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Simple Summary: For multicellular organisms, cell death is a vital process, which ultimately leads to
the destruction of unneeded cells. Proteases are key enzymes that play a vital role in breaking down
proteins and maintaining an optimal environment in the cell. During key stages of some types of cell
death, the nucleus plays a critical role, and the activity of nuclear proteins determines the fate of the
cell. Regulation of these proteins is crucial in determining whether the cell proceeds towards cell
death or not. This review aims to provide a comprehensive picture of nuclear proteases that regulate
and potentially participate in various types of cell death via the destruction of nuclear proteins.

Abstract: Multiple factors can trigger cell death via various pathways, and nuclear proteases have
emerged as essential regulators of these processes. While certain nuclear proteases have been
extensively studied and their mechanisms of action are well understood, others remain poorly
characterized. Regulation of nuclear protease activity is a promising therapeutic strategy that could
selectively induce favorable cell death pathways in specific tissues or organs. Thus, by understanding
the roles of newly discovered or predicted nuclear proteases in cell death processes, we can identify
new pharmacological targets for improving therapeutic outcomes. In this article, we delved into
the role of nuclear proteases in several types of cell death and explore potential avenues for future
research and therapeutic development.
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1. Introduction

Multicellular organisms are comprised of individual cells acting in tight and regulated
cooperation. The development of an organism involves numerous rounds of cell division,
but the number of cell divisions is limited, and as a result, the cell that gave rise to a
large population dies. Cell death is the final stage in the life of a cell [1]. In some cases,
cell death is delayed or, conversely, occurs prematurely. Tumor cells can avoid cell death,
thereby replacing healthy tissues and migrating throughout the body [2]. In the case of
neurodegenerative diseases, an increase in the occurrence of cell death is observed [3].
Therefore, a complete understanding of the mechanisms of cell death will provide an
opportunity to find new options for the treatment of many diseases.

Every compartment in the cell has its own distinct function, with the nucleus serving as
a crucial hub for genetic information storage and processing. The nucleus is responsible for
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controlling numerous cellular functions, including gene expression, DNA replication, and
repair. One of the most significant changes that occurs during cell death is the alteration of
chromatin structure, DNA degradation, and disassembly of nuclear structural proteins [4,5].

The destruction of nuclear and other proteins is accomplished by proteases, which
hydrolyze peptide bonds between amino acids. Proteases are traditionally divided into spe-
cific groups according to the type of reaction they catalyze, amino acids in the active center,
structure, and other features [6]. The key role of proteases is the ability to cleave proteins
and thereby control individual protein levels. This allows proteases to participate in the
regulation of many cellular processes, such as cell proliferation and differentiation [7], DNA
replication, transcription and repair [8], angiogenesis and extracellular matrix remodel-
ing [9,10], immunity [11,12], cell death [13], etc. Proteases are also involved in pathological
conditions. In cancer, proteases regulate proteolytic extracellular matrix (EMC) remodeling,
altering cell–cell and cell–matrix interactions that facilitate invasion and metastasis [14–18].

Proteases have been identified in the nucleus [19–21]. These proteases play a significant
role in the regulation of gene expression [22,23], as well as in the immune response, carcino-
genesis [24], and cell death [25]. Recent research has revealed that proteases in the nucleus
perform a variety of functions, which include processing and activation of transcription
factors, chromatin remodeling, histone modification, and DNA repair. Proteases also play a
role in maintaining the structural integrity of the nucleus. The activity of nuclear proteases is
tightly regulated to ensure the proper functioning of the cell. Dysregulation of these enzymes
can lead to a wide range of diseases, including cancer or neurodegenerative disorders.

While the core machinery of cell death mechanisms is known, novel participants
in various pathways are constantly being identified. In this review, we focus on cell
death mechanisms that involve the nucleus and the involvement of nuclear proteases in
these processes.

2. Nuclear Proteases

Proteases participate in many cellular processes, in which it is necessary to cleave
proteins in the extracellular matrix, on the cellular membrane or in some cellular com-
partments. In many cases, proteases have either a specific localization, such as on the
membrane [26], or their localization in cells change due to different factors [27]. In this
review, we assign certain localizations to proteases based on the compartments where they
function during certain stages of a cell’s lifetime.

