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Simple Summary: Inflammation and free radicals can stimulate cell self-destruction. Inflammation
and cell death are vital aspects of most diseases. Accumulation of cell damage leads to the impairment
and dysregulation of the cell function. Thus, understanding the pathomechanism and molecular
signaling pathways involved in cell death is necessary. Moreover, recognizing the factors that
stimulate cell death can help in providing insights for formulating a new strategy for comprehending
the management and treatment of cell function.

Abstract: The former conventional belief was that cell death resulted from either apoptosis or necrosis;
however, in recent years, different pathways through which a cell can undergo cell death have been
discovered. Various types of cell death are distinguished by specific morphological alterations in the
cell’s structure, coupled with numerous biological activation processes. Various diseases, such as
cancers, can occur due to the accumulation of damaged cells in the body caused by the dysregulation
and failure of cell death. Thus, comprehending these cell death pathways is crucial for formulating
effective therapeutic strategies. We focused on providing a comprehensive overview of the existing
literature pertaining to various forms of cell death, encompassing apoptosis, anoikis, pyroptosis,
NETosis, ferroptosis, autophagy, entosis, methuosis, paraptosis, mitoptosis, parthanatos, necroptosis,
and necrosis.
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1. Introduction

Over the course of the past ten years, the nomenclature committee on cell death has
dedicated its efforts to the establishment of criteria for the systematic classification and anal-
ysis of cell death, encompassing morphological, biochemical, and functional aspects [1,2].
Srinivasan et al. presented a comprehensive analysis of the advancements achieved by
computational and systems biologists in elucidating the many regulatory mechanisms
involved in cell death. These mechanisms together form the intricate network respon-
sible for controlling cell death processes. The cell death network is characterized as an
all-encompassing decision-making process that regulates many biochemical circuits re-
sponsible for executing cell death [3]. This network incorporates a variety of feedback
and feed-forward loops, as well as the crosstalk across several pathways involved in the
regulation of cell death. Indeed, comprehending the intricate dynamics of these intricate
regulatory processes necessitates the use of mathematical modeling and system-oriented
methodologies [3]. Mathematical modeling functions as a potent instrument for establish-
ing a connection between molecular biology and cell physiology. It achieves this by linking
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the qualitative and quantitative characteristics of dynamic molecular networks with signal-
response curves that are recorded by cell biologists [4]. The dynamics of complex molecular
networks that regulate the cell cycle [5,6], nutritional signaling [7], checkpoints [8], sig-
naling dysregulation in cancer [9], and cell death [10–13] have been effectively described
using mathematical and systems-oriented methodologies. Without a doubt, the control
of cell death is a molecular process that needs mathematical modeling in order to attain
a comprehensive understanding of the process. In a cell’s lifetime, there are four main
biological processes: survival, cell division, differentiation, and cell death [2]. Eliminating
damaged cells and maintaining the organism’s homeostasis are two of the primary func-
tions of cell death during embryonic development [14]. A cell dies when it stops dividing
and functioning as a part of a living organism. This phenomenon may occur because of the
body’s normal cellular turnover rate, as a consequence of disorders or localized damage,
or as a result of the organism’s death, from which the cells originate [15,16]. There were
initially three types of cell death [1] (Figure 1):

• Type I cell death (apoptosis);
• Type II cell death (autophagy);
• Type III cell death (necrosis).
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Although regulated cell death (RCD) is commonly associated with maintaining or-
ganismal homeostasis in both physiological and pathological contexts, it is worth noting
that RCD is not exclusive to multicellular organisms. Unicellular eukaryotes, such as
Dictyostelium discoideum, and prokaryotic organisms, such as Escherichia coli, also exhibit
regulated cell death [17,18]. Moreover, there is instantaneous and catastrophic cell death in
contrast to regulated cell death. The cell death category occurs by an exposure to severe
physical, chemical, or mechanical attacks [19]. It is worth noting that RCD requires a
specialized regulatory network, implying that it can be modulated (accelerated or delayed)
by pharmacological intermediation or genetic modification. RCD is implicated in two
very different scenarios, despite the underlying molecular pathways showing substantial
similarities [20]. RCD may occur without any direct environmental disruption, acting as
an established trigger of physiological systems for proliferation or tissue regeneration.
RCD may originate from extracellular or intracellular microenvironmental effectors and is
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disturbed in a way considered as an acute adaptive mechanism for homeostasis offset and
stress suppression.

Adaptive stress responses are similar to stress-driven RCD since both aim to maintain
a state of biological homeostasis. Despite cellular homeostasis, which controls adaptative
stress responses at the cellular level, RCD contributes directly to organism or colony levels.
This homeostatic mechanism not only involves the removal of dysfunctional or harmful
cells but also allows for the release of chemicals component from dying cells that serve as
an early warning system for the other neighboring cells. Common names for these warning
signals include damage-associated molecular patterns (DAMPs), pathogen-associated
molecular patterns (PAMPs), and alarmins [21–24].

Cell death strategies may be divided into two groups, programmed and non-programmed
cell death, depending on whether they rely on a signal to initiate death [17]. Intracellular
signal transduction pathways are the systems that commit cells to programmed cell death
(PCD) mechanisms [25]. PCD can be subdivided into non-apoptotic and apoptotic cell
death based on morphological properties and molecular interactions [26]. The membrane
of the dying cell is conserved during the caspase-dependent process of apoptosis. How-
ever, evidence shows that caspases trigger the activation of gasdermin proteins whose
N-terminus fragments create pores within the membrane which, upon accumulation, end
up causing plasma membrane rupture. For example, caspase-dependent cell death (such
as pyroptosis) can cause membrane rupturing as an exception to this classification. In
contrast, in scientific terms and based on previous studies, caspase-independent cell death
and membrane rupturing are considered non-apoptotic cell death signs [14,25].

When it comes to maintaining a homoeostatic balance in multicellular organisms,
the body of an organism continuously attempts to keep the number of new cells formed
during mitosis equal to the number of damaged or unnecessarily destroyed cells [27].
Large numbers of regulatory genes are required for controlling cell cycling processes that
identify cellular abnormalities and trigger apoptosis, a kind of programmed cell death [14].
Many of these regulatory genes either promote or suppress mitosis, as well as begin
apoptosis, autophagy, pyroptosis, and another type of programmed cell death. Diseases
like cancer, which may spread throughout an organism and eventually kill it, result from
uncontrolled cell division [28]. In contrast, degenerative statuses such as rheumatoid
arthritis, Parkinson’s, and Alzheimer’s result from excessive cell death rates [29,30]. In light
of the extensive and complex interplay of RNAs and proteins inside the cellular processes
of the cell cycle and cell death, some regulatory proteins, receptors, and enzymes have
been identified as key regulators. Mutations or aberrant expression of these regulators may
directly affect the cell cycle machinery [31,32].

Distinct macroscopic morphological changes accompany the death of cells. The uti-
lization of morphotypes has been employed to categorize cell death into three distinct
categories, predicated with the methodologies employed for the elimination of diseased
cells and their fragments [33].

2. Types of Cell Death
2.1. Apoptosis

Apoptosis or Type I cell death is associated with the following cellular events:

• Cytoplasmic shrinkage;
• The irreversible condensation of chromatin in the nucleus (pyknosis);
• The destructive fragmentation of the nucleus (karyorrhexis);
• The formation of apoptotic bodies based on the establishment of intact small vesicles;
• The phagocytosis and decomposition of apoptotic bodies in neighboring cells’

lysosomes [34].

In a publication in 1972, Kerr, Wyllie, and Currie proposed the word “Apoptosis” to
characterize a specific form of cell death [35]. Initiating the apoptosis process is associated
with the stopping of the proliferation and division of the cell. In contrast, the cellular entity
undergoes a regulated mechanism resulting in its demise, while the intracellular contents
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remain contained within the confines of the cellular milieu. Apoptosis is recognized as
a cellular suicide process that is established by triggering a series of cysteine-aspartic
proteases that is term as the caspases activation cascade. Caspases may be divided into
two classes: those that act as “Initiators Caspase” and those that act as “Executioners
Caspase” [36] (Figure 2).
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tumor necrosis factor receptor 1, FADD: FAS-associated death domain, Bid: BH3 interacting domain
death agonist, Bad: BCL2-associated agonist of cell death, Bax: Bcl-2-associated X protein, Apaf1:
apoptotic protease activating factor-1, IL-10: interleukin 10, Jak2: janus kinase 2, and STAT3: signal
transducer and activator of transcription 3. ↑ Indicated increasing of the factor. ↓ Indicated reducing
of the factor.

At the time cell damage is sensed, initiator procaspases 8 and 9 are converted into
active initiator caspases, and consequently, they induce the executioner caspases’ activation
(caspases 3, 6, and 7). An array of processes occur in apoptotic bodies’ production and
destruction of damaged cells, including DNA fragmentation, telomeres’ shortening, the
degradation of proteins/cytoskeleton/crosslinking of a protein, phagocytic cell ligands’
expression, and apoptotic body formation [37]. As a genetically conserved mechanism,
apoptosis is highly regulated in multicellular organisms. There are two pathways for the
apoptosis process:

1. The intrinsic pathway based on intracellular damage sensors’ detection.
2. The extrinsic pathway based on immune cell and damaged cell attachment.

The apoptotic cell death rate in humans is around 1 × 109 cells/day [38].

