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Simple Summary: When species from one place invade and settle in another, it can cause serious
problems for the local environment. These invasions, known as bio-invasions, disrupt natural
ecosystems and can lead to major changes. The Mediterranean Sea is especially at risk because the
water conditions are changing rapidly due to climate change, which, coupled with the opening of
the Suez Canal, creates an appropriate environment for species from the Red Sea to move in. In May
2023, divers found a type of soft coral called Dendronephthya, that is new to the Mediterranean Sea
near Israel. This coral is normally found in the Indo-Pacific region and is common in the Red Sea.
Using molecular and morphological analysis, we confirmed the identity of the coral. Because this
coral can attach swiftly to surfaces and grow quickly, it is expected to spread rapidly and become
more common throughout the Mediterranean Sea.

Abstract: Bio-invasions have the potential to provoke cascade effects that can disrupt natural ecosys-
tems and cause ecological regime shifts. The Mediterranean Sea is particularly prone to bio-invasions
as the changing water conditions, evoked by climate change, are creating advantageous conditions for
Lessepsian migrants from the Red Sea. Recently, in May 2023, a new alien species was documented in
the Mediterranean Sea—a soft coral of the genus Dendronephthya. This discovery was made by divers
conducting ‘Long-Term Ecological Research’ surveys, along the coast of Israel, at a depth of 42 m.
Genetic and morphological testing suggest that the species identity may be Dendronepthya hemprichi,
an Indo-Pacific coral, common in the Red Sea. According to life history traits of this species, such
as accelerated attachment to available surfaces and fast growth, we expect it to rapidly expand its
distribution and abundance across the Mediterranean Sea.

Keywords: Lessepsian migration; Mediterranean Sea; alien species; Mesophotic reef

1. Introduction

Bio-invasions are some of the most deleterious and pervasive consequences of an-
thropogenic global change. These invasions are capable of provoking cascade effects that
can disrupt natural ecosystems and cause ecological regime shifts [1]. Given suitable
environmental conditions and the fragility of an ecosystem, an introduced (alien) species
has the potential to become invasive, transforming into a pest within its new habitat and
spreading rapidly [2].

In the marine world, bio-invasions are often exacerbated by climate change as water
temperature, in particular, is regarded as a crucial factor that can act as a selective filter,
ultimately governing the potential success of alien marine species [3]. There are many
additional factors that influence the success of a bio-invasion, and in the case of alien sessile
benthic invertebrates, reproductive strategies also play a critical role [4]. Mixed species
assemblages are often generated through sexual reproduction [5], while monospecific
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aggregations result from asexual reproduction such as budding or fragmentation [6–8].
Reproduction strategies are pivotal to enabling invasive species to out-compete native
species through overgrowth, smothering, or competitive exclusion.

Marine alien species can be introduced to a new environment via several pathways,
all of which are associated with anthropogenic activities. Global shipping is a major
vector, as many species are moved across the globe in their larval stage, within ballast
waters, or attached to ship hulls as biofouling organisms [9,10]. Aquaculture and the
aquarium trade are also two paramount vectors, as exotic species are brought over to new
geographic regions and may be released into the wild as they become undesirable as pets
(aquarium trade) or as they spill over from their rearing enclosures (aquaculture) [11,12].
Lastly, navigational canals are a main pathway for the introduction of marine invasive
species [10,13,14]. One example is the Suez Canal, which is the primary pathway for the
introduction of over half of the non-indigenous species in the Mediterranean Sea [15,16].

The Mediterranean Sea is an ultra-oligotrophic [17], semi-enclosed temperate sea,
which exhibits a high salinity of 39 ppt [18] and a wide annual temperature range
(15–30 ◦C) [19,20]. The Mediterranean Sea is unique in its rapidly changing ecosystems, af-
fected by both climate change and the introduction of invasive species. More specifically, the
eastern Mediterranean region is experiencing rapid warming due to climate change, and in
recent decades, water temperatures have been rising at a rate of 0.35 ± 0.27 ◦C decade−1 [21,22].
These trends also result in an increase in the minimum winter temperatures in coastal
waters, with minimum temperatures shifting from 16 ◦C to 18 ◦C since the 1990s [23].
Collectively, these temperature shifts may provide favorable conditions for the invasion of
warm-water species [2].