Proteases that are secreted into the extracellular environment or anchored in the
cell membrane can affect morpho- and angiogenesis by remodeling the extracellular
matrix [9,10]. Acidic vesicles, known as lysosomes, contain pH-dependent proteases
—cathepsins, napsins, and asparagine endopeptidase [28]. These lysosomal proteases are
responsible for protein degradation during phagocytosis, endocytosis, and autophagy,
but are also involved in growth factor signaling, and antigen presentation. Mitopro-
teases, which are found in mitochondria, degrade misfolded or damaged proteins, regu-
late mitochondrial gene expression and mitophagy, and activate or inhibit a number of
other pathways [28].

Proteases can also be found in the nucleus of normal [29], as well as cancer
cells [30–35]. In this review, we focus on nuclear proteases that reside in the nucleus
at a given time and are responsible for the degradation of nuclear proteins or regulating
nuclear processes within cells. We are not asserting that the nuclear proteases outlined in
this review are exclusively nuclear proteins. It was found that nuclear proteases degrade
different substrates involved in the cell cycle [36], DNA repair [37], cell senescence [38],
and carcinogenesis [39,40].

Research indicates that nuclear proteases may exhibit high specificity towards nuclear
proteins. For instance, nuclear cathepsins have been observed to cleave specific nuclear
substrates, while lysosomal cathepsins can cleave all available proteins [41]. This specificity
presents an exciting opportunity to use nuclear proteases for cleaving specific proteins,
potentially modulating cell death by degrading key proteins. Furthermore, nuclear pro-
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teases might be utilized for the degradation of unwanted accumulated proteins, such as
polyglutamine proteins that are associated with neuropathology [42]. Targeted degradation
of these proteins using nuclear proteases could be a promising approach for treatment.
Studying the nuclear substrates of nuclear proteases could also provide insight into utilizing
them in targeting systems such as PROTACs (proteolysis targeting chimeras) for specific
degradation of nuclear proteins [43]. The potential applications of nuclear proteases are
vast, but careful study of these proteins is required to fully understand their functions and
potential. Understanding the mechanism of action of nuclear proteases, their specificity,
and the consequences of their activity will be critical in developing effective therapies
and treatments that can harness their potential. Future research should continue to ex-
plore the role of nuclear proteases in cellular processes and their potential applications in
therapeutic interventions.

Many proteases exhibit both nuclear and cytoplasmic localization, and it remains
unclear why certain proteases translocate into the nucleus. Detailed analysis of protein
sequences has revealed that some proteases possess a nuclear translocation signal (NLS).
For example, matrix metalloproteinase-2 (MMP-2) has an NLS on its C-terminus, and amino
acid substitutions in this region result in loss of nuclear localization [44]. Bioinformatic
analysis of MMP proteins has shown that all members of this group contain one or more
NLSs [21]. However, not all of these proteases have been found in the nucleus, indicating
that the presence of an NLS alone may not be sufficient for nuclear translocation. The
localization of the NLS within the protein structure plays an important role in determining
its localization. In some cases, the NLS may be masked by a prodomain or linker region,
preventing the protein from translocating into the nucleus [25]. Given these findings,
the mechanisms that dictate whether proteases in their active or inactive forms exhibit
nuclear localization are still not fully understood. Further research is necessary to elucidate
the factors that influence nuclear translocation of proteases, which could have significant
implications for understanding their regulation.

3. Nuclear Compartment in Cell Death

The nucleus is a defining feature of eukaryotic cells and is the largest organelle in most
cells. It separates the genome and transcriptional machinery from the cytoplasm [45]. The
nucleus serves as the cell’s control center by coordinating processes such as cell growth,
metabolism, and cell division. In addition, the nucleus plays a role in some forms of
cell death.