• The intrinsic pathway of apoptosis

The intrinsic route of apoptosis, also referred to as the mitochondrial pathway, in-
volves the interaction of many stimuli with diverse cellular targets. [39]. This kind of
apoptosis is triggered by either a positive and/or negative pathway and relies on sub-
stances produced by the mitochondria [40]. A deficiency of growth factors, cytokines,
and hormones in the cellular microenvironment might trigger a negative signal to initiate
the apoptosis process [14]. Apoptosis is triggered by activating pro-apoptotic molecules
like p53 upregulated modulator of apoptosis (Puma), Noxa, and Bcl-2-associated X (Bax)
without pro-survival signals [41]. Apoptosis may also be triggered by an exposure to
positive variables such as hypoxia, poisons, radiation, reactive oxygen species (ROS),
viruses, and other hazardous agents, yet in the case of certain cells, like neutrophils, hy-
poxia can enhance cell survival [42]. Mitochondrial outer membrane permeabilization
(MOMP) is a pivotal stage in this process. The modulation of MOMP is influenced by
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the activity of several pro-apoptotic and anti-apoptotic members belonging to the BCL2
protein family, which serves as an apoptosis regulator. Upon exposure to an apoptotic
stimuli, the mitochondrial outer membrane permeabilization process is triggered, resulting
in the sequential activation of the initiator caspase 9 (CASP9) followed by the executioner
caspases CASP3 and CASP7 [43]. Researchers have successfully discovered two sepa-
rate classes of pro-apoptotic BCL2 proteins that exhibit different functional characteristics.
The first category comprises the apoptotic activators BAX, BAK1, and BOK. Upon being
triggered by apoptotic signals, BAX, BAK1, and BOK initiate MOMP by creating holes
in the outer mitochondrial membrane (OMM). These pro-apoptotic factors stimulate the
release of many apoptogenic substances such as Cytochrome-C and diablo IAP-binding
mitochondrial protein (DIABLO; also known as second mitochondrial activator of caspases,
SMAC) into the cytoplasm. The apoptogenic activity of Cytochrome-C is manifested by its
interaction with apoptotic peptidase activating factor 1 (APAF1) and pro-CASP9, resulting
in the formation of a complex referred to as the apoptosome. This complex then triggers the
sequential activation of CASP9, as well as of the executioner caspases CASP3 and CASP7.
The activation of CASP3 and CASP7 is facilitated by the interaction of DIABLO/SMAC
with X-linked inhibitor of apoptosis (XIAP) and other members that are inhibitors of the
apoptosis (IAP) protein family [43]. The second category of pro-apoptotic BCL2 proteins,
referred to as BH3-only proteins, encompasses a group of molecules including BAD, PUMA,
BIK, BIM, BMF, BID, HRK, and NOXA. Direct interaction between caspase-cleaved BID
(tBID), BIM, PUMA, and NOXA in the mitochondria has the capability to facilitate the
activation of BAX and BAK1. On the other hand, indirect activation of BAX and BAK1
occurs when BH3-only proteins including BAD, BIK, BMF, and HRK bind to and inhibit
the activity of anti-apoptotic BCL2 family members [44,45]. Caspase-9 is the initiator
caspase that regulates the intrinsic mechanism of apoptosis by binding to the apoptotic
protease activating factor-1 (APAF1) once its caspase recruitment domains (CARD) have
been exposed [14,46]. In nonactive apoptotic cells, APAF1 is often folded to prevent its
CARD domain from binding to procaspase-9 [47]. The interaction between Cytochrome-C
and the tryptophan-aspartic acid (WD) domain of APAF1 monomers induces a structural
change in APAF1, leading to the exposure of a region responsible for nucleotide binding
and oligomerization. This region specifically binds to deoxyadenosine triphosphate (dATP),
hence triggering the initiation of apoptosis [48]. Due to the extra conformational shift in-
duced by this interaction, the CARD and oligomerization domains of APAF1 are exposed,
allowing for the assembly of several APAF1s into an apoptosome [49]. Many procaspase-9
proteins are recruited and activated by the apoptosome’s exposed CARD domains, which
are located in the open core of the cell death complex [14]. When the caspase 9 is activated,
it triggers the executioner procasp-3, which, once converted to active caspase-3, causes the
complete induction of apoptosis. However, gasdermin E, a substrate of active caspase-3,
induces pyroptosis, rather than apoptosis. While apoptosis may be triggered by the actions
of Smac/Diablo and HtrA2/Omi, the inhibition of inhibitors of apoptosis proteins (IAPs) is
inadequate without the release of Cytochrome-C [50,51].

• Extrinsic pathway of apoptosis

Extrinsic apoptosis, also called the death receptor (DR) pathway, is triggered when
death ligands are released by patrolling NK-cells or macrophages and bind with DRs on
the target cell membrane [52]. This triggers the extrinsic route, which in turn activates
caspase 8 from pro-caspase-8. The DRs are proteins with structural and functional sim-
ilarities with the tumor necrosis factor (TNF) superfamily [53,54]. When a death ligand
binds to a DR, the DR’s cytoplasmic domain becomes a death-inducting signaling complex
(DISC), where monomeric pro-caspase-8 is recruited through its death effector domain
(DED) [55,56]. The adaptor protein known as the TNFR-associated death domain (TRADD),
or the FAS-associated death domain (FADD), is also part of the DISC. It aids in the binding
of pro-caspase-8 [57]. Multiple pro-caspase-8 monomers are recruited to the DISC, where
they undergo dimerization and trigger to become caspase-8. Caspase-8 may initiate an
apoptosis mechanism by any of two sub-pathways [14,58].
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Whether the cells are type I or type II determines which sub-pathway gets activated [59].
Caspase-8 directly cleaves executioner caspases, triggering apoptosis in type I cells [60].
Unless blocked by proteins secreted from the mitochondria, IAPs prevent the direct acti-
vation of the executioner caspases by caspase-8. Mice lacking caspase-8, who normally
respond to DR ligands, reveal the crucial function that caspase-8 plays in the regulation
of the apoptosis extrinsic cascade [51]. Whether apoptosis is initiated by the intrinsic or
extrinsic routes, it must be tightly regulated to avoid the disastrous outcomes that might
result from insufficient control. Mutations in the multiple apoptosis initiation systems are a
common cause of cancer [61,62]. The creation of a benign tumor or cancer results from this
phenomenon when it happens in conjunction with a failure to react to external cues that
would ordinarily trigger the extrinsic route or prevent proliferation [63].

2.2. Anoikis

For the first time, Frisch described the “Anoikis” concept in 1994 [64]. The loss of
integrin-dependent anchoring is considered to be the trigger for the anoikis subtype of
intrinsic apoptosis [65]. Anoikis, a Greek word meaning “homelessness” or “loss of home,”
describes the one type of apoptosis that occurs when cells lose their connection to the
extracellular matrix (ECM) and adhere to an unsuitable site [66]. Integrin receptors are
mediators of ECM interaction and are essential for migration, proliferation, and survival
because they not only establish physical linkages with the cytoskeleton but also transduce
signals from the ECM to the cell [67]. By preventing cells from detaching and re-adhering
to inappropriate matrices, as well as by inhibiting dysplastic development, anoikis serves
as a vital defensive mechanism for an organism [68,69]. Because of this, adherent cells
may be able to survive in a suspension or proliferate in ectopic places where the ECM
proteins are different if the anoikis program is not well executed [70]. Emerging evidence
suggests that cancer cells’ aberrant execution of anoikis is a characteristic of the disease that
promotes metastasis to distant organs [65]. Anoikis is a kind of apoptosis that is produced
by insufficient or incorrect ECM connections but otherwise follows the same mechanisms
as apoptosis [69,71].

The induction and execution of anoikis include many routes that converge on the
activation of caspases and subsequent molecular processes. This activation triggers the
activation of endonucleases, resulting in DNA fragmentation and ultimately leading to cell
death. [72]. Two apoptotic routes, the intrinsic pathway involving mitochondrial dysfunc-
tion and the extrinsic pathway involving the activation of cell surface death receptors, work
together to initiate the anoikis program (the extrinsic pathway) [65]. Proteins belonging to
the B cell lymphoma-2 (Bcl-2) family play important roles in both of these processes. Three
subfamilies exist within the Bcl-2 family, and they are as follows [66]:

A. Myeloid cell leukemia sequence 1, as well as the anti-apoptotic proteins Bcl-2 and
B-cell lymphoma-extra large, Bcl-XL (Mcl-1).

B. Pro-apoptotic proteins Bax, Bcl-2 homologous antagonist/killer (Bak), and Bcl-2
related ovarian killer (Bok), all with several domains.

C. BH3 interacting domain death agonist (Bid), BCL2-associated agonist of cell death
(Bad), Bcl-2 interacting mediator of cell death (Bim), BCL-2 interacting killer (Bik),
BCL-2 modifying factor (Bmf), Noxa, Puma, and Harakiri (Hrk) are all pro-apoptotic
BH3-only proteins [66].

• The intrinsic pathway of Anoikis

DNA damage and endoplasmic reticulum stress are two intracellular cues that initiate
the intrinsic pathway of apoptosis. In this process, mitochondria play a crucial role in
regulating apoptosis [73]. In response to death signals, the pro-apoptotic proteins Bax
and Bak undergo translocation from the cytosol to the outer mitochondrial membrane
(OMM). The oligomerization of these proteins leads to the formation of a channel through
the OMM, which in turn causes mitochondrial permeabilization. This permeabilization
event subsequently triggers the release of Cytochrome-C [74]. In addition to the Bax
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proteins’ inherent pore-generating activity, their interaction with mitochondrial channel
proteins, such as the voltage-dependent anion channels, may also contribute to membrane
permeabilization [65]. The activation of the effector caspase-3 occurs subsequent to the
release of Cytochrome-C. Apoptosis is initiated by assembling the apoptosome complex,
which then triggers the activation of caspase-9 and the cofactor APAF [75]. The BH3-only
pro-apoptotic proteins are known to have significant functions in the intrinsic pathway of
the anoikis cell death mechanism. Bid and Bim are proteins from this biological family that
become active upon cellular detachment from the ECM, hence enhancing the production
of Bax-Bak oligomers within the OMM [76]. “Activators” refers to this class of BH3-only
proteins [77]. Specifically, Bim is confined to the dynein cytoskeletal complexes until cell
separation triggers its release and translocation to the mitochondria [78,79].

The process of Bim phosphorylation by extracellular signal-regulated kinase and
phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) is initiated during integrin
contact. This phosphorylation event serves to impede the proteasomal degradation of
Bim, resulting in its accumulation subsequent to the loss of cell adhesion [80]. Bik, Bmf,
Bad, Puma, Hrk, and Noxa are all examples of so-called “Sensitizers”, another class of
BH3-only proteins [65]. The inhibitory impact of Bcl-2 on apoptosis is impeded when
sensitizer BH3-only proteins engage in a competition for its BH3 binding domain. This
competition enables activator BH3-only proteins to initiate the development of Bax-Bak
oligomers, hence facilitating cellular demise [81]. The Bmf functions as a surveillance
mechanism in epithelial cells, detecting disruptions in the cytoskeleton structure and
transmitting signals that initiate cell death [82]. Following the process of cell separation,
Bmf becomes dissociated from the myosin V motor complex and subsequently accumulates
within the mitochondria. Within this organelle, Bmf acts to counteract the effects of Bcl-2,
thus initiating the release of Cytochrome-C and ultimately leading to the execution of
anoikis [65].

