. Heatmaps of significantly upregulated (A) inflammatory and (B) fibrotic genes in mice fed
alcohol when compared with their PF counterparts. (C,D). Reciprocal analysis was performed using
liver RNAseq data from human liver samples [24], from patients with alcohol-associated hepatitis
(AH), and normal liver tissues from hepatic resection (control). Hierarchical clustering was performed
on differentially expressed genes following Cuffdiff2 and log2 analysis (for murine model) or DESeq2
for human samples.
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3.2. Hepatic Cyclic AMP and Cyclic GMP Levels in ASH Mice and Patients with AH

Our previous studies showed that alcohol decreases cAMP levels in hepatocytes and
the whole liver in mice in two different models of ALD [19,20]. Interestingly, we did not
observe the same effect of alcohol on liver cAMP levels in this ASH model (Figure 1A).
This could be due the differences in models and duration of feeding as well as diet used in
this model. In contrast, cGMP levels were significantly increased in ASH mice (Figure 3A).
As we have reported previously [20], we did observe much lower cAMP levels in patients
with AH compared with healthy donors (Figure 3B). We also found that hepatic cGMP
levels were higher in patients with AH (Figure 3B). Notably, baseline levels of cAMP were
higher than cGMP in the livers of both mice and humans.
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Figure 3. Hepatic levels of cAMP and cGMP. (A) cAMP and cGMP levels were measured in liver
tissues of PF and AF mice, n = 6–7. (B) cAMP and cGMP levels in liver tissues from human healthy
donors and patients with alcohol-associated hepatitis (AH), n = 5–6. Data are presented as the
mean ± standard deviation, * p < 0.05, ** p < 0.01, *** p < 0.001, ns not significant.

To evaluate how cAMP and cGMP changes and signaling connect to changes in genes
and pathways in the liver, we input the log2 fold change for differentially expressed genes
to Pathview to highlight selected KEGG pathways (Figure 4).
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3.3. Dysregulated Expression of Several Phosphodiesterases by Alcohol in the Livers of ASH Mice
and Patients with Alcohol-Associated Hepatitis

To further evaluate the mechanisms of alcohol effects on liver cyclic nucleotide home-
ostasis, we analyzed the expression levels of PDEs, which are the sole enzymes responsible
for their degradation. RNA sequencing detected all PDEs in mouse livers; however, only
eight PDEs were affected by alcohol feeding. Among them, we found that three cAMP-
specific, two cGMP-specific, and three dual-specificity PDEs were changed in ASH mouse
livers (Figure 5a). Notably, among these PDEs, PDE4A, PDE4D, and PDE8A are cAMP-
specific; PDE5A and PDE9A are cGMP-specific; and PDE1A, PDE6D, and PDE10A can
hydrolyze both cAMP and cGMP (dual-specificity PDEs) [31]. Remarkably, dual-specificity
PDE11A and PDE3B, which are expressed in the human liver at moderate levels [31],
were downregulated in AH patients, while all other PDEs were significantly upregulated
(Figure 5b). Patients with AH showed a similar alcohol-driven reactivation pattern for
five PDEs (PDE1A, PDE4A, PDE4D, PDE5A, and PDE10A) (Figure 5b), indicating that
alcohol-associated disease modulates PDE expression in both murine and human models
in a similar fashion. In contrast, other PDEs overexpressed in AH patients but not affected
in AF mice included PDE3A, PDE4C, PDE6B, PDE7A, and PDE9A.

Biology 2023, 12, x FOR PEER REVIEW 9 of 22 
 

 

(A) 

 
  

Figure 4. Cont.



Biology 2023, 12, 1321 9 of 21Biology 2023, 12, x FOR PEER REVIEW 10 of 22 
 

 

(B) 

 
Figure 4. (A) cAMP-PKA and (B) cGMP-PKG signaling pathways highlighted with significant up-
regulated (red) and downregulated (green) genes using RNAseq data from the mouse ASH model. 