There are different classifications and nomenclatures of cell death, based on multi-
ple mechanisms and phenotypes. Historically, three morphologically distinct categories
(type I-III cell death), namely apoptosis, autophagy, and necrosis, have been used for
classification [46,47]. This morphological classification is still extensively employed. In
2018, the Nomenclature Committee on Cell Death provided molecular marker-based defini-
tions of cell death types. Intrinsic and extrinsic apoptosis are types of cell death that occur
in response to internal or external signals. Mitochondrial permeability transition (MPT)-
driven necrosis is caused by mitochondrial destruction, while necroptosis and parthanatos
are mediated by specific proteins. Iron overload and lipid peroxidation are the triggers
for ferroptosis, whereas pyroptosis, entotic cell death, NETosis, and immunogenic cell
death are types of cell death that occur as a consequence of an inflammatory response.
Two types of cell death involve specific compartments harboring various proteases, namely
lysosome-dependent cell death and autophagy-dependent cell death. Cellular senescence is
a form of cell death that occurs due to a state of cell division arrest, and mitotic catastrophe
happens when cells perform an abortive act of cell division. Cell death can happen in
two ways: due to overwhelming damage, which is called accidental cell death, or as a
result of specific signaling events, also known as regulated cell death (RCD), which is the
physiological form of programmed cell death [48,49]. Among all the mentioned types of cell
death, only three occur with the participation of the cell nucleus: apoptosis, parthanatos,
and NETosis.
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Apoptosis is a multi-pathway mode of cell death that leads to the destruction of cells
and the nucleus plays a crucial role in this process. The intrinsic pathway of apoptosis
is initiated by internal signals, including DNA damage, which triggers the release of cy-
tochrome c from mitochondria. The regulation of this pathway is carried out by pro- and
anti-apoptotic proteins of the BCL-2 family, as well as initiator and effector caspases [50,51].
The activation of initiator caspases by cytochrome c in turn activates the main effector cas-
pases. In contrast, extrinsic signals activate a distinct apoptosis pathway, which ultimately
leads to the activation of effector caspases. Once translocated into the nucleus, effector cas-
pases cleave several nuclear proteins, including poly(ADP-ribose) polymerase-1 (PARP-1),
lamin, β-tubulin, and others [52]. Cleavage of the inhibitor of caspase-activated DNase
(ICAD) by caspase-3 is a crucial event in the apoptotic pathway, allowing caspase-activated
DNase (CAD) to induce oligonucleosomal DNA fragmentation [53–55]. Other mitochon-
drial proteins, such as endonuclease G (EndoG) and apoptosis-inducing factor (AIF), also
enter the nucleus and initiate chromatin condensation and DNA fragmentation, which can
later lead to membrane blebbing. In the final stages of apoptosis, the cell partitions into
small apoptotic bodies that are eliminated by macrophages or surrounding cells. In that
case, the contents of the cell is not released into the environment and does not trigger an
inflammatory reaction.

Parthanatos is a distinct type of cell death that is mainly triggered by DNA damage.
In response to this, PARP-1 protein begins to produce an excessive amount of poly(ADP-
ribose) (PAR), which is then translocated into the mitochondria. The PAR molecules interact
with the mitochondria, inducing the release of AIF [56]. Once AIF enters the nucleus, it
triggers extensive DNA fragmentation and chromatin condensation, ultimately leading
to cell death. The translocation of AIF from mitochondria to the nucleus, and subsequent
nucleus destruction, which is characteristic of this type of cell death, highlights the critical
role of the nucleus in parthanatos [57].

NETotic cell death is thought to involve a complex signaling pathway [58–60]. Activa-
tion of NADPH oxidase by chemical reagents or bacterial action leads to the formation of
reactive oxygen species (ROS) [58]. The presence of ROS triggers the release of bacterici-
dal proteins, such as antimicrobial peptides, cytokines, and digestive enzymes, including
neutrophil elastase (NE), cathepsin G, azurocidin, and myeloperoxidase (MPO), from the
azurophilic granules of neutrophils into the cytosol [61]. NE partially translocates into the
nucleus and cleaves nuclear proteins [62]. Peptidyl arginine deiminase 4 (PAD4) also enters
the nucleus, where it induces histone citrullination [63,64], leading to DNA decondensa-
tion. In the next stage of NETosis, decondensed chromatin, decorated with histones and
antimicrobial proteins, is released into the cytoplasm as a result of rupturing of the nuclear
envelope. This forms a net-like structure, termed the neutrophil extracellular trap (NET),
which is then expelled from the cell [58]. The nucleus’s involvement in NETotic cell death
underscores the significance of this compartment in cell death mechanisms.