Across the Mediterranean Sea, over 500 alien species originating from the Red Sea have
been documented to date [24–28], a phenomenon known as ‘Lessepsian migration’ [16,29].
These alien species (fish, invertebrates, and algae) have arrived via the Suez Canal, which
has undergone several expansion projects since it was first dredged in 1869, thereby re-
moving the depth and salinity barriers which once hindered the crossing for various
species [30]. Israel’s coast has often been documented as the “first stop” for alien species
that later establish stable populations across the entire Mediterranean Sea [31–33]. This is
due to Israel’s proximity to the Suez Canal, located just south of Israel’s border, coupled
with the prevailing south to north currents that run along Israel’s coast as part of the larger
counterclockwise circulation of the Mediterranean Sea [34].

Although various alien species from diverse phyla have been recorded in the Mediter-
ranean, the only documented alien soft coral (Cnidaria: Octocorallia) to date is
Melithaea erythraea (Ehrenberg, 1834). This soft coral is native to the Red Sea and has arrived
in the Mediterranean via Lessepsian migration. Melithaea erythraea was first documented in
the Hadera power plant (Israel) in 1999, and remained confined within that facility until
2015 when additional colonies were observed on the surrounding rocky reefs [35,36].

In May 2023, during a routine monitoring survey, as part of a ‘Long-Term Ecological Re-
search’ (LTER) program conducted by the Morris Kahn Marine Research Station (MKMRS),
researchers observed and documented the first record of the soft coral Dendronephthya sp.
in the Mediterranean Sea.

Soft corals are found worldwide in a wide range of depths and water temperatures [37],
and are the second most abundant sessile organism in many coral reefs [38]. Soft corals
have an important functional role of ecosystem engineering, adding three-dimensional
complexity to the reef environment, which increases diversity [39]. Several species of
soft corals are indigenous to the Mediterranean, mainly from the families Pennatuloidea
and Alcyoniidae [40,41].

The genus Dendronephthya (Cnidaria: Octocorallia: Alcyonaea: Nephtheidae) is a
genus of soft corals found in the tropical waters of the Indo-Pacific Ocean. To date, species
classification of the family Nephtheidae has mainly been based on morphology [42]. Re-
cent phylogenetic analysis using a whole mitochondrial genome provides better reso-
lution of the topology of this family [43,44]. However, further genetic information is
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required in order to resolve species-level phylogeny amongst genera in this family [42,45].
Dendronephthya spp. has been documented at a wide range of depths, and is primarily
found in habitats with strong currents [37,46,47] such as vertical artificial structures or
steep reefs [48]. Dendronephthya is an azooxanthellate genus [49] characterized by a wide
range of bright colors, with eight pinnate tentacles on each polyp, a branching divaricate
structure supported by a hydrostatic skeleton, and internal calcareous skeletal elements
called sclerites [50–52]. It is a passive suspension feeder, dependent on ambient currents
for the supply of food particles, mainly phytoplankton [49].

Dendronephthya spp. tends to rapidly populate the available substrate, often artificial
surfaces, and recruitment can be observed in as little time as two days [47–49,51,53]. Attach-
ment to artificial structures is advantageous as it often enables exposure to high currents,
which in turn enhance the coral’s growth [48].

In addition to sexual reproduction [50], Dendronephthya spp. can also reproduce via
clonal propagation [51] where autotomized fragments, which are negatively buoyant, settle
on the outer face of a horizontal substratum [53]. Due its fast growth and reproductive
strategies, Dendronephthya spp. often become the most abundant sessile organisms on these
structures; Refs. [53,54] report that the number of Dendronephthya spp. colonies can increase
four-fold in one year following initial recruitment to a new habitat.

In this study, we aim to characterize the soft coral observed in the Mediterranean Sea
that we suspected to be Dendronephthya spp. The broader objective was to identify the
species and understand the expansion potential of this species in the Mediterranean Sea;
therefore, we examined both morphological characteristics and genetic information for the
collected specimens of this coral.