3.3. Dysregulated Expression of Several Phosphodiesterases by Alcohol in the Livers of ASH Mice 
and Patients with Alcohol-Associated Hepatitis 

To further evaluate the mechanisms of alcohol effects on liver cyclic nucleotide ho-
meostasis, we analyzed the expression levels of PDEs, which are the sole enzymes respon-
sible for their degradation. RNA sequencing detected all PDEs in mouse livers; however, 
only eight PDEs were affected by alcohol feeding. Among them, we found that three 
cAMP-specific, two cGMP-specific, and three dual-specificity PDEs were changed in ASH 
mouse livers (Figure 5a). Notably, among these PDEs, PDE4A, PDE4D, and PDE8A are 
cAMP-specific; PDE5A and PDE9A are cGMP-specific; and PDE1A, PDE6D, and PDE10A 
can hydrolyze both cAMP and cGMP (dual-specificity PDEs) [31]. Remarkably, dual-spec-
ificity PDE11A and PDE3B, which are expressed in the human liver at moderate levels 
[31], were downregulated in AH patients, while all other PDEs were significantly upreg-
ulated (Figure 5b). Patients with AH showed a similar alcohol-driven reactivation pattern 

Figure 4. (A) cAMP-PKA and (B) cGMP-PKG signaling pathways highlighted with significant
upregulated (red) and downregulated (green) genes using RNAseq data from the mouse ASH model.

We then examined the enrichment of these genes in various cells in the liver using an
open-source online platform, The Human Protein Atlas (THPA, www.proteinatlas.org). We
found that these PDEs are expressed in various liver cells, including hepatocytes, hepatic
stellate cells, cholangiocytes, T cells, plasma cells, Kupffer cells, etc. (Figure 5c).

www.proteinatlas.org
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3.4. Effect of Chronic Alcohol Feeding on Adenylyl and Guanylyl Cyclases

The effect of alcohol on adenylyl cyclases has been reported before; therefore, we
looked at the changes in their expression. We found that alcohol affected the expression
of two ACs: AC7 and AC9 (Figure 6a). Notably, AC7 expression was increased while
AC9 was downregulated. We also observed the increased expression of two guanylyl
cyclases in ASH mice: guanylate cyclase 1 soluble subunit alpha 1 (Gucy1a1) and guanylate
cyclase 2C (Gucy2c). Notably, natriuretic peptide receptors 2 and 3, responsible for cGMP
generation, were differentially affected by alcohol feeding (Figure 6a). Analysis of human
RNAseq data did not show statistically significant differences for these genes; however,
there was increase in AC7 expression in AH patients with the adjusted p value of 0.051.
GUCY2C expression was also elevated in AH patients, although it did not reach significance
(31.3 ± 23.7 in control versus 138.5 ± 86.8 in AH patients, p = 0.931). Importantly, these
proteins are expressed in various liver cell types (Figure 6b).
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3.5. Effect of Alcohol on G-Protein-Coupled Receptor Expression, A-Kinase Anchoring Proteins
(AKAPs), and β-Arrestins

The role of GPCR signaling in liver injury and regeneration has been demonstrated in
previous studies. Specifically, adenosine receptor 1 (Adora1) has been shown to mediate fat
accumulation in the liver [32]. Indeed, we observed that the hepatic expression of Adora1
was increased in ASH mice (Figure 7a). We also observed changes in adrenergic receptors
alpha 1b, beta-1, and beta-3 (Figure 7a). Notably, Adora1 receptor signaling is associated
with decreased cAMP signaling, while Adra1b and Adrb2 stimulation lead to increased
cAMP signaling [33,34]. Importantly, Adrb3 has been shown to produce both cAMP and
cGMP [35]. AKAPs play critical roles as scaffolding proteins for the compartmentalized
nature of cAMP signaling. Notably, we observed that alcohol feeding increased the expres-
sion of Akap2 and Akap12 and decreased the levels of Akap13. Importantly, alcohol feeding
increased β-arrestin 1 and 2 (Arrb1/2) expression, which desensitizes GPCRs, suggesting
impaired GPCR signaling (Figure 7a). Similarly, livers from patients with AH showed a
consistent upregulation of both ADORA1 and β-arrestin 2 (ARRB2) expression (Figure 7b).
However, ADRB2 was significantly downregulated in AH patients when compared with
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controls (Figure 7b). Our analysis of human RNAseq data did not show significant changes
for the remaining genes analyzed in the mouse model, which could be due to species
differences as well as sample size and the severity of disease. Human protein expression
databases also show that those proteins, with the exception of Adrb2 and Adrb3, are ex-
pressed in both parenchymal and non-parenchymal liver cellular components (Figure 7c).
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3.6. ASH/AH Pathogenesis Is Associated with Significant Changes in Cellular Markers Signifying
the Changes in Cell Types and Stage of Differentiation