The cell death mechanisms in the nucleus share a similar pattern across the
three types of cell death: apoptosis, NETosis, and parthanatos (Figure 1). During apoptosis
and parthanatos, DNA condensation occurs through the common protein AIF, while NETo-
sis involves DNA decondensation, which is critical for NET formation. DNA fragmentation
is exclusive to apoptosis. These three cell death types also involve disruption of the nuclear
envelope to a varying degree. For example, in apoptosis, nuclear proteases cleave lamins,
which leads to destruction of the nuclear envelope and the nucleus as a whole [65,66]. Dur-
ing NETosis, pores form in the nuclear envelope, possibly due to the insertion of gasdermin
D protein into the membrane [67]. Disassembly of nuclear lamin without proteolysis is
also observed [68]. The process of nuclear destruction during parthanatos has not been
extensively studied, and the proteins that are responsible for this process remain unknown.
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Figure 1. Role of nucleus in three types of cell death: apoptosis, NETosis and parthanatos. Although
these cell death pathways have different activators, the nuclear events that occur during these
processes are similar. This includes the degradation of structural and functional proteins by proteases,
as well as DNA decondensation or degradation by endonucleases or modification enzymes. Apoptosis
proteins are indicated in blue boxes; NETosis—pink, parthanatos—green.

All these processes involve important nuclear regulatory proteins in the cell nucleus.
Apoptosis demonstrates how the degradation of such proteins by nuclear proteinases can
regulate cell death (Table 1). The pathways of NETosis and parthanatos are not yet fully
understood, and there are many gaps in our knowledge of the nucleus’s role in these
processes that may involve the action of nuclear proteases.

Table 1. Nuclear substrates in apoptosis, parthanatos, and NETosis.

Cell Death Protease Substrate in
Nucleus Substrate Cell Function What Happened after Cleavage Ref.

apoptosis

caspase-3

Sp1 Transcription factor Apoptosis [69]
PARP-1 DNA repair Activation of apoptosis [70]
lamin Nuclear envelope Degradation of nucleus [65]

importin-α Import of protein in cell nucleus Downregulate DNA synthesis [71]
large subunit
of the DNA
replication
complex C

Regulation of DNA replication Decrease DNA binding [72]

Rad51 DNA repair Activation of apoptosis [73]
ICAD Inhibition of CAD DNA fragmentation [54,74]

calpain

lamin A Nuclear envelope Degradation of nucleus [66]
lamin B Nuclear envelope Degradation of nucleus [66]

spectrin Skeletal protein Product of SBPD145, 150i, 120
Activation of apoptosis [75]
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Table 1. Cont.

Cell Death Protease Substrate in
Nucleus Substrate Cell Function What Happened after Cleavage Ref.

apoptosis

cathepsin L p53 Transcription factor, regulation
of caspase-7 expression

Silencing of CtsL induce the
decrease in p53 [76]

prohibitin Transcription factor, regulation
of caspase-7 expression

Silencing of CtsL induce the
decrease in p53 [76]

cathepsin B - - DNA condensation and
fragmentation [77]

granzyme

lamin Nuclear envelope - [78]
PARP DNA repair - [79,80]
ICAD Inhibition of CAD - [79]

- - DNA fragmentation [81]

?—
apoptosis

calpain

PARP DNA repair - [82]

CaMK4 Calcium signaling, regulates
β-cell apoptosis - [83]

β-catenin
Transcription factor, regular
expression of Wnt pathways

genes
- [84]

c-Fos Transcription factor - [85,86]
c-Jun Transcription factor - [85,86]

Sp3, Sp4 Transcription factor - [87]
p53 Transcription factor - [88]

SPase
Sp1 Transcription factor - [89]
Rb Regulates cell growth - [89]