2. Materials and Methods
2.1. Study Site and Sample Collection

Along the Mediterranean coast of Israel, underwater surveys have been conducted bi-
annually at nine locations (Figure 1) over the past 9 years, as part of a ‘Long-Term Ecological
Research’ (LTER) program led by the Morris Kahn Marine Research Station (MKMRS)
(MKMRS LTER; established in 2014; https://med-lter.haifa.ac.il/index.php/en/data-base,
accessed on 6 July 2023). Monitoring dives are carried out using Megalodon Closed Circuit
Rebreathers (CCRs) to avoid disturbance to the marine life, increase bottom time, and
increase safety. Four 25 m long transects are surveyed at each site, along which data on
fish and invertebrate community composition are collected. Photo quadrats with an area of
25 cm2 are taken every 2 m along the transect line and analyzed on the Coralnet website [55]
under the project ’Israeli monitoring program‘ to characterize the invertebrate community
composition. Fish species, size, distance from transect, and number of individuals are
recorded for characterization of the fish community composition.

On 18 May 2023, MKMRS LTER researchers encountered several colonies of a soft
coral that were suspected as being Dendronephthya sp. along the rocky reef monitoring
site (32.54◦ N, 034.85◦ E) located near Sdot Yam, Israel, at a depth of 42 m (Figure 1). This
rocky reef site is exposed to open sea currents, and at the time of the survey, the water
temperature was 19 ◦C. Specimens from three colonies at the natural rocky reef monitoring
site were collected. In order to compare these specimens with native populations in the
Red Sea, seven colonies were later collected in the Red Sea, adjacent to the Inter-University
Institute (29.30◦ N, 34.54◦ E) in Eilat, Israel, under a special permit from the Israel Nature
and Parks Authority. The seven specimens from the Red Sea were collected from both
artificial structures and natural reefs. Four colonies were collected from a depth of 36 m,
two of which were associated with an artificial structure and two of which were associated
with the natural reef. An additional three colonies were collected at a depth of 12 m,
and these three were associated with artificial structures. Samples from each colony
were sectioned into fragments of 1 cm2 in size and were flash-frozen in liquid nitrogen
prior to DNA extraction. The remainder of the specimens collected were utilized for
further morphological examination. Specimens collected from the Mediterranean have
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been deposited at The Steinhardt Museum of Natural History, Tel Aviv University, Israel
(Voucher number, SMNHTAU-Co.39049).
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2.2. DNA Extraction

Genomic DNA was extracted using Qiagen Blood and Cell Culture DNA kit (Qia-
gen, USA#13323). For species identification, three genetic markers were PCR-amplified.
The mitochondrial marker ribosomal 16S gene was amplified using primers DN1-F (5′-
AGGCTACTTAAGTATAGGGG-3’) and DN1-R (5′-AACTCTCCGACAATATTACGC-3′),
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with PCR conditions as described in [43]. The second markers were the oxidase sub-
units I and II (cox1 and 2), which were generated based on the available sequences of
Dendronephthya hemprichi (native to the Red Sea) in NCBI at the time (GU355996.1): DhCox12F
AGAGTGTTCTCACCTACTTTAG and DhCox12R GTTTAGCAGAAAATGTGGGTAT. The
third marker was the MutS-like protein (MSH1) gene which was generated based on the
available sequences of D. hemprichi in NCBI at the time (GU356019.1): DhMsh1F GAGC-
CAAATACCTATGCAATAT and DhMsh1R ACACGGCAAGTTGGTTAGTG. All PCRs
were performed using the Kodaq 2X PCR MasterMix (ABM, Richmond, BC, Canada) fol-
lowing the manufacturer’s protocol. DNA yield and PCR products were analyzed via
electrophoresis on a 1.0% agarose TBE (90 mM TRIS-borate and 2 mM EDTA) gel run at
110 V. PCR products were Sanger-sequenced in both directions using the amplification
primers on an ABI 3730xl DNA Analyzer (Applied BiosystemsTM, Waltham, MA, USA) at
HyLabs (Rehovot, Israel).

In total, 27 complete mitochondrial genome sequences of the order of Malacalcy-
onaceae were retrieved from the NCBI database. Table 1 lists the sequences used for
analysis, including those obtained from the samples collected for this study. Sequences
from each gene were (separately) aligned using the MUSCLE algorithm in MEGA11 [56].
Alignments were trimmed to retain shared regions among all sequences. The trimmed align-
ment of the rRNA gene MSH1 and cox1 gene included 534 bases, 661 bases, and 775 bases,
respectively. Then, the alignments were concatenated and used for the calculation of a
maximum likelihood tree. Only species/samples for which sequences were available for at
least two genes were used. A maximum likelihood tree was calculated using the PhyML
3.0 algorithm [57] and the web application at http://www.atgc-montpellier.fr/phyml/
(accessed on 6 July 2023). Standard bootstrap analysis was performed with 1000 repeats.

Table 1. Sequences used for phylogenetic analysis, including those from specimens collected in
this study.

Species/Specimen Family Genus Source NCBI
Accession Number rRNA MSH COX1

Dendronephthya mollis Nephtheidae Dendronephthya NCBI, complete genome NC_020456.1 NC_020456.1 NC_020456.1 NC_020456.1

Dendronephthya suensoni Nephtheidae Dendronephthya NCBI, complete genome GU047878.1 GU047878.1 GU047878.1 GU047878.1

Dendronephthya putteri Nephtheidae Dendronephthya NCBI, complete genome JQ886185.1 JQ886185.1 JQ886185.1 JQ886185.1

Dendronephthya sinaiensis Nephtheidae Dendronephthya NCBI, complete genome NC_062008.1 NC_062008.1 NC_062008.1 NC_062008.1

Dendronephthya alba Nephtheidae Dendronephthya NCBI, complete genome MW423625.1 MW423625.1 MW423625.1 MW423625.1

Dendronephthya castanea Nephtheidae Dendronephthya NCBI, complete genome NC_023343.1 NC_023343.1 NC_023343.1 NC_023343.1

Dendronephthya gigantea Nephtheidae Dendronephthya NCBI, complete genome NC_013573.1 NC_013573.1 NC_013573.1 NC_013573.1

Dendronephthya hemprichi Nephtheidae Dendronephthya NCBI GU356019.1 GU355996.1

Scleronephthya gracillimum Nephtheidae Scleronephthya NCBI, complete genome NC_023344.1 NC_023344.1 NC_023344.1 NC_023344.1

Eunicella albicans Eunicellidae Eunicella NCBI, complete genome NC_035666.1 NC_035666.1 NC_035666.1 NC_035666.1

Eunicella tricoronata Eunicellidae Eunicella NCBI, complete genome NC_062012.1 NC_062012.1 NC_062012.1 NC_062012.1

Eunicella cavolinii Eunicellidae Eunicella NCBI, complete genome NC_035667.1 NC_035667.1 NC_035667.1 NC_035667.1

Trachythela sp. YZ-2021 Eunicellidae Trachyela NCBI, complete genome MW238423.1 MW238423.1 MW238423.1 MW238423.1

Eugorgia mutabilis Gordoniidae Eugorgia NCBI, complete genome NC_035665.1 NC_035665.1 NC_035665.1 NC_035665.1

Leptogorgia hebes isolate
PLG4-L68 Gordoniidae Leptogorgia NCBI, complete genome MN052677.1 MN052677.1 MN052677.1 MN052677.1

Leptogorgia alba Gordoniidae Leptogorgia NCBI, complete genome NC_035669.1 NC_035669.1 NC_035669.1 NC_035669.1

Leptogorgia cf. palma
AP-2017 Gordoniidae Leptogorgia NCBI, complete genome KY559406.1 KY559406.1 KY559406.1 KY559406.1

Leptogorgia capverdensis Gordoniidae Leptogorgia NCBI, complete genome NC_035663.1 NC_035663.1 NC_035663.1 NC_035663.1

Leptogorgia sarmentosa Gordoniidae Leptogorgia NCBI, complete genome NC_035670.1 NC_035670.1 NC_035670.1 NC_035670.1

Pseudopterogorgia bipinnata Gordoniidae Antillogorgia NCBI, complete genome NC_008157.1 NC_008157.1 NC_008157.1 NC_008157.1

Pacifigorgia cairnsi Gordoniidae Pacifigorgia NCBI, complete genome NC_035668.1 NC_035668.1 NC_035668.1 NC_035668.1

Astrogorgia sp. ANT66 Astrogorgiidae Astrogorgia NCBI, complete genome OL616212.1 OL616212.1 OL616212.1 OL616212.1

Discophyton rudyi Discophytidae Discophyton NCBI, complete genome NC_061276.1 NC_061276.1 NC_061276.1 NC_061276.1

Alcyonium acaule Alcyoniidae Alcyonium NCBI, complete genome NC_061273.1 NC_061273.1 NC_061273.1 NC_061273.1

Alertigorgia orientalis Alcyoniidae Alertigorgia NCBI, complete genome NC_061994.1 NC_061994.1 NC_061994.1 NC_061994.1

Sinularia ceramensis Sinulariidae Sinularia NCBI, complete genome NC_044122.1 NC_044122.1 NC_044122.1 NC_044122.1

http://www.atgc-montpellier.fr/phyml/
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Table 1. Cont.

Species/Specimen Family Genus Source NCBI
Accession Number rRNA MSH COX1

Sinularia flexibilis Sinulariidae Sinularia NCBI, complete genome NC_061282.1 NC_061282.1 NC_061282.1 NC_061282.1

Siphonogorgia godeffroyi Nidaliidae Siphonogorgia NCBI, complete genome NC_062032.1 NC_062032.1 NC_062032.1 NC_062032.1

Rumphella sp. ANT116 Plexauridae Rumphella NCBI, complete genome OL616268.1 OL616268.1 OL616268.1 OL616268.1

Ceeceenus quadrus Paralcyoniidae Ceeceenus NCBI, complete genome NC_062003.1 NC_062003.1 NC_062003.1 NC_062003.1

Azoriella bayeri Cerveridae Azoriella NCBI, complete genome NC_061999.1 NC_061999.1 NC_061999.1 NC_061999.1

Euplexaura crassa Euplexauridae Euplexaura NCBI, complete genome NC_020458.1 NC_020458.1 NC_020458.1 NC_020458.1

Red Sea 36 m This study OR458391 OR526527 OR520375

Mediterranean Sea This study OR462245 OR520989 OR520376

2.3. Sclerite Morphological Analysis

Sclerites were isolated from segments of coral tissue, 1–2 cm in length, using 3% sodium
hypochlorite. Once tissue was no longer visible, the remaining sclerites were rinsed three
times with DDW and stored in 100% EtOH. Sclerites were placed on silica wafer, mounted
on SEM plugs, and vacuum-coated with 5 nm Au/Pb (80:20%) prior to examination under
a ZEISS SigmaTM SEM (ZEISS, Oberkochen, Germany), using an SE2 detector (1–2 kV,
WD = 6–7 mm). The length and width of the different types of sclerites found in the polyps
were measured using FIJI [58] (n = 151 sclerites).

3. Results
3.1. Macro Morphological Analysis

In total, fifteen colonies of soft corals, that were suspected as being Dendronephthya spp.,
were observed in the Mediterranean, in a 10 m2 area of rocky reef, with colony sizes rang-
ing from 5 to 50 cm (Figure 2), suggesting the utilization of propagation strategies. This
particular area of rocky reef is one of the nine sites that has been routinely monitored every
year in both the spring and fall, since 2014. Routine surveys include both photo quadrats
for assessments of percent cover of algae and invertebrates, as well as fish counts. At the
remaining eight rocky reef monitoring stations, during the spring 2023 survey, no additional
evidence of any soft corals were found. Furthermore, no soft corals were observed during
any of the previous survey years (https://med-lter.haifa.ac.il/index.php/en/data-base,
accessed on 6 July 2023).

The observed colonies displayed distinctive traits associated with the genus Dendronephthya.
These included vivid red pigmentation, as well as their intricate branched divaricate
structure. Furthermore, the polyps exhibited a notable arrangement of spindle-shaped
sclerites in their armature, both within the polyp itself and on the surface of the stalk [37].
Notably, the polyps displayed a conspicuous supporting bundle of large red spindle-shaped
sclerites (Figure 2C). Lastly, similar thick spindle-shaped sclerites were observed on the
surface of the stalk (Figure 2D).

3.2. Molecular Analysis

To confirm the genus identity of the soft corals observed near Sdot-Yam, a phylogenetic
analysis based on mitochondrial small subunit ribosomal RNA, MSH1, and cox1 gene
sequences was performed. The analysis revealed that all studied colonies belong to the
genus Dendronephthya (Figure 3).