• The extrinsic pathway of Anoikis

The execution of anoikis involves the activation of both the intrinsic and extrinsic
pathways. The initiation of the DISC occurs in the extrinsic route when a ligand binds to
death receptors belonging to the TNFR superfamily. These death receptors include the Fas
receptor, TNF receptor superfamily 1 (TNFR1) receptor, and the TNF-related apoptosis-
inducing ligand (TRAIL) receptors-1 and TRAIL receptors-2. DISC, by means of engaging
with adaptor proteins such as FADD, facilitates the aggregation of numerous caspase-8
molecules and triggers their subsequent activation [83,84]. Substrate proteolysis and cell
death result from the active caspase-8 being secreted into the cytoplasm, where it cleaves
and activates the effector caspases, caspases-3, caspases-6, and caspases-7 [77,85]. An
alternative mechanism that connects the extrinsic and intrinsic pathways is the cleavage
and activation of Bid upon Caspase-8 activation [86,87]. This t-Bid version can induce
mitochondrial Cytochrome-C release and apoptosome assembly. Detachment of cells
from the ECM has been shown to trigger the release of a mitochondrial protein called
Bit1 into the cytoplasm, where it functions as a pro-apoptotic mediator and induces a
caspase-independent type of apoptosis [65]. Mitochondrial damage in certain cases is a
subsequent effect of the occurrence of death receptor activation, which may be created
as a feedback loop between extrinsic death signals and the intrinsic route. Prior studies
have demonstrated the significance of the extrinsic pathway in the occurrence of anoikis,
wherein the detachment from the ECM triggers the increased expression of Fas and Fas
ligand, while simultaneously reducing the levels of FADD-like interleukin-1β-converting
enzyme-like inhibitory protein (FLIP), an inherent inhibitor of Fas-mediated signaling [88].
Morphological alterations in cells are another interesting trigger for the extrinsic apoptosis
pathway. The rounded shape of a cell, after its detachment has occurred, may cause
“induced proximity” of Fas receptors, triggering their activation [65]. Cell death occurs
through the convergence of both the extrinsic and intrinsic apoptotic pathways, which are
dependent on the activation of the effector caspase-3. The activation of caspase-3 triggers a
subsequent proteolytic cascade and exerts an influence on the cellular apoptosis pathway.
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The cleavage of signaling molecules, such as focal adhesion kinase (FAK) and protein
130 kDa Crk-associated substrate (p130Cas), is of utmost importance for the effective
implementation of apoptosis [89,90]. When FAK is cleaved by caspases, it interferes with
the structure of focal adhesions and dampens the survival signal they provide. A caspase-
mediated cleavage disrupts the localization and interactions of p130Cas with paxillin as an
SH2/SH3 adaptor protein that binds to FAK and transmits integrin signals [91]. On the
other hand, the C-terminal inhibitory fragment generated by p130Cas cleavage hinders
the transcription of p21Waf1/Cip1. Hence, this inhibitory fragment triggers an apoptotic
response and also a cell cycle arrest [65].

Death-associated protein 3 (DAP3) is an important regulator of both types of pro-
grammed cell death, apoptosis and anoikis. The most common form of PCD, apoptosis,
may occur in response to DNA damage that cannot be repaired or after being induced by
inflammatory cells. When epithelial cells are detached from their extracellular matrix, they
undergo a kind of apoptosis called anoikis. Integrins and the extracellular matrix (ECM)
have different requirements for the various cell types. Internal signaling of these connec-
tions into the apoptosis pathways is also being defined, and it is possible that it will differ
across cell types. The common execution route is thought to be the final destination for
these signals after they have been sent via the internal and external apoptotic pathways [68].
In this part, the difference between anoikis and apoptosis cell death based on the definition,
induction, and function in Table 1.

Table 1. Difference between anoikis and apoptotic cell death based on the definition, induction,
and function.

Anoikis Apoptosis

Programmed cell death, occurring in cells, separated from the
extracellular matrix.

Induced upon the separation of a cell from the
extracellular matrix.

Prevents the adherent-independent cell growth and the
attachment of cells to an improper matrix, thus preventing the
colonization of distant organs.

Programmed cell death, occurring in cells that are redundant,
functionally incomplete, or dangerous for an organism.

Induced when a cell becomes redundant, functionally
incomplete, or dangerous for an organism.

Mostly removes useful cells during the fethal/larval
development and also the potentially harmful cells.

2.3. Pyroptosis

Pyroptosis cell death is a specialized form of RCD that is often formed as a result of
inflammatory caspase activation and is dependent on the creation of plasma membrane
pores by members of the gasdermin protein family. Pyroptosis refers to an inflammatory
mode of cellular demise that is initiated by intracellular sensors, such as NLRP3, which
are capable of detecting various triggers including damage-associated molecular patterns
(DAMPs), pathogen-associated molecular patterns (PAMPs), disruptions in cellular mem-
branes, imbalances in osmotic conditions, and the efflux of ions. Upon initiation, the
aforementioned sensors engage the adapter apoptosis-associated speck-like protein con-
taining a CARD (ASC), resulting in the formation of a micron-scale complex known as the
inflammasome. The oligomeric aggregates serve as platforms facilitating the activation of
caspase-1. Caspase-1, in its active state, performs the cleavage of proforms of the cytokines
IL-1β and IL-18, which belong to the interleukin family. Caspase-1 is responsible for the
activation of gasdermin D (GSDMD), which results in the exposure of the N-terminal
domain. This exposed domain is responsible for the formation of holes in the plasma
membrane, facilitating the subsequent release of mature IL-1β and IL-18. This process leads
to cell swelling, characterized by a “ballooning effect”, and ultimately triggers pyroptosis.
Moreover, the detection of lipopolysaccharide (LPS) inside cells may lead to a process
known as pyroptosis. This occurs when guanylate-binding proteins (GBPs) attach to the
outer surface of bacteria and form a complex that activates caspase-4/11. This complex
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consists of GBP1, GBP2, GBP3, and GBP4, as well as the cytosolic forms of caspase-4
and caspase-11. The process of pyroptosis is initiated by the enzymatic activity of active
caspase-4 and -11, which results in the cleavage of gasdermin D (GSDMD). It is worth
mentioning that caspase-4 has the ability to cause proteolytic cleavage of IL-18. Pyroptosis,
being an intrinsically inflammatory mode of cellular demise, has many tiers of regulatory
mechanisms. The upregulation of NLRP3 and the production of cytokine IL-1 need initial
activation via the stimulation of Toll-like receptors (TLRs), tumor necrosis factor receptors
(TNFRs), or IL-1 receptors (IL-1Rs), which then leads to the activation of NFκB. Posttrans-
lational modifications, including phosphorylation and ubiquitylation, play a crucial role
in the regulation of inflammasome sensors, as seen in the above diagram. Additionally,
the process of cleavage also contributes to the regulation of these sensors [92]. Evidence
is mounting that suggests the pore-forming and pyroptotic activities of the N-terminal
domains of gasdermins such GSDMA, GSDMB, GSDMC, GSDME/DFNA5, and GSDMA3
are similar to those of GSDMD. Inflammatory caspase activation, which often happens
following the identification of intracellular pathogens in immune cells, results in pyroptosis
or capase-1-dependent cell death [93]. Both intrinsic and extrinsic apoptosis are considered
“classic” because they include the separation of the cell’s internal components and the
elimination of damaged cells without harming surrounding cells. It has been discovered
that there is a kind of apoptosis that, although it is still regulated by a caspase-dependent
set of events, promotes inflammation (proinflammatory events) [14,93]. As opposed to
caspase-1-deficient cells, macrophages infected with Salmonella or Shigella undergo a type
of cell death known as pyroptosis.

The activation of Caspase-1 by pathogens leads to cellular demise, accompanied by the
liberation of inflammatory cytokines into the surrounding milieu. This occurs through the
processing of the precursor forms of IL-1β and IL-18, converting them into their bioactive
states [94]. As a consequence of pro-caspase-1 being cleaved into active caspase-1, pores
emerge in the plasma membrane of the damaged cell [95]. When water enters the cell via the
pores, edema and lysis occur due to the intracellular and extracellular ionic gradients not
having significant differences. When a cell undergoes pyroptosis instead of apoptosis, the
nucleus is conserved (without fragmentation), despite the fact that the nucleus condenses.
Evidence from the central nervous system and the cardiovascular system indicates that
pyroptosis is a physiologically relevant type of cell death [14,96] (Figure 3). On the other
hand, inflammation is often seen in cases of necrotic death [1]. HMGB1 and hepatoma-
derived growth factor (HDGF) are two of the factors released by necrotic cells. The nod-
like receptor protein 3 (NLRP3), the main protein of an inflammasome, is responsible
for sensing HMGB1 and HDGF. Consequently, this triggers inflammasome activation,
which in turn releases the pro-inflammatory cytokine IL-1β. When cells are injured, they
release ATP, which is then used to activate the NLRP3 inflammasome [97]. The concept
of cell death pathways operating independently and with little overlap has been widely
accepted for a significant period of time. Currently, it is evident that there exists a strong
interconnection between apoptosis, necroptosis, and pyroptosis, leading to a reciprocal
regulation among these processes [92]. The role of caspase-8 in facilitating both apoptotic
and necroptotic pathways was among the first connections identified between various
forms of cellular death [98]. Caspase-8 has a dual role in cellular processes, as it not
only governs the mechanism of programmed cell death known as apoptosis but also
serves as a pivotal constituent of the ripoptosome. Within the ripoptosome, caspase-8
functions as a critical mediator for the cleavage of RIPK1 and RIPK3, and acts as one of
the enzymes responsible for the deubiquitylation of TRAF2 or RIPK1, namely, CYLD [99].
Caspase-8 functions to inhibit the assembly of necrosomes, hence promoting the occurrence
of apoptosis in preference to necroptosis. The activation of caspase-8 by FADD after
the activation of death receptors initiates apoptosis, while the lack or pharmacological
inhibition of caspase-8 leads to necroptosis [92,100]. It is noteworthy that caspase-8 seems
to have a function in the stability of the ripoptosome, although its proteolytic activity
is necessary to inhibit necroptosis [101]. Multiple studies have provided evidence that
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RIPK3 has a regulatory role in the activity of caspase-8 and the consequent activation of
NLRP3, which occurs downstream of Toll-like receptor (TLR) or tumor necrosis factor
receptor 1/2 (TNFR1/2) [102,103]. Recent studies indicate that caspase-8 facilitates the
activation of NLRP3 by directly cleaving GSDMD. Consequently, this process enhances
pyroptosis downstream of TNF and defends against infection, such as Yersinia infection,
in vivo [104–106]. Remarkably, the activation of caspase-8, which occurs as a result of the
intrinsic apoptosis pathway involving mitochondrial instability mediated by BAX/BAK,
followed by the activation of caspase-3/7, has recently been linked to the activation of
NLRP3 and the subsequent release of bioactive IL-1β from macrophages [107]. Tsuchiya
has discovered an additional association between pyroptosis and apoptosis [108]. In the
context of macrophages, when GSDMD is not present, the activation of caspase-1 alters the
cellular outcome towards apoptosis that is reliant on caspase-3, caspase-9, and Bid. The
aforementioned discovery may provide an explanation for the limited decrease seen in
macrophage mortality in the absence of Gsdmd, as reported by Kayagaki et al. [109]. The
mechanism by which Caspase-1 initiates the activation of Caspase-3 and subsequent death
is yet to be fully elucidated. Another example of an immune response that establishes a
connection between several cell death pathways is the induction of NLRP3 activation and
the subsequent release of IL-1β by RNA viruses. This process occurs in a manner that is
reliant on RIPK1 and RIPK3, but independent of MLKL [110]. The phosphorylation of
DRP1 by RIPK1/RIPK3 is initiated by a viral infection, leading to mitochondrial damage
and the activation of NLRP3, perhaps due to the generation of mitochondrial ROS [111,112].
Oxidative stress is a critical factor in several physiological and pathological processes [113].
The maintenance of cellular homeostasis requires a certain threshold of ROS [113]. The
buildup of ROS might elicit a dual impact, primarily influenced by the ROS concentration,
cell origin, and activation of cellular signaling [113,114]. An optimal amount of ROS may
induce cellular harm, genetic alterations, and inflammatory responses, thus facilitating the
genesis and advancement of tumors. Conversely, an excessive buildup of ROS in cancerous
cells can trigger cell death via several mechanisms, including apoptosis, necrosis, and
autophagy [113]. Research has shown that levels of ROS tend to be elevated in cancer
cells compared to their counterparts in normal cells [113]. In light of these conditions, it
is seen that cancer cells exhibit an increased susceptibility to assault by an abundance of
ROS originating from an external source [115,116]. The important function of mitogen-
activated protein kinases (Erk, p38, and JNK) in apoptotic signaling mediated by ROS
has been well established [117]. Numerous studies have shown that ROS play a crucial
role in orchestrating cellular apoptosis via the modulation of the JNK and p38 MAPK
signaling pathways [114,118]. Hence, the concentration of ROS, cell origin, the extent of
cellular damage, the type of damage, and the activation of cellular signaling can determine
the type of cell death. The induction of pyroptosis has been observed in response to
the production of reactive oxygen species (ROS) [119]. The signal transduction pathway
involving reactive oxygen species (ROS) and c-Jun N-terminal kinase (JNK) was activated
by lobaplatin treatment, leading to the initiation of gasdermin E (GSDME)-mediated
pyroptosis in cells of colon cancer origin [120]. The induction of caspase-1-mediated
pyroptosis in non-small cell lung cancer (NSCLC) by Polyphyllin VI (PPVI) was seen via
the signaling axis of ROS, nuclear factor kappa B (NF-κB), nod-like receptor family pyrin
domain containing 3 (NLRP3), and gasdermin D (GSDMD). These findings indicate that
PPVI shows promise as a novel therapeutic agent for the treatment of NSCLC [121]. Based
on the information presented in this discussion, it is possible that the activation of NLRP3
triggered by RNA viruses may occur as a consequence of caspase-8 involvement during
mitochondrial instability, leading to the subsequent activation of caspase3/7 [92]. This
theory merits more investigation.
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acterized by its highly inflammatory nature and is most frequently observed following intracel-
lular pathogen infections. TLR: Toll-like receptor, TRIF: TIR-domain-containing adapter-inducing
interferon-β, MYD88: myeloid differentiation primary response protein 88, TAk1: transforming
growth factor (TGF)-β-activated kinase 1, TAB: TAK1-binding protein, IKK: nuclear factor kappa-B
kinase, NF-κB: nuclear factor kappa B, NLRP3: nod-like receptor family pyrin domain containing 3,
AIM2: absent in melanoma-2, NLRC4: nod-like receptor family CARD domain containing 4, and
NALP1: nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 1.
Purple ellipse indicted a complex.