NETosis
calpain

H3 Maintains structure of DNA Degradation of nuclear envelope [90]
HP1a Gene regulation Chromatin decondensation [90]

lamin A/C Nuclear core structure Degradation of nuclear envelope [90]
H3 Maintains structure of DNA Degradation of nuclear envelope [90]
? ? Chromatin decondensation [90]

neutrophil
elastase

H1, H2A, H2B,
H3, H3 Maintains structure of DNA Chromatin decondensation [62,91]

?—
parthanatos

calpain PARP - - [82]
granzyme PARP - - [79]

cysteine pro-
tease/cathepsin AIF - - [76,92]

?—We can speculate the involvement in cell death based on the substrate.

4. Nuclear Proteases in Apoptosis

Apoptotic cell death is associated with proteolytic processes [93]. The main proteases
involved in apoptosis are caspases [94]. Upon activation, caspases cleave and activate
pro-apoptotic or structural proteins, the destruction of which is necessary for cell death [95].
Caspases that are translocated into the nucleus degrade nuclear lamins [65], importin-
α [71], large subunit of the DNA replication complex C [72], ICAD [54,74], Rad51 [73],
PARP [70], and other nuclear proteins. Therefore, at a physiological level, cells experience
rounding, chromatin condensation, DNA fragmentation, blebbing of membrane, and as a
result—formation of apoptotic bodies [96].

Although caspases play a significant role in apoptosis, other cellular proteases also
contribute to it. For instance, during H2O2-induced apoptosis, cathepsins L and B, but
not calpains, participate in caspase activation and DNA fragmentation [97]. This is related
to the activity of these proteases in the cytoplasm, but the diversity of proteases in the
nucleus suggests the presence of currently unknown participants in apoptosis. Experiments
with lysates from Fas-stimulated Jurkat cell and isolated nuclei have shown that these
lysates contain serine proteases that induce DNA fragmentation in an apoptosis-dependent
manner [98,99]. In another experiment, the addition of Ca2+ to isolated nuclei initiated the
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fragmentation of DNA into small fragments (50 kbp), which were previously observed in
apoptotic nuclei, and this depended on the activity of a serine protease and calpain [100].

Calpains are a group of non-caspase Ca2+-dependent proteases that are activated when
the intracellular Ca2+ level increases and they play a specific role in neuronal apoptosis [101].
Calpains translocated into the nucleus are involved in DNA fragmentation in Ca2+- treated
nuclei [100]. In vitro and in vivo analysis of maitotoxin-treated cells revealed that PARP-1
protein is cleaved by a calpain, which leads to the formation of a 40 kDa immunoreactive
fragment [82].

Another participant of apoptotic nuclear events is the serine protease granzyme.
Granzymes are located in cytotoxic granules of immune cells and are secreted into the
extracellular matrix for the elimination of target cells [102]. These proteases contribute to
apoptotic pathways through caspase activation and directly induce protein degradation
in the nucleus [103]. It was found that under caspase-inhibited conditions, cells undergo
apoptosis because of granzyme-dependent cleavage of nuclear lamins, PARP, ICAD [78–80],
and activation of DNA fragmentation [81].

Transcriptional factors play an important role in the regulation of gene expression
and apoptosis [104]. An alternative way to control the activation or the deactivation of
regulator pathways is the degradation of transcription factors with nuclear proteases.
Transcription factor Yin Yang 1 (YY1) is degraded by nuclear cathepsin-B-like protease in
NT2 cells after treatment with retinoic acid [105]. In pancreatic cancer cells, YY1 activates
transcription of pro-apoptotic Bax protein and thereby facilitates apoptosis [106]. Another
nuclear cathepsin-B-like protease, referred to as SPase, cleaves transcriptional factor Sp1
and RB proteins in CV-1 cells. Different studies have revealed that Sp1 protein is involved
in the regulation of apoptosis [107], and during DNA-induced apoptosis Sp1 is cleaved
by caspase-3 [69].