To understand how observed alterations in expression of proteins involved in cAMP/
cGMP signaling could impact the cellular processes, we examined the changes in alcohol-
induced cellular markers in the liver. We identified more than 30 clusters of differentiation
(CD) genes that were significantly affected by chronic alcohol feeding in mice (Figure 8a)
and more than 20 CD genes in human livers (Figure 8b). As expected, CD4, which is a
marker of T cells, was downregulated in both ASH mice and AH patients, while CD14,
a monocyte marker, was upregulated in ASH mice but downregulated in human AH.
Markers of B-cells, HSCs, and infiltrated macrophages were also upregulated. Hyaluronan
(HA) receptor CD44, which is mainly expressed on HSCs in the liver [36,37] and has
been shown to drive fibrosis, was also increased. CD63, CD68, CD9, and CD5l (hepatic
macrophage markers) were increased in ASH mice livers, while CD59a/b, CD79a/b, CD177,
and CD302 were downregulated. Importantly, CD59 and CD302 have been shown to be
expressed not only on immune cells, but also on hepatocytes [38–40]. CD79a/b is a marker
of B cells [41,42], while CD177 is expressed in neutrophils [43].
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The fibrosis marker CD44 was also consistently upregulated in AH (Figure 8b), as
was the tetraspanin CD63 [44], and CD151 [45], important proteins for the function of
B cells and dendritic cells. However, in comparison with ASH livers, CD36, a protein
involved in the uptake of fatty acids by hepatocytes and a direct contributor to fatty liver,
was downregulated [46] in AH livers. Similarly, CD5L, a circulating protein that protects
hepatocytes from excess fat accumulation and malignancy [47], was downregulated in AH
livers (Figure 8b). Overall, these data show that chronic alcohol feeding leads to changes
in various parenchymal and nonparenchymal cell numbers and their function. Given the
importance of cAMP/cGMP signaling in cell function, these data suggest that alcohol-
mediated changes in these cyclic nucleotides contributed to the alterations we observed
in cellular markers. At the same time, it could also explain the changes observed in the
expression of PDEs and AKAPs as other regulatory proteins of cyclic nucleotide signaling.

4. Discussion

The roles of cAMP and cGMP as critical second messengers in cell function and re-
sponse are well established, and the effect of alcohol on dysregulated cAMP signaling is
also well documented (reviewed in [17]). Initial studies in peripheral blood mononuclear
cells have reported decreased cAMP levels and signaling in patients with alcohol-associated
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hepatitis [48]. Further study of lymphocytes in patients with ALD showed lower basal
and adenosine-induced cAMP levels [49]. This effect is mediated by the desensitization
of GPCR coupled with stimulatory G protein, Gs [50]. Moreover, chronic alcohol expo-
sure decreases Gsα expression at both mRNA and protein levels [50]. In hepatocytes,
acute alcohol exposure showed a biphasic, dose-dependent effect on cAMP production
in response to glucagon without any effect on adenylyl cyclase activity [51]. Our own
studies demonstrated that chronic alcohol exposure decreased cAMP levels in monocytes
and macrophages, including in Kupffer cells isolated from alcohol-fed rats [52]. We later
showed that this effect was driven by the increased expression and activity of PDE4B [21].
In hepatocytes, our studies showed that alcohol increased PDE4A, B and D mRNA, and
protein expression in primary rat and mouse hepatocytes and whole livers after alcohol
feeding and decreased cAMP levels [19,20]. Interestingly, we did not observe the same
decrease in cAMP levels in mouse livers with ASH in this study. Similar results were
reported in a study using intragastric alcohol feeding of rats for two months [53]. However,
the same study showed that administration of a cAMP analog had a beneficial effect on
liver injury [53]. Using the same model of the intragastric feeding of rats, another study
showed that liver regeneration was impaired by alcohol feeding due to decreased adenylyl
cyclase activation. They also noted a decreased expression of stimulatory G protein, Gs and
an increased expression of inhibitory Gi2α after partial hepatectomy [54]. These results
agree with our observations that alcohol affected the expression of GPCRs, which activated
Gi and decreased Gs (Figure 4A).