In this part, the difference between pyroptosis and apoptotic cell death is presented
based on morphological changes, molecular mechanism, regulation, and mitochondrial
participation in Table 2.

Table 2. The difference between pyroptosis and apoptotic cell death based on morphological changes,
molecular mechanism, regulation, and mitochondrial participation.

Pyroptosis Apoptosis

Morphological Changes

• Cell shrinkage.
• Maintenance of the integrity of the

plasma membrane.
• Formation of membrane blebs.
• Degradation of genomic DNA.

• Cellular enlargement and subsequent rupture.
• Breakdown of the plasma membrane.
• Breakage of DNA.
• Generation of pores in the plasma membrane.
• Maintenance preservation of nuclear integrity.
• Occurrence of nuclear condensation.

Molecular Mechanism

• Absence of an inflammatory reaction.
• Generation of apoptosome and

liberation of Cytochrome-C.
• Activation of Caspases 8, 9, 3, 6, and 7.
• Activation of pro-apoptotic BCL-2 and

DISC proteins.

• Inflammatory cell death.
• Development of an inflammasome and

activation of gasdermins.
• Activation of interleukin-1β (IL-1β) and

interleukin-18 (IL-18).
• Activation of GSDME and NLRP3

inflammasome, via canonical and
non-canonical routes.



Biology 2023, 12, 1426 12 of 29

Table 2. Cont.

Pyroptosis Apoptosis

Regulation

The apoptotic cell death occurs when the
ubiquitination of RIPK1 is inhibited, leading
to the formation of a complex between
RIPK1, FADD, and pro-caspase-8. This
complex activates caspase-8, which then
cleaves RIPK1, ultimately resulting in the
apoptotic cell death.

NLRP3 and other proteins are regulated by
post-translational phosphorylation and
ubiquitylation modifications.

Mitochondrial
Participation

The release of Cytochrome-C from
mitochondria and the subsequent generation
of apoptotic bodies.

Mitochondria are engaged in the control of
gasdermin D oligomerization and the consequent
development of pores in the plasma membrane.

2.4. NETosis: Neutrophil Extracellular Trap-Associated Cell Death

Neutrophil extracellular traps (NETs) are cytoplasmic granular proteins that are in-
volved in a contentious form of regulated cell death called “NETosis”. The idea of NETosis
is characterized by the extrusion of a meshwork composed of fibers carrying chromatin
and histones, which are associated with these proteins [122,123]. The available evidence
indicates that the extrusion of neutrophil extracellular traps is an essential process in the
regulated cell death known as NETosis. This form of cell death is primarily observed in cells
coming from the hematological system and is characterized by a mechanism that is depen-
dent on ROS. NETs are formed in response to various microbial and aseptic stimuli, as well
as through the activation of certain receptors such as Toll-like receptors (TLRs). These stable
extracellular networks serve the purpose of trapping and eliminating germs [124,125].

Ample studies have shown that mitochondrial, rather than nuclear, DNA is a major
component of NETs. In addition to their antibacterial properties, NETs have been linked
to the development of diseases in humans such as diabetes and cancer [126]. Mast cells,
eosinophils, and basophils, in addition to neutrophils, are capable of releasing NET-like
structures. It is important to note that NET extrusion is not always followed by cellular lysis.
The occurrence of NETotic cell death has been postulated to arise via a signaling cascade
involving Raf-1 proto-oncogene, serine/threonine kinase (Raf-1), mitogen-activated protein
kinase kinase (MAP2Ks), and extracellular signal-regulated protein kinase 2 (ERK2). This
cascade ultimately leads to the activation of NADPH oxidase and the simultaneous creation
of ROS [127,128]. This hypothesis proposes that intracellular ROS are responsible for
NETotic cell death in the following ways:

• The process entails the release of neutrophil elastase (ELANE) and myeloperoxidase
(MPO) from the granules of neutrophils, subsequently leading to their relocation from
the cytosol to the nucleus [129].

• The enhancement of ELANE’s MPO-dependent proteolytic activity [129].

Activated ELANE in the cytoplasm may accelerate F-actin proteolysis, reducing cy-
toskeleton dynamics. Furthermore, with regard to MPO, it is worth noting that the nuclear
reservoir of elastase has the potential to initiate the degradation of histones and potentially
even the nuclear envelope. As a result of this phenomenon, the chromatin fibers become
intertwined with both cytoplasmic and nuclear constituents, leading to their extrusion and
ultimately resulting in the rupture of the plasma membrane and regulated cell death [25].

Intracellular multiprotein complexes known as inflammasomes are responsible for the
recruitment and activation of inflammatory caspases. Specifically, human procaspases 4
and 5, as well as murine procaspase-11, play crucial roles as constituents of the non-
canonical inflammasome, which is activated in response to the intracellular presence of
lipopolysaccharides (LPS) from specific Gram-negative bacterial pathogens [130]. In con-
trast, procaspase-1 functions as the primary effector protease in canonical inflammasomes.
The canonical inflammasome sensor proteins, including NLRP1, NLRP3, NLRC4, AIM2,
and pyrin, have been extensively studied in macrophages, and their involvement in the
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identification of PAMPs and DAMPs has been well established [131]. The canonical inflam-
masome sensors exhibit responsiveness to a wide range of PAMPs, including microbial
nucleic acids, bacterial secretion systems, and components of microbial cell walls. Addition-
ally, they are activated by environmental stressors and endogenous DAMPs that indicate
harm to host cells during sterile inflammation [132]. Examples of such DAMPs include
uric acid crystals, elevated levels of extracellular adenosine triphosphate (ATP), and the
presence of mitochondrial and nuclear nucleic acids in the cytosolic compartment. Upon ac-
tivation, caspase-1 enzymatically cleaves the pro-inflammatory proteins interleukin (IL)-1β
and IL-18, resulting in the production of bioactive cytokines. Concurrently, inflammatory
caspases facilitate the enzymatic cleavage of the pore-forming protein GSDMD. This process
leads to the release of the N-terminal domain of GSDMD, which subsequently assembles
into multimers within the plasma membrane [130–132]. These multimers induce the forma-
tion of sizable GSDMD pores, causing the permeabilization of the plasma membrane and
resulting in the pyroptotic cell lysis of activated macrophages. The induction of canonical
inflammasomes in macrophages facilitates pyroptotic cell lysis. Additionally, it has been
proposed that the cleavage of GSDMD, which is mediated by neutrophil elastase, may
increase the development of NETs produced by phorbol 12-myristate 13-acetate (PMA),
independent of inflammasome activation [133].