Nuclear cathepsins also have some nuclear substrates that participate in apoptosis.
Recent studies have identified several of these, including the transcriptional factor p53 and
prohibitin [76]. The inhibition of cathepsin L in U87 glioblastoma cells has been shown
to have a significant impact on the accumulation of p53 and prohibitin in the cell nucleus.
This suggests that cathepsin L plays a unique role in the regulation of transcription of
caspase-3 and caspase-7, which are key players in apoptotic cell death. Apart from the
nuclear cathepsins, cathepsin B is another protease that has been found to have apoptogenic
activity [77]. The treatment of the nucleus from digitonin-permeabilized cells with purified
cathepsin B leads to DNA condensation and fragmentation after just 15 min. These features
are characteristic of apoptosis, suggesting that cathepsin B plays a significant role in
this process.

5. Nuclear Proteases in Parthanatos

Parthanatos is activated in the nucleus during DNA damage [57]. Overactivated PARP-
1 produces PARs in response to DNA damage. PARP-1 is a main member of the PARP
family and accounts for 90% of the activity of these proteins. It is a nuclear enzyme that
activates in response to DNA strand breaks and forms linear or branched PARs. These PARs
are then linked with PARP, histones, DNA helicases, topoisomerases, single-strand break
repair factors, base-excision repair factors and several transcription factors [108]. During
the overproduction of PAR, and despite the activation of the DNA repair system, effective
DNA repair does not occur, and cell death is potentiated due to repair-induced DNA
decondensation. The excess PARs partially translocate from the nucleus to mitochondria,
leading to the release and transfer of AIF protein into the nucleus [57]. AIF is a FAD-
dependent oxidoreductase that accumulates and induces peripheral DNA condensation
and large DNA fragmentation [56].

Among the main participants in apoptosis, no nuclear proteases were found, although
some of the proteins undergo degradation during other types of cell death (Figure 2).
For instance, polymerase PARP-1 degrades during caspase-dependent apoptosis [70]. In
caspase-independent apoptosis, calpain [82] and granzyme [80] can also cleave PARP-1.
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Hyperactivation of PARP-1 can be blocked with a specific PARP inhibitor [109]. On the
other hand, the activity of the protein can be abrogated via its degradation by nuclear
proteases. The main question is how these nuclear proteases can be activated.
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Figure 2. The involvement of nuclear proteases in cell death. Understudied nuclear proteases are
capable of degrading a wide range of critical nuclear proteins, including PARP, lamin, and various
transcriptional factors. However, the specific mechanisms by which some of these nuclear proteases
contribute to cell death remain unknown. Proteins associated with apoptosis are indicated in blue
boxes; NETosis—pink, parthanatos—green. Nuclear proteases are indicated in red boxes.

Another potential substrate for nuclear proteases is nuclear AIF. It was shown that
cysteine proteases are involved in the degradation of intracellular AIF [92]. Based on the
fact that some cysteine proteases, such as cathepsins [76], are present in cell nuclei, it can be
assumed that under certain conditions, these nuclear proteases can potentially degrade AIF.

6. Nuclear Proteases in NETosis

NETosis is a specific form of cell death primarily observed in neutrophils but also
reported in other leukocytes [110–113]. Activation of signaling pathways induces the
production of ROS, chromatin decondensation, and the release of NETs [58,114].

Neutrophil elastase is a serine protease stored in azurophilic granules that is involved
in antimicrobial activity in the phagosome [115]. During NETosis, after translocation into
the nucleus from cytoplasm, NE participates in the cleavage of histones that maintain
chromosome structure [116]. It has been shown that NE is essential for NET formation and
DNA decondensation via its involvement in the destruction of core histones H2A, H2B, H3,
H3, and linker histone H1 [62]. In the case of the H2A histone, neutrophil elastase cleaves
the protein at position V114 [91]. As a result, histone degradation promotes chromosome
decondensation and NETs formation.

In NETosis, calpain synergizes with PAD4, and can participate in this type of cell
death only in this synergistic manner. The nucleus, previously treated with PAD4, expands,
undergoes chromatin decondensation, and forms NETs in the presence of calpain [90].
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Protein analysis of treated nuclei show that lamin A/C, as well as nuclear protein HMGB1,
N-terminus of H3 histone, and HP1a undergo calpain-mediated proteolysis.