The effect of alcohol on adenylyl cyclase 7 is well studied in patients with alcohol use
disorder (AUD) [55]. Specifically, it has been shown that alcohol increases AC7 activity
in the brain tissue of patients with AUD [56]. We found a similar effect of alcohol on
AC7 (Adcy7) mRNA levels in the liver (Figure 6A). However, AC7 is expressed in various
liver cell types, including hepatocytes, HSCs, and Kupffer cells (KCs) (Figure 6B). Hence,
it is likely that several cell types are affected. Notably, we observed a decrease in Adcy9
caused by alcohol, which is expressed in the liver in hepatocytes, KCs, plasma, and vascular
endothelial cells. Future studies are needed to determine both the target cells as well as the
impact at the cellular and functional levels.

Numerous studies have demonstrated that the activation of cyclic nucleotide signal-
ing by inhibiting PDEs is beneficial for various liver injury/fibrosis models (reviewed
in [17,18]). Our own studies have shown that upregulation of the cAMP-specific PDE4
family of enzymes is associated with the development of cholestatic liver injury in rats [57].
This upregulation is accompanied by liver inflammation, injury, and fibrogenesis in rats.
Notably, we showed that PDE4 plays a role in the spontaneous differentiation of hepatic
stellate cells (which are major contributors to liver fibrosis [57]). Our recent work further
demonstrated that PDE4D enzymes are expressed in activated HSCs in human and mouse
livers and play a role in promoting cytoskeleton remodeling and HSC migration [58]. No-
tably, PDE1a has also been shown to regulate cell motility and the migration of cancer
cells via cGMP/PKG [59]. Relevant to ALD, our studies identified the PDE4B-dependent
downregulation of cAMP signaling as a pathogenic player in exaggerated responses of
monocytes/macrophages to endotoxin on ALD [21,52]. Subsequent studies have also
identified PDE4 as a player in alcohol-induced dysregulated lipid metabolism and injury in
the liver [19,20]. A more recent study showed that overexpression of PDE4D in the liver led
to the development of NAFLD and hypertension in mice, which was attenuated by PDE4
inhibitor treatment [60]. Beyond PDE4, recent papers have shown a role of PDE9 and 10 in
liver and lung fibrosis as well as diet-induced obesity [61–64]. Our data show a significant
upregulation of PDE9A and 10A in the livers of AH patients (Figure 5). Importantly, the
exact role of these PDEs in ALD is unknown and needs to be investigated.

Immune cell infiltration to the liver and persistent inflammation are major drivers of
liver injury and fibrosis. In addition to resident Kupffer cells, which produce profibrogenic
TGFβ1, infiltrated monocytes, T cells, and neutrophils play roles in the perpetuation of
inflammation and fibrosis [65]. cAMP signaling via protein kinase A negatively regulates T
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cell activation, monocyte adhesion/migration, and neutrophil function [66–68]. Conversely,
activation of these immune cells is associated with the increased activity of cAMP degrading
PDE4. Indeed, PDE4B and PDE4D were found to be overexpressed in PBMCs from patients
with Psoriasis [69], an inflammatory disease characterized by the dysfunction of dermal
fibroblasts. The deletion of Pde4b and Pde4d has been shown to decrease neutrophil adhesion
molecule expression and chemotaxis, the production of TNF, and T cell activation [70–72].
It has also been demonstrated that deletion of Pde4b significantly reduces endotoxin (LPS)-
inducible TNF production in circulating leukocytes and macrophages [21,73–75]. PDE4
inhibitor has also been shown to reduce leukocyte infiltration, oxidative processes, and
tissue damage in animal models [20,70,76]. Concerning T cell function, it has been shown
that PDE8, a cAMP-specific PDE, plays a critical role in T cell recruitment and function
in inflammation [77]. Specifically, PDE8A has been shown to regulate T cell motility and
adhesion, unlike PDE4 [77]. Notably, PDE8 expression has been identified in highly purified
CD4+T cells in vivo, which was significantly increased upon activation (reviewed in [77]).
Our results are consistent with these studies. We found that PDE8A was downregulated in
ASH mice livers along with significantly decreased levels of CD4, a cell marker of CD4+T
cells. Notably, CD4+T cells are affected by alcohol and contribute to alcohol-mediated
immunosuppression [78–80].