2.5. Ferroptosis: Iron-Dependent Cell Death

Different from other kinds of cell death such as apoptosis and necrosis, ferroptosis
is a recently discovered iron-dependent cell death. Iron (Fe) is the fourth most prevalent
element in the Earth’s crust and is quite important for biological processes [134]. Fe acts
as a co-factor in protein functions involved in the tricarboxylic acid (TCA) cycle and the
electron transport chain, and it contributes to oxygen transport, DNA biosynthesis, and
ATP production, all of which are required for cell viability [135]. Furthermore, iron has
been demonstrated to be linked to the development and metastasis of tumors, suggesting
that iron metabolism abnormalities may promote tumor expansion [136,137]. Fatty acid
lipid peroxidation is dramatically sped up in the presence of iron, especially divalent
iron. ROS are byproducts of the iron-dependent oxidative phosphorylation that occurs
in the mitochondria during energy production [137]. When ROS levels surpass the cell’s
anti-oxidation capacity, an oxidative stress response is triggered, which may cause harm
or death to the cell via direct and indirect damage to big molecular components including
proteins, nucleic acids, and lipids [138]. The program triggers a cascade of events beginning
with thiol metabolism, continuing with lipid metabolism, and ending with iron-dependent
lipid peroxidation and cell death [139]. Ferroptosis is a form of RCD that is induced by
disruptions in the intracellular environment caused by oxidative stress. This process is
constantly regulated by the enzyme glutathione peroxidase 4 (GPX4) and can be prevented
by the use of iron chelators and lipophilic antioxidants [140]. Ferroptosis, which develops
from an increase in iron-dependent lipid peroxide, is distinct from apoptosis and necrosis
in the conventional sense [141]. Acute lipid peroxidation is a key initiator of ferroptosis,
which also requires the presence of ROS and iron. As some chemical pathways that
trigger ferroptosis are clear now, we know that hazardous lipid peroxide accumulation
is associated with ferroptosis-regulated cell death [142]. The occurrence of a necrotic
morphotype is observed in the context of ferroptosis, a form of cell death characterized
by various mitochondrial changes such as shrinkage, an electron-dense ultrastructure,
diminished or absent cristae, and ruptured OMM. Importantly, this process is not reliant on
caspases, necrosome components, or cyclophilin D (CYPD), and operates independent of
the molecular machinery involved in autophagy [143,144]. In the context of ferroptosis, it
has been seen that mitochondria undergo a reduction in size as a result of weakened cristae
and the occurrence of collapsed and ruptured membranes. However, it is worth noting that
the cell membrane often remains intact, and the nucleus maintains its normal size while
lacking chromatin condensation [140,145].
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Defects in system XC− and GPX4 axis cause the failure of glutathione-dependent
antioxidant defense. GSH production requires extracellular cystine, which is brought
into the cell via system XC- and converted to cysteine. Changes in the cell’s cytology,
such as a decrease in cell volume and an increase in the density of the mitochondrial
membrane, are hallmarks of ferroptosis cell death [146]. There are two types of small-
molecular chemicals that may trigger ferroptosis cell death. As inducers of class I fer-
roptosis, DPI2, erastin, sulfasalazine (SAS), and buthionine sulfoximine may cause an
oxidation–reduction imbalance by inhibiting the system XC- and decreasing the intra-
cellular glutathione concentration [135]. Direct inhibition of GPX4 by class Π ferroptosis
inducers such as RAS-synthetic lethal 3 (RSL3) compounds, DPI7, DPI10, DPI12, DPI13,
etc., might result in lipid peroxide buildup [147]. Further, certain pharmaceuticals such as
Sorafenib, Artemisinin, and its derivatives have been shown to promote ferroptosis [135]
(Figure 4).
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Ferroptosis prevention is applied by two enzymatic systems in the antioxidant reaction:
GPx4 catalyzes the reduction of lipid peroxides in a glutathione-dependent reaction, and
the recently identified FSP1 catalyzes the ubiquinone regeneration (coenzyme Q10, CoQ10),
which acts as a lipid peroxyl radical decoy. In the ferroptosis cell death mechanism, there
is no expansion of cytoplasm and organelles or rupture of the plasma membrane [148].
Furthermore, in contrast to pyroptotic cells, ferroptotic cells do not exhibit blebbing or
the loss of plasma membrane integrity. Mitochondria seem smaller than usual with an
increased membrane density, and this is the only morphological property of ferroptosis.
During ferroptosis, mitochondria shrink, membranes break, ROS are released, iron overload
occurs, and intracellular GSH is depleted [25,149].

2.6. Autophagy

Damaged organelles, misfolded proteins created during biosynthesis, and nonfunctional,
prolonged-live proteins are recycled by lysosomes with a process called autophagy [150,151].
Micro-autophagy, chaperone-mediated autophagy (CMA), and macro-autophagy are the
three main categories of autophagy that have been identified based on the process by
which intracellular components are transported to the lysosome for destruction [152,153].
Prolonged-live proteins, damaged organelles, and defective proteins produced during
biosynthesis are all cleared out of the cell by the self-digesting process known as autophagy.
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It has been shown that the autophagic process is supposed to regulate many distinct cellular
activities, including proliferation, differentiation, adaptation to nutritional deprivation and
oxidative stress, apoptosis, and the recycling of macromolecules and organelles [58].

Micro-autophagy entails the direct sequestration of cytoplasmic components into the
lysosomes with acidic hydrolase degradation. It has been shown that proteins carrying
the KFERQ motif (Lys-Phe-Glu-Arg-Gln) are specifically targeted by CMA. In this pro-
cess, chaperones identify target proteins, which are then to be joined by lysosomes and
destroyed [153]. When cells engage in autophagy, they create a double-membraned vesicle
that merges with lysosomes to degrade cytoplasm, misfolded proteins, prolonged-lived
proteins, and damaged organelles. There are 16 autophagy-related proteins involved in the
intricate process of vesicle production (Atg proteins). Autophagy is accompanied by two
ubiquitin-like conjugation systems. The development and size of the autophagosome are
regulated by the complexes of autophagy regulators, Atg16-Atg12-Atg5, and Atg8-PE, that
are produced by these systems [154]. Next, autophagosomes can be nucleated, expanded,
uncovered, and joined with lysosomes after a complete construction. The formation of
autophagosomes begins with the interaction of two complexes [155,156]:

• Class III PI3K Vps34, Beclin1/Atg-6, Vps15/p150.73, and Atg-14 form a complex that
is referred to as the PI3K complex [157].

• The serine/threonine kinase Atg-1 [158].

Two more autophagy proteins, Atg-8/ Atg-13 and Atg-17, are required for the kinase
activity of Atg-1. In mammals lacking Atg-13, Atg1 was shown to interact with Atg-8 or-
thologues such as microtubule-associated protein light chain 3 (LC3), G-amino butyric acid
type A receptor-associated protein (GABARAP), and Golgi-associated ATPase enhancer of
16 KDa (GATE-16) [154].

To initiate the process of autophagosome formation, it is necessary for a reactive
glycine residue within the soluble Atg-8 protein to become exposed through carboxyl-
terminal cleavage mediated by the cysteine protease Atg-4. The activation of Atg-4 requires
the participation of both the Atg-7 (E1-like) and Atg-3 (E2-like) enzymes [159,160]. The
functionality of Atg-3 requires the presence of a protein complex comprising Atg-5, Atg-12,
and Atg-16. Following the activation of Atg-8, a process occurs wherein phosphatidyl
ethanolamine becomes covalently attached to the protein. In yeast, this modified protein is
referred to as Atg-8-PE, while in humans, it is known as lipidated LC3-II. The segment in
question persisted in its attachment to the autophagosome membrane until it was subjected
to degradation by Atg-4 for the purpose of recycling. If Atg-8 remains covalently attached to
the membrane without being cleaved by Atg-4, it has the potential to function as a signaling
mechanism for autophagy [161]. Once the autophagosome has completed its formation,
the complex consisting of Atg-16, Atg-5, and Atg-12 dissociates from the surrounding
membrane. Subsequently, the components of this complex engage in a recycling process
facilitated by Atg-2, Atg-18, and Atg-9. The formation of the autophagosome has reached
its last stage, rendering it ready for a subsequent fusion with either an endosome or a
lysosome [161].

Nucleophagy, a specific form of autophagy that selectively targets nuclear compo-
nents for degradation, has been widely used as a model system to investigate selective
macro-autophagy. Additionally, it has been essential in understanding the function of
the core autophagic machinery in micro-autophagy. Nucleophagy has been observed as a
mechanism that is implicated in several disease states, including cancer, neurodegenera-
tion, and aging. Nucleophagic mechanisms are inherent to cellular growth and may also
serve as a cellular response to diverse stress stimuli. The autophagic mechanism facilitates
the transport of micronuclei, tiny pieces of nuclear material, to the vacuole for eventual
destruction [162]. Evidence hypothesized that nucleophagy could be a mechanism to
maintain nuclear and genome integrity in normal (noncancerous) cells, in response to DNA-
damaging agents [163]. Nuclear abnormalities exhibit notable prominence in degenerative
diseases and progeria disorders. The process of selective autophagy of organelles plays a
crucial role in the maintenance of cellular homeostasis and the prevention of premature ag-
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ing. Despite the nucleus playing a crucial role in cellular function by protecting our genetic
material and regulating gene expression, our understanding of nuclear autophagy remains
limited [164]. Nucleophagic mechanisms manifest under many situations. Several factors
contribute to the increased occurrence of nucleophagy, including starvation, the inactiva-
tion of TORC1 caused by rapamycin, genotoxic stress, and the enlargement of the nucleus
vacuole junction (NVJ), as well as abnormalities in the nuclear envelope and lamina [165].
In-depth examinations into the commencement of macro- and micronucleophagy have
shown that these processes are contingent upon the Nem1/Spo7-Pah1 axis, which is a
downstream mechanism resulting from the inactivation of TORC1 [166]. The Nem1/Spo7–
Pah1 axis, a component of lipid metabolism, has a role in many autophagic mechanisms,
such as endosomal sorting complexes needed for transport (ESCRT)-dependent micro-
ER-phagy and autophagy-independent activities [167]. The occurrence of nucleophagy in
yeast was first shown under conditions of nutritional constraint. The inhibition of TORC1
by nitrogen deprivation, as well as the use of rapamycin, causes nucleophagy regardless
of the specific mechanism involved [168]. The nucleophagic processes are initiated by
the creation of micronuclei. Inactivation of TORC1 triggers the recruitment of the essen-
tial autophagic machinery to these micronuclei [168,169]. Furthermore, the process of
nucleophagy, which involves the degradation of nuclear components, is dependent on
the presence of the cargo receptor Atg39 located in the nuclear envelope [168,170]. The
presence of two stress-response element (STRE) repeats in the upstream region of ATG39,
together with its upregulation of gene expression under stationary phase and nutritional
deprivation circumstances, suggests a potential association with nucleophagic activity in
response to starvation [171]. The presence of Nvj1, a protein located in the outer nuclear
membrane (ONM), is crucial for the development of the nuclear-vacuolar junction (NVJ)
and, therefore, the process of micronucleophagy. The upstream region of NVJ1 is reported
to have two STRE repeat regions, as documented in reference [162]. It is evident that the
overexpression of Nvj1 results in the expansion of the nuclear-vacuolar junction (NVJ),
which therefore leads to increased rates of micronucleophagy [172].

In addition to shared characteristics in the control of expression, the localization of
both Atg39 and Nvj1 is contingent upon the Nem1/Spo7-Pah1 axis [166]. The activation of
the Nem1/Spo7-Pah1 axis occurs as a result of TORC1 inactivation, and the lack of this axis
results in the impairment of both macro- and micronucleophagy [166,173]. The Nem1/Spo7
complex has been previously shown to be necessary for the preservation of nuclear envelope
shape. This complex is specifically localized inside the nuclear envelope [174]. Although
the complex’s impact on nucleophagy is notably significant, it also has relevance for several
other forms of autophagy. However, it does not exert any effect on the Cvt-pathway [166].
The enzyme Pah1 catalyzes the dephosphorylation of phosphatidic acids, resulting in the
production of diacylglycerol. The ability to sustain the integrity of the nuclear envelope
may potentially play a role in the modulation of the nuclear membrane for the generation
of micronuclei by the Nem1/Spo7-Pah1 axis.

The destruction of vacuolar membranes, whether as a target or a side consequence of
microautophagic activities, is a characteristic that sets this process apart. The functioning
of both macro-autophagy and micro-nucleophagy, as well as the preservation of nuclear
shape, necessitates the involvement of Pah1 in diacylglycerol production [166]. The signifi-
cance of the Nem1/Spo7-Pah1 axis extends beyond nucleophagy, including the broader
context of microautophagy. This axis plays a crucial role in both autophagy-independent
micro-ER-phagy, which relies on core autophagy mechanisms, and ESCRT-dependent
micro-ER-phagy [167]. The probable explanations for the preserved importance of lipid
supply and/or metabolism following microautophagic membrane consumption and partic-
ipation in vacuolar domain formation have been proposed [166,167,175]. The nucleophagic
activity seen in mammalian cells has been shown to be associated with both oncogenic
and genotoxic stress [176]. The initiation of nucleophagy in mammalian cells occurs as a
result of pathogenic circumstances. However, it is worth noting that the Nem1/Spo7–Pah1
axis, which is responsible for this process, is conserved across different organisms ranging
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from yeast to mammalian cells. Specifically, the orthologous CTDNEP1/NEP1R1-lipin
complex serves a similar function in this regard. The CTDNEP1/NEP1R1-lipin complex is
situated in the nuclear envelope, similar to its corresponding entity [177]. The functional
complementation of yeast Nem1 by human CTDNEP1 has been shown, and mutations
in CTDNEP1 have been identified in tumor cells [177,178]. The investigation of nucle-
ophagy in mammalian cells under physiological settings remains a topic that requires more
elucidation in future research endeavors.

2.7. Entosis

There are several mechanisms by which cell death may be triggered when a cell is
engulfed by another cell, creating a “cell-in-cell” arrangement. During carcinogenesis and
development, entosis is one mechanism that causes cell-in-cell formation [179]. Entotic cells
invade their hosts and actively assist in their own engulfment; they are subsequently de-
stroyed in a non-cell-autonomous manner. Detachment of the ECM by integrins is thought
to be the initiating event in ectoderm neogenesis [180]. In contrast to phagocytosis, which
does not rely on the existence of epithelial adherens junctions, the process of engulfment
through entosis does necessitate the presence of these junctions. These junctions consist of
the cell–cell adhesion receptor E-cadherin and the adherens junction/cytoskeleton linker
protein-catenin [181]. Entotic cells, as opposed to phagocytized cells, engage in the ac-
tive regulation of their own uptake by means of the RhoA GTPase activity and the RhoA
effector kinases, such as Rho-associated, coiled-coil-containing protein kinase (ROCK)
I/II [182]. Previous studies have demonstrated that the upregulation of RhoA or ROCK
I/II is capable of inducing the internalization of cells expressing epithelial cadherin. This
suggests that entosis has a greater resemblance to a cellular invasion process, resulting
in the formation of cell-in-cell structures, rather than being a spontaneous engulfment
phenomenon [183,184]. In the process of entotic cell death, the subsequent engulfment
is succeeded by lysosome-mediated breakdown, which exhibits distinct characteristics
compared to autophagy. The autophagic protein LC3 does not participate in the process of
autophagosome formation [185]. Instead, LC3 is targeted by Vps34, ATG-7, and ATG-5 for
achieving lipidation in the single membrane vacuole harboring the engulfed cell, where it
promotes lysosome fusion and lysosome-mediated destruction [186,187]. Notably, not all
invading cells die in the lysosome after undergoing the entosis process. Thus, entotic cells
may survive within host cells and even grow if they manage to escape [179].

2.8. Methuosis

Methuosis, a non-apoptotic cell death, is a cellular process that is distinguished by the
hyperactivation of Ras, and the significant accumulation of large vacuoles surrounded by a
singular membrane. The vacuoles in question are derived from macro-pinosomes [188].
Interestingly, the involvement of the PI3K signaling pathway and the classic Ras-Raf-MEK-
Erk axis is not observed in methuosis. The morphological characteristics of methuosis
closely resemble necrosis, as a result of the cellular expansion and the disintegration of
the plasma membrane. Researchers frequently employ electron microscopy to assess the
distinctive view of methuosis [189]. The resulting Ras activation in methuosis increases
micropinocytosis by activating a member of the Rac-1 protein family. Concurrently, the
absence of Arf6-GTP hinders the process of macro-pinosome recycling [190]. The cytoplasm
undergoes significant vacuolization as a consequence of the abnormal merging of newly
formed macro-pinosomes. During the initial stages of methuosis, vacuoles are decorated
with late endosomal markers, including lysosome-associated membrane protein 1 (LAMP1)
and Rab7 [191]. Finally, cell death results from the accumulation of large vacuoles that
cannot be recycled or fused with lysosomes. Vacuolization pathways are mediated by
methuosis stimulants; there are two classes of methuosis inducers that trigger methuosis
cell death:

• Class I is activated by Ras oncogenes, which induce vacuole formation by multiple
sequential processes. The activation of Rac1 induces the process of macro-pinocytosis.



Biology 2023, 12, 1426 18 of 29

Furthermore, the activated version of Rac1 interacts with G-protein-coupled receptor
kinase-interacting protein 1 (GIT-1) to deactivate ADP-ribosylation factor 6 (Arf-6),
thereby impeding the recycling of macro-pinosomes back to the plasma membrane.
Consequently, the accumulating macro-pinosomes exhibit certain characteristics of
late endosomes and subsequently merge together to form vacuoles [192].

• Vacuole development in class II methuosis inducer including mitogen-activated pro-
tein kinase kinase 4 (MKK-4), casein kinase 1 (CK1), nucleolin (Nuc), Arf6, GIT1, nerve
growth factor (NGF), and early endosome antigen 1 (EEA1) [192].

2.9. Paraptosis

Paraptosis is characterized by the extensive vacuolization of the cytoplasm from either
the enlarged endoplasmic reticulum (ER) or the mitochondria. Several studies have linked
paraptosis to the osmotic expansion of the ER lumen and mitochondria for vacuolization
due to the production of ROS and the accumulation of misfolded proteins in the ER [193].
Currently, there is a dearth of specific diagnostic assays for the identification of paraptosis,
similar to the existing limitations in detecting entosis and methuosis. This situation is
characterized by the presence of many cytoplasmic vacuoles with a single membrane when
observed under an electron microscope. Although commonly regarded as a pro-survival
regulator, there is evidence suggesting that the activation of the insulin-like growth factor 1
receptor (IGF1R) and its subsequent signaling pathways, including as MAPKs and JNK
pathways, could potentially induce paraptosis [194].

2.10. Mitoptosis

Mitoptosis, alternatively referred to as mitochondrial suicide, is a different process
from mitophagy, which includes the autophagic degradation of mitochondria. Mitoptosis
operates by the modulation of mitochondrial dynamics, specifically controlled fission and
fusion, with the aim of compromising their capacity to generate ATP [2]. Therefore, mi-
toptosis may be connected to both apoptosis and autophagy [195,196]. Mitochondria that
have undergone destruction are engulfed by autophagosomes or converted into mitoptotic
entities, afterwards being expelled from the cellular environment. In the present context,
the term “Mitoptosis” pertains to a process of mitochondrial demise, as opposed to a mech-
anism of cellular death [197]. However, an excessive fission of mitochondria leads to their
severe fragmentation and, in the end, cell death. Mechanistically, when BAX/BAK cause
mitochondrial outer membrane permeabilization (MOMP), a protein called translocase of
inner mitochondrial membrane 8a (TIMM-8a/DDP) is released from the mitochondrial
intermembrane gap [198]. Later, DDP is translocated to the cytoplasm and binds to Dy-
namin Related Protein 1 (DRP1). Mitoptosis and mitochondrial fission are triggered by
DDP’s interaction with DRP1, which results in DRP1’s recruitment and retention in the
mitochondria. However, after much study, the process’s physical characteristics remain the
primary means of description [199].

Mitophagy and mitochondrial dynamics are related. Fusion of OMMs is mediated by
the small GTPases Mitofusin 1 (Mfn-1) and Mitofusin 2 (Mfn-2), whereas the fusion of IMMs
is mediated by the large GTPase optic atrophy 1 (OPA-1) [200]. The shift of the GTPase Drp1
is essential for mitochondrial fission. DRP-1 binds to four different receptors—fission 1
(Fis1), mitochondrial fission factor (Mff), mitochondrial dynamics protein of Mid49, and
Mid51—to anchor itself to the OMM [201]. Drp1’s location in the cytoplasm or on the
OMM is influenced by post-translational modifications, including phosphorylation. It
has been shown that Drp1 may be phosphorylated by sirtuin (SIRT), extracellular signal-
regulated kinase (ERK), protein kinase A (PKA), P38/mitogen-activated protein kinase
(MAPK), and AMP-activated protein kinase (AMPK) [202]. Mitochondrial fission is sup-
pressed by the phosphorylation of Drp1 at Ser637 and Ser656 [203] but is stimulated by
phosphorylation at Ser616, Ser579, and Ser600 [204–206]. DRP-1 activity is downregulated
by PKA-mediated phosphorylation at serine 656, leading to hyperfused mitochondrial
networks, and reactivated by the phosphatase calcineurin. Mitochondria are shrunken and
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damaged when DRP-1 is active [207]. When it comes to quality control measures before
mitophagy, DRP-1-driven mitochondrial fragmentation cannot be overlooked [2,202].

2.11. Parthanatos

Parthanatos is characterized by the hyperactivation of Poly(ADP-ribose)polymerase
(PARP) and is a kind of mitochondria-linked, caspase-independent cell death [208]. When
Poly(ADP-ribose) (PAR) is synthesized by PARP, it is then shuttled from the nucleus to the
cytoplasm [209], where it interacts with mitochondrial proteins, and apoptosis-inducing
factor (AIF) is released [210,211]. Transporting of free AIF from mitochondria to the nucleus
triggers chromatin condensation and DNA damage. The apoptotic process requires PARP
cleavage, while the parthanatos process requires intact PARP and PARP activation. Further,
parthanatos is independent of caspases since it is resistant to the inhibition by broad-
spectrum caspase inhibitors [212]. Apoptotic bodies are not produced during parthanatos.
Moreover, unlike the modest DNA fragmentation generally seen in apoptosis, the DNA
fragmentation in the parthanatos is on a much larger scale. To a practical extent, parthanatos
biomarkers include PARP-1 activity, PAR accumulation, and nuclear AIF. Depolarization of
mitochondria, as measured using fluorescent probe labeling, provides more evidence on
the process [213].