The function of other neutrophil serine proteases (NSP) remains unclear. Kasperkiewicz
et al. revealed that the catalytic activity of cathepsin G, proteinase 3, and NSP4 is not re-
quired for NETs formation [117]. Isolated neutrophils were treated with specific inhibitors
of NSP, and NETosis was induced with different stimuli (PMA, LPS or bacteria). Inhibition
of cathepsin G, proteinase 3, and NSP4 blocked the release of DNA. Additionally, these
serine proteases are present in NET structures in their inactive form.

Thus, during NETosis, the primary role of nuclear proteases is to induce or facilitate
the process of chromosome decondensation, which is a critical step in the subsequent
stages of NETs formation. Understanding the underlying mechanisms of NETosis and its
regulation are crucial for developing effective treatments for a variety of diseases, including
autoimmune disorders and infectious diseases.

7. Approaches for Modulating the Activity of Proteases in the Nucleus

Misregulation of cell death mechanisms can result in various consequences, such as
uncontrolled cell division and proliferation, as observed in tumor cells [2], or excessive cell
death, as seen in the case of neural cells in neurodegenerative diseases [3]. Thus, inducing
or inhibiting cell death can be a promising approach to treating highly relevant diseases.
Targeting specific proteins involved in the cell death pathways is one of the ways to control
cell death. Importantly, nuclear proteases are potential targets for regulating cell death.
However, it is crucial to note that while targeting nuclear proteases can be effective, it
may also have unintended consequences as these proteases may have other functions in
cells. Further research is needed to understand the potential risks and benefits of targeting
nuclear proteases in regulating cell death.

Nuclear proteases play a specific role in different stages of cell death, and targeting a
certain protease can either activate or inhibit cell death specifically. However, uncontrolled
action of proteases can lead to cell death, which is why cells contain specific endogenous
inhibitors, for example, MMP and tissue inhibitors of metalloproteinase (TIMPs) [118],
cathepsin and cystatin [119], caspase and its inhibitors [120], calpain and calpastatin [121],
and others. It is worth noting that both proteases and their inhibitors are present in
the cell nucleus [122–124]. However, endogenous inhibitors are distributed throughout
the cell, and inhibition of a particular nuclear protease can also affect its activity in the
cytoplasm. One potential solution is to create a specific nuclear inhibitor that works only
in the nucleus. While this approach is still under investigation, it has the potential to
provide more targeted and precise regulation of cell death. Further research is necessary to
understand the potential risks and benefits of creating specific nuclear inhibitors and how
they might impact cellular processes beyond cell death.

Numerous proteases are produced in an inactive form. Their maturation involves
cleavage of a prodomain, which inhibits protease activity. This process can be accom-
plished by other proteases [125] or autoactivation [126]. However, the mechanisms by
which proteases are activated in the nucleus or translocated into the nucleus in response to
different stimuli is not yet fully understood. The lack of information on this topic limits
our ability to create unique and specific activators for nuclear proteases. Despite this,
common practice is to use activators for proteases in the whole cell to induce sufficient cell
death [127,128]. Targeting nuclear proteases could be a more effective approach in regulat-
ing cell death compared to others. However, further research is necessary to understand
the mechanisms of action of nuclear proteases and their potential as targets for regulating
cell death.

8. Conclusions

Proteases are a vast class of proteins that play a crucial role in various cellular processes,
including homeostasis, tissue development, angiogenesis, cell death, autophagy, immune
response, DNA repair, replication, transcription, and many others. In the context of



Biology 2023, 12, 797 10 of 15

cell death, proteases are particularly important, as exemplified by caspases in apoptosis.
In this review, we have described the role of nuclear proteases in apoptosis, NETosis,
and parthanatos, highlighting the general mechanisms of these cell death pathways with
detailed descriptions of nuclear protease involvement.

Further research is needed to fully understand the mechanisms of action of nuclear
proteases in cell death and their potential as therapeutic targets. By understanding the
specific roles of nuclear proteases in cell death pathways, it may be possible to develop
specific inhibitors or inducers of these proteases, potentially leading to new treatments for
diseases associated with aberrant cell death processes.
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