PDE1, 2, 3, 4, and 5 enzymes play critical roles in vascular function via regulating
cAMP and cGMP in endothelial [81] and smooth muscle cells [82]. These functions in-
clude vascular tone, exchange, and remodeling. Nitric oxide–cGMP signaling is crucial
in regulating hepatic sinusoids and portal pressure. Our data demonstrate that alcohol
upregulated PDE1A, 4A/D, and 5A in both mouse and human livers. These changes in
vascular and smooth muscle cells could lead to significant changes in blood flow and
vascular permeability. In fact, as with our findings, it has been reported that sGC and
PDE5 are overexpressed in cirrhotic livers [83]. It was also proposed that targeting soluble
guanylate cyclases (sGC) and PDE5, and modulation of the cGMP pathway, is beneficial for
portal hypertension during cirrhosis. Notably, one study examined the cellular expression
of PDE5 protein and found that in the normal liver it is weakly expressed in hepatocytes
and highly expressed in perisinusoidal cells. However, in cirrhotic livers, PDE5 expres-
sion is evident in fibrous septa, hepatocytes adjacent to veins, and perisinusoidal cells
throughout the parenchyma [83]. Animal studies have demonstrated sGC in HSCs and
myofibroblast in fibrotic livers and human NASH (reviewed in [83]). sGC stimulation and
PDE5 inhibition shown anti-inflammatory and antifibrotic effects by normalizing cGMP
levels [84–86]. Importantly, we show, for the first time, that cGMP levels are elevated in the
livers of patients with AH (Figure 3B). Notably, plasma levels of cGMP are increased in
patients with cirrhosis, including in those with ALD cirrhosis [87–89]. In fact, increased
cGMP levels were proposed to be used as a marker of portal hypertension in patients with
liver cirrhosis [83]. It is important to highlight that age-dependent sexual dimorphism in
the expression patterns of vascular PDEs has recently been reported [90]. Hence, we expect
differences in liver PDEs in males and females and therefore a differential regulation of
cellular processes by cAMP/cGMP.

A-kinase anchoring proteins (AKAPs) represent a family of proteins whose function
is to serve as scaffolding proteins for the specificity and spatiotemporal nature of cyclic
nucleotide signaling [91–93]. They achieve this specificity by assembling multiprotein
signaling complexes consisting of PKA, PDEs, and phosphatases [93]. We found that
alcohol changed the expression of three mouse AKAPs: AKAP2 (increased), AKAP12
(increased), and AKAP13 (decreased). Notably, AKAP13 has been recently described as a
regulator of GPCR-mediated inhibition of mTORC1 signaling by acting as a scaffold for
PKA and mTORC1 [94]. Hence, the observed decrease in AKAP13 in ASH may contribute
to increased mTORC signaling, which plays a causal role in ALD development [95,96].
The role of AKAP12 in liver injury and fibrosis has also been described [97–100]. Less is
known about the role of AKAP2 in the liver, but it seems to be enriched in immune cells. In
contrast, our analysis of AH patient samples did not show significant changes for AKAPs,
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although it exhibited increased expression of ADORA1 and ARRB2, genes involved in
alcohol-induced hepatic steatosis [32] and apoptosis [101]. Future studies are needed to
evaluate the exact role of these AKAPs in liver cells and ALD pathogenesis.

5. Conclusions

Despite the experimental evidence of dysregulated cAMP/cGMP signaling in the
development of liver pathologies, including ALD, a comprehensive examination of the
factors contributing to the signaling of these critical messengers has not been undertaken.
In this study, we attempted to capture the changes in regulatory gene networks involved
in cAMP/cGMP signaling imposed by chronic alcohol consumption. Importantly, the
intragastric alcohol feeding model used in this study is the best animal model to recapitulate
the spectrum of ALD, specifically steatosis, inflammation, and fibrogenesis. Furthermore,
we compared the gene expression profiles with publicly available human transcriptome
data for AH patients and identified similar patterns of altered gene expression. Our data
strongly implicate dysregulated cAMP and cGMP signaling in the pathogenesis of ASH.
Future studies to identify changes in these regulators in a cell-specific manner could lead
to the development of novel targeted therapies for ASH.
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