The phylogenetic analysis revealed that the colonies collected in the Mediterranean
Sea were identical to the ones collected in the Red Sea, based on the available information.
Moreover, the two most abundant species in the Red Sea are Dendronephthya sinaiensis
and D. hemprichi. Our analysis further indicates that all of the colonies collected in the
Mediterranean Sea are significantly different from D. sinaiensis and undifferentiated from
D. hemprichi. However, as genomic data are limited for this species, and further molec-
ular information is required in order to resolve this species classification, we could not

https://med-lter.haifa.ac.il/index.php/en/data-base
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confirm the species using mitochondrial markers. Therefore, we also conducted micro-
morphological analysis to gain a better distinction among species.
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Figure 2. Dendronephthya sp. colonies observed at the rocky reef at 42 m near Sdot-Yam, Israel.
(A,B) In situ images of the observed size variation in the colonies. The photographed colonies vary
from (A) ~50 cm to (B) ~5 cm from base to top. (C,D) Ex situ light microscopy images of section
collected from (A). (C) Red spindle-shaped sclerite arrangement on the stalk surface. (D) Supporting
bundle and loose spindle sclerites are arranged around the polyp head.
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gests that all samples collected in the Mediterranean Sea belong to the species D. hemprichi. 

Figure 3. Maximum likelihood tree based on sequences of mitochondrial small subunit rRNA gene,
MSH1 gene, and cox1 gene. Tree was calculated using PhyML 3.0 algorithm. Nodes denoted in green
scale circles indicate bootstrap support values (percent of 1000 repeats). Scale bar represents the
number of substitutions per site. Red and blue text refer to colonies analyzed in this study.
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3.3. Micro-Morphological Analysis

Microscopic examination of the sclerite morphology via SEM (Figure 4) further sug-
gests that all samples collected in the Mediterranean Sea belong to the species D. hemprichi.
Specifically, all colonies contain spindle-shaped sclerites up to 3 mm long, which are typi-
cal of the supporting bundle (Figure 4A). Additional sclerites were observed, including
shorter spindle-shaped sclerites up to 500 µm in length, typically found on the polyp head
(Figure 4B). Both types of sclerites were covered with evenly scattered warts. In addition,
small, flattened, irregular-shaped sclerites typical for the stalk section of the coral (less
than 200 µm) were observed (Figure 4C) [37,46]. The average length-to-width ratio of the
spindles was 11.39 ± 4.29 (n = 151 sclerites, Supplementary Table S1), which is within
D. hemprichi’s reported range of ratios [46].
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4. Discussion

Considering the colony morphology and sclerite structure, in particular, the polyp
armature with its supporting bundle, the soft coral population observed in this study
belongs to the Dendronephtya genera. The combined molecular analysis with the micro-
morphology analysis of the sclerites further suggests that the species may be D. hemprichi.
To the best of our knowledge, this is the first evidence of occurrence of the Indo-Pacific
D. hemprichi within the Mediterranean Sea.

The genus Dendronephthya is common in the northern Red Sea and the Indo-Pacific [37],
with the two most common species in the northern Red Sea being D. hemprichi and
D. sinaiensis. D. hemprichi is found in a wide range of depths, while D. sinaiensis has
been found to prefer water depths greater than 18 m, with low light intensity [59]. The mor-
phological differences which were observed in the polyps of the two species are indicative
of differences in feeding niches, mainly related to prey size [46].

Although the exact method of transport cannot be determined (drifting asexual au-
totomized fragments, ship ballast, or other), D. hemprichi likely arrived from the Red Sea,
via the Suez Canal, as part of the greater and well-documented Lessepsian Migration.
Although its natural habitat is the Red Sea, D. hemprichi is mostly found on artificial ver-
tical structures exposed to high flow regimes [48]. The D. hemprichi colonies observed in
this study were located at a natural rocky reef site, possibly indicating that this site may
experience high exposure to currents.

To date, only one instance of Lessepsian migration involving an alien soft coral species
has been observed in the Mediterranean. The gorgonian species M. erythraea was first
reported by Fine et al. [35] in 1999. Despite its reproductive strategy, which includes
a substantial capability for swift establishment, the observed gradual expansion of its
distribution in the region, as documented by Grossowicz et al. [36], raises the possibility
that M. erythraea lacks competitive characteristics or exhibits limited adaptability to the
new ecological conditions encountered in its new habitat.

Although M. erythraea was not found to be an aggressive invader, other soft corals
world-wide have been recorded as such. In the south Caribbean waters of Venezuela,
Unomia stolonifera (family: Xeniidae) has become extremely prominent since it first appeared
between 2000 and 2005, and according to [60], this species features an average percent cover
of 30–80% in shallow reefs. This percent cover is far greater than that of any other benthic
taxa on the reefs. In Brazilian waters, the alien Scleractinia coral species Tubastraea spp.
has dominated large, rocky surfaces and displaced native corals and zoantharians. The
main advantage of Tubastraea spp. comes from employing minor but continuous