2.12. Necroptosis

Necroptosis, also called programmed necrosis [15], is switched on by the activation of
receptor-interacting protein kinases (RIPKs) in an interaction with cell surface receptors by
several signaling pathways, i.e., the T-cell receptor, TLRs, and DRs are specifically engaged
in the RIPKs’ activation [214]. The main components of necrosome include RIPK-1 and
RIPK-3 [215]. The RIPK-3 protein exerts its functional role by facilitating the activation of
the downstream molecule known as mixed lineage kinase domain-like protein (MLKL)
through the process of phosphorylation. This phosphorylation event subsequently triggers
the oligomerization of MLKL [216]. Oligomerized MLKL penetrates and permeates the cell
membrane, ultimately leading to cell death [217]. In addition, the presence of a viral infec-
tion or the presence of double-stranded viral DNA triggers the activation of the cytosolic
DNA sensor. Then, this sensor, known as DNA-dependent activator of interferon (DAI)
regulatory factors, initiates the process of RIP3-dependent necroptosis [218]. Through
necroptosis, the necrotic morphology of shattered membranes and missing organelles
is manifested. Necroptosis can be evaluated in a number of ways, including the use of
cell-impermeable DNA binding dyes to detect a breakdown of the plasma membrane,
Western blotting for the release of proteins such as fluorescent probes to examine mito-
chondrial potential, high mobility group box 1 (HMGB1), lactate dehydrogenase LDH,
and Cyclophilin-A, and electron microscopy to examine morphology [2,219,220]. Alter-
native proposed approaches include the use of specific necroptosis inhibitors, such as
Necrostatin-1 [221], and the measurement of key proteins in the pathway [222,223].

2.13. Necrosis

Necrosis, the Greek term that means “to kill”, is the phrase often used to describe cell
death [14,224]. Necrosis refers to the irreversible cell damage and subsequent cell death
caused by pathogenic processes [93]. This particular form of cellular demise involves the
inflation of organelles, the rupture of the plasma membrane, and the subsequent lysis of
the cell, thereby leading to the release of its contents into the adjacent tissue and resulting
in detrimental effects. Necrosis is a type of cellular demise that is typically followed by
inflammatory reactions due to the liberation of many molecules, including DNA, ATP, heat
shock proteins, uric acid, and nuclear proteins. These molecules stimulate the activation of
inflammasomes and the subsequent release of the pro-inflammatory cytokine interleukin-1
beta (IL-1β). The rupture of the cell membrane in response to a painful stimulus facilitates
the influx of extracellular ions into the cell, subsequently leading to the entry of fluid. This
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influx of ions and fluid results in the swelling of the cell and its organelles, a phenomenon
referred to as necrosis [225].

Proteolytic enzymes, such as proteases, RNAases, DNAases, and phosphatases, are
released into the cell once the lysosomal membrane is disrupted. Damage to DNA, RNA,
and proteins results from their activation in the cytosol [226]. These enzymes break down
cells by digesting their constituent parts. Disruption of the plasma membrane, allowing
intracellular contents to leak out into the surrounding tissue, is a common result of both of
these mechanisms. Necrotic cells are characterized morphologically by the enlargement of
cellular organelles such as the endoplasmic reticulum and mitochondria, plasma membrane
rupture, and eventual cell lysis [97]. Eosinophilic, glassy, and vacuolated cellular changes
result from these alterations. The breakdown of cell membranes and organelle membranes
contributes to necrosis. The first biochemical alteration noticed after injury is a reduction in
ATP production or depletion. In the presence of oxygen, ATP is synthesized by a process
called oxidative phosphorylation in the mitochondria [226,227]. A lack of oxygen delivery
to cells causes necrosis in response to hypoxia or chemical insult, which in turn reduces
ATP generation [228].

Due to the inability to pump sodium out of the cell, cells expand and ribosomes
detach from the endoplasmic reticulum because the energy-dependent sodium pump in the
plasma membrane fails. Damage to the mitochondria is caused by both the elevated levels
of calcium in the cytosol and the oxidative stress. Calcium in the cytosol activates a number
of cytosolic enzymes, including phospholipases and proteases, which in turn break down
membranes (particularly lysosomal membranes) and proteins [229,230]. Inflammation is
often seen in cases of necrotic death [1]. HMGB1 and hepatoma-derived growth factor
(HDGF) are two of the factors released by necrotic cells. The nod-like receptor protein 3
(NLRP3), the main protein of inflammasome, is responsible for sensing HMGB1 and
HDGF. Consequently, this triggers inflammasome activation, which in turn releases the
pro-inflammatory cytokine IL-1β. When cells are injured, they release ATP, which is then
used to activate the NLRP3 inflammasome [97].

3. Conclusions

As extensively examined before, the cell death plays a significant role in several bio-
logical processes, including development, maintenance of tissue equilibrium, inflammatory
responses, immune system function, and several pathological states. On the one hand,
cell death is a significant causal factor in illnesses characterized by the permanent loss of
post-mitotic tissues, such as myocardial infarction and dementia. Conversely, dysfunc-
tions in the molecular signaling cascades that initiate regulated cell death are linked to
pathological conditions defined by abnormal cellular proliferation or accumulation, such
as some autoimmune illnesses and cancer. Therefore, the targeting of cell death emerges
as a prominent therapeutic strategy for the treatment of many human medical conditions.
Molecular mechanisms of cell death could provide new insights into the cell cycle processes
and potential molecular components to prevent and stimulate cell death in different signal-
ing pathways and diseases. In summary, the targeting of cell death mechanisms presents
a promising avenue for treating numerous human disorders. In addition to the potential
concerns associated with the pharmacokinetics and pharmacodynamics of the compounds
that have been examined thus far, the intricate interconnectedness of the signaling modules
responsible for regulating regulated cell death in mammalian organisms remains a concern.
Therefore, while it may seem relatively straightforward to favor cell death in special condi-
tions, inhibiting it becomes challenging after crossing a previously undefined threshold.
This may need the simultaneous inhibition of many signal transduction modules, making
it a difficult goal to achieve. Nonetheless, further studies are necessary to develop the most
effective strategies for utilizing cell death modulators in a clinical context.
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194. Yokoi, K.; Balachandran, C.; Umezawa, M.; Tsuchiya, K.; Mitrić, A.; Aoki, S. Amphiphilic Cationic Triscyclometalated Iridium (III)
Complex–Peptide Hybrids Induce Paraptosis-like Cell Death of Cancer Cells via an Intracellular Ca2+-Dependent Pathway. ACS
Omega 2020, 5, 6983–7001. [CrossRef] [PubMed]

195. Jangamreddy, J.R.; Los, M.J. Mitoptosis, a novel mitochondrial death mechanism leading predominantly to activation of autophagy.
Hepat. Mon. 2012, 12, e6159. [CrossRef]

196. Youle, R.J.; Karbowski, M. Mitochondrial fission in apoptosis. Nat. Rev. Mol. Cell Biol. 2005, 6, 657–663. [CrossRef]

https://doi.org/10.15252/embj.2019102586
https://doi.org/10.1080/15548627.2020.1725402
https://doi.org/10.1091/mbc.e08-04-0363
https://doi.org/10.1038/nature14506
https://doi.org/10.1091/mbc.11.12.4241
https://doi.org/10.4161/auto.5.1.7181
https://doi.org/10.1371/journal.pone.0104194
https://doi.org/10.1093/emboj/17.22.6449
https://www.ncbi.nlm.nih.gov/pubmed/9822591
https://doi.org/10.7554/eLife.25960
https://www.ncbi.nlm.nih.gov/pubmed/28590904
https://doi.org/10.1186/s13046-019-1048-8
https://doi.org/10.1073/pnas.0702099104
https://doi.org/10.1038/nature11329
https://www.ncbi.nlm.nih.gov/pubmed/22820256
https://doi.org/10.1007/s00018-016-2207-0
https://www.ncbi.nlm.nih.gov/pubmed/27048820
https://doi.org/10.1016/j.cell.2007.11.015
https://doi.org/10.1016/j.cell.2007.10.040
https://doi.org/10.1038/cr.2014.137
https://doi.org/10.1091/mbc.e11-11-0940
https://doi.org/10.1016/j.celrep.2017.06.037
https://doi.org/10.1080/15548627.2015.1038016
https://www.ncbi.nlm.nih.gov/pubmed/25945743
https://doi.org/10.1038/ncb2363
https://www.ncbi.nlm.nih.gov/pubmed/22002674
https://doi.org/10.1038/nrm3249
https://www.ncbi.nlm.nih.gov/pubmed/22166994
https://doi.org/10.1158/1541-7786.MCR-07-2036
https://doi.org/10.1016/j.cellsig.2006.11.010
https://doi.org/10.1158/1541-7786.MCR-10-0090
https://doi.org/10.1186/1476-4598-10-69
https://doi.org/10.18632/oncotarget.10150
https://doi.org/10.3389/fcell.2020.607844
https://doi.org/10.1021/acsomega.0c00337
https://www.ncbi.nlm.nih.gov/pubmed/32258934
https://doi.org/10.5812/hepatmon.6159
https://doi.org/10.1038/nrm1697


Biology 2023, 12, 1426 28 of 29

197. Lyamzaev, K.G.; Nepryakhina, O.K.; Saprunova, V.B.; Bakeeva, L.E.; Pletjushkina, O.Y.; Chernyak, B.V.; Skulachev, V.P. Novel
mechanism of elimination of malfunctioning mitochondria (mitoptosis): Formation of mitoptotic bodies and extrusion of
mitochondrial material from the cell. Biochim. Biophys. Acta BBA-Bioenerg. 2008, 1777, 817–825. [CrossRef] [PubMed]

198. Arnoult, D.; Rismanchi, N.; Grodet, A.; Roberts, R.G.; Seeburg, D.P.; Estaquier, J.; Sheng, M.; Blackstone, C. Bax/Bak-dependent
release of DDP/TIMM8a promotes Drp1-mediated mitochondrial fission and mitoptosis during programmed cell death. Curr.
Biol. 2005, 15, 2112–2118. [CrossRef]

199. Chang, C.-R.; Blackstone, C. Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and
mitochondrial morphology. J. Biol. Chem. 2007, 282, 21583–21587. [CrossRef] [PubMed]

200. Chen, H.; Chan, D.C. Emerging functions of mammalian mitochondrial fusion and fission. Hum. Mol. Genet. 2005, 14, R283–R289.
[CrossRef]

201. Losón, O.C.; Song, Z.; Chen, H.; Chan, D.C. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol.
Biol. Cell 2013, 24, 659–667. [CrossRef]

202. Ren, L.; Chen, X.; Chen, X.; Li, J.; Cheng, B.; Xia, J. Mitochondrial dynamics: Fission and fusion in fate determination of
mesenchymal stem cells. Front. Cell Dev. Biol. 2020, 8, 580070. [CrossRef]

203. Yu, R.; Liu, T.; Ning, C.; Tan, F.; Jin, S.-B.; Lendahl, U.; Zhao, J.; Nistér, M. The phosphorylation status of Ser-637 in dynamin-related
protein 1 (Drp1) does not determine Drp1 recruitment to mitochondria. J. Biol. Chem. 2019, 294, 17262–17277. [CrossRef]

204. Wikstrom, J.D.; Mahdaviani, K.; Liesa, M.; Sereda, S.B.; Si, Y.; Las, G.; Twig, G.; Petrovic, N.; Zingaretti, C.; Graham, A. Hormone-
induced mitochondrial fission is utilized by brown adipocytes as an amplification pathway for energy expenditure. EMBO J.
2014, 33, 418–436. [CrossRef] [PubMed]

205. Kashatus, J.A.; Nascimento, A.; Myers, L.J.; Sher, A.; Byrne, F.L.; Hoehn, K.L.; Counter, C.M.; Kashatus, D.F. Erk2 phosphorylation
of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Mol. Cell 2015, 57, 537–551. [CrossRef]

206. Prieto, J.; León, M.; Ponsoda, X.; Sendra, R.; Bort, R.; Ferrer-Lorente, R.; Raya, A.; López-García, C.; Torres, J. Early ERK1/2
activation promotes DRP1-dependent mitochondrial fission necessary for cell reprogramming. Nat. Commun. 2016, 7, 11124.
[CrossRef]

207. Cribbs, J.T.; Strack, S. Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates
mitochondrial fission and cell death. EMBO Rep. 2007, 8, 939–944. [CrossRef]

208. Andrabi, S.A.; Dawson, T.M.; Dawson, V.L. Mitochondrial and nuclear cross talk in cell death: Parthanatos. Ann. N. Y. Acad. Sci.
2008, 1147, 233–241. [CrossRef]

209. Andrabi, S.A.; Kim, N.S.; Yu, S.-W.; Wang, H.; Koh, D.W.; Sasaki, M.; Klaus, J.A.; Otsuka, T.; Zhang, Z.; Koehler, R.C. Poly
(ADP-ribose)(PAR) polymer is a death signal. Proc. Natl. Acad. Sci. USA 2006, 103, 18308–18313. [CrossRef] [PubMed]

210. Teloni, F.; Altmeyer, M. Readers of poly (ADP-ribose): Designed to be fit for purpose. Nucleic Acids Res. 2015, 44, 993–1006.
[CrossRef] [PubMed]

211. Cohen, M.S.; Chang, P. Insights into the biogenesis, function, and regulation of ADP-ribosylation. Nat. Chem. Biol. 2018, 14,
236–243. [CrossRef]

212. Wang, R.; Li, C.; Qiao, P.; Xue, Y.; Zheng, X.; Chen, H.; Zeng, X.; Liu, W.; Boldogh, I.; Ba, X. OGG1-initiated base excision repair
exacerbates oxidative stress-induced parthanatos. Cell Death Dis. 2018, 9, 628. [CrossRef]

213. Liu, L.; Li, J.; Ke, Y.; Zeng, X.; Gao, J.; Ba, X.; Wang, R. The key players of parthanatos: Opportunities for targeting multiple levels
in the therapy of parthanatos-based pathogenesis. Cell. Mol. Life Sci. 2022, 79, 60. [CrossRef]

214. Pasparakis, M.; Vandenabeele, P. Necroptosis and its role in inflammation. Nature 2015, 517, 311–320. [CrossRef] [PubMed]
215. Li, J.; McQuade, T.; Siemer, A.B.; Napetschnig, J.; Moriwaki, K.; Hsiao, Y.-S.; Damko, E.; Moquin, D.; Walz, T.; McDermott, A. The

RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell 2012, 150, 339–350.
[CrossRef] [PubMed]

216. Wang, H.; Sun, L.; Su, L.; Rizo, J.; Liu, L.; Wang, L.-F.; Wang, F.-S.; Wang, X. Mixed lineage kinase domain-like protein MLKL
causes necrotic membrane disruption upon phosphorylation by RIP3. Mol. Cell 2014, 54, 133–146. [CrossRef] [PubMed]

217. Ni, H.-M.; Chao, X.; Kaseff, J.; Deng, F.; Wang, S.; Shi, Y.-H.; Li, T.; Ding, W.-X.; Jaeschke, H. Receptor-interacting serine/threonine-
protein kinase 3 (RIPK3)–mixed lineage kinase domain-like protein (MLKL)–mediated necroptosis contributes to ischemia-
reperfusion injury of steatotic livers. Am. J. Pathol. 2019, 189, 1363–1374. [CrossRef]

218. Orzalli, M.H.; Kagan, J.C. Apoptosis and necroptosis as host defense strategies to prevent viral infection. Trends Cell Biol. 2017, 27,
800–809. [CrossRef]

219. Méry, B.; Guy, J.-B.; Vallard, A.; Espenel, S.; Ardail, D.; Rodriguez-Lafrasse, C.; Rancoule, C.; Magné, N. In vitro cell death
determination for drug discovery: A landscape review of real issues. J. Cell Death 2017, 10, 1179670717691251. [CrossRef]

220. Berghe, T.V.; Grootjans, S.; Goossens, V.; Dondelinger, Y.; Krysko, D.V.; Takahashi, N.; Vandenabeele, P. Determination of apoptotic
and necrotic cell death in vitro and in vivo. Methods 2013, 61, 117–129. [CrossRef]

221. Iannielli, A.; Bido, S.; Folladori, L.; Segnali, A.; Cancellieri, C.; Maresca, A.; Massimino, L.; Rubio, A.; Morabito, G.; Caporali, L.
Pharmacological inhibition of necroptosis protects from dopaminergic neuronal cell death in Parkinson’s disease models. Cell
Rep. 2018, 22, 2066–2079. [CrossRef]

222. Seehawer, M.; Heinzmann, F.; D’artista, L.; Harbig, J.; Roux, P.-F.; Hoenicke, L.; Dang, H.; Klotz, S.; Robinson, L.; Doré, G.
Necroptosis microenvironment directs lineage commitment in liver cancer. Nature 2018, 562, 69–75. [CrossRef]

https://doi.org/10.1016/j.bbabio.2008.03.027
https://www.ncbi.nlm.nih.gov/pubmed/18433711
https://doi.org/10.1016/j.cub.2005.10.041
https://doi.org/10.1074/jbc.C700083200
https://www.ncbi.nlm.nih.gov/pubmed/17553808
https://doi.org/10.1093/hmg/ddi270
https://doi.org/10.1091/mbc.e12-10-0721
https://doi.org/10.3389/fcell.2020.580070
https://doi.org/10.1074/jbc.RA119.008202
https://doi.org/10.1002/embj.201385014
https://www.ncbi.nlm.nih.gov/pubmed/24431221
https://doi.org/10.1016/j.molcel.2015.01.002
https://doi.org/10.1038/ncomms11124
https://doi.org/10.1038/sj.embor.7401062
https://doi.org/10.1196/annals.1427.014
https://doi.org/10.1073/pnas.0606526103
https://www.ncbi.nlm.nih.gov/pubmed/17116882
https://doi.org/10.1093/nar/gkv1383
https://www.ncbi.nlm.nih.gov/pubmed/26673700
https://doi.org/10.1038/nchembio.2568
https://doi.org/10.1038/s41419-018-0680-0
https://doi.org/10.1007/s00018-021-04109-w
https://doi.org/10.1038/nature14191
https://www.ncbi.nlm.nih.gov/pubmed/25592536
https://doi.org/10.1016/j.cell.2012.06.019
https://www.ncbi.nlm.nih.gov/pubmed/22817896
https://doi.org/10.1016/j.molcel.2014.03.003
https://www.ncbi.nlm.nih.gov/pubmed/24703947
https://doi.org/10.1016/j.ajpath.2019.03.010
https://doi.org/10.1016/j.tcb.2017.05.007
https://doi.org/10.1177/1179670717691251
https://doi.org/10.1016/j.ymeth.2013.02.011
https://doi.org/10.1016/j.celrep.2018.01.089
https://doi.org/10.1038/s41586-018-0519-y


Biology 2023, 12, 1426 29 of 29

223. Krysko, D.V.; Berghe, T.V.; Parthoens, E.; D’Herde, K.; Vandenabeele, P. Methods for distinguishing apoptotic from necrotic cells
and measuring their clearance. Methods Enzymol. 2008, 442, 307–341.

224. Clarke, P.G.H. Developmental cell death: Morphological diversity and multiple mechanisms. Anat. Embryol. 1990, 181, 195–213.
[CrossRef] [PubMed]

225. Sandle, T.; Chesca, A.; Akhayeva, A.S.; Marchenko, A.B. Apoptosis versus necrosis. SFJ Chronic Dis. 2018, 1, 1–4.
226. Nusratillo o’g’li, X.B.; Akmal o’g’li, E.D.; Ahmad o’g’li, A.A. The Concept of Necrosis, Causes, Consequences and Types of Origin.

Etiology of Prevention and Treatment. Ta’lim Va Rivojlanish Tahlili Onlayn Ilmiy Jurnali 2023, 3, 329–331.
227. Gramaglia, D.; Gentile, A.; Battaglia, M.; Ranzato, L.; Petronilli, V.; Fassetta, M.; Bernardi, P.; Rasola, A. Apoptosis to necrosis

switching downstream of apoptosome formation requires inhibition of both glycolysis and oxidative phosphorylation in a
BCL-XL-and PKB/AKT-independent fashion. Cell Death Differ. 2004, 11, 342–353. [CrossRef] [PubMed]

228. Wallig, M.A.; Janovitz, E.B. Morphologic manifestations of toxic cell Injury. In Haschek and Rousseaux’s Handbook of Toxicologic
Pathology; Elsevier: Amsterdam, The Netherlands, 2022; pp. 113–148.

229. Nicotera, P.; Melino, G. Regulation of the apoptosis–necrosis switch. Oncogene 2004, 23, 2757–2765. [CrossRef] [PubMed]
230. Golstein, P.; Kroemer, G. Cell death by necrosis: Towards a molecular definition. Trends Biochem. Sci. 2007, 32, 37–43. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/BF00174615
https://www.ncbi.nlm.nih.gov/pubmed/2186664
https://doi.org/10.1038/sj.cdd.4401326
https://www.ncbi.nlm.nih.gov/pubmed/14713956
https://doi.org/10.1038/sj.onc.1207559
https://www.ncbi.nlm.nih.gov/pubmed/15077139
https://doi.org/10.1016/j.tibs.2006.11.001

	Introduction 
	Types of Cell Death 
	Apoptosis 
	Anoikis 
	Pyroptosis 
	NETosis: Neutrophil Extracellular Trap-Associated Cell Death 
	Ferroptosis: Iron-Dependent Cell Death 
	Autophagy 
	Entosis 
	Methuosis 
	Paraptosis 
	Mitoptosis 
	Parthanatos 
	Necroptosis 
	Necrosis 

	Conclusions 
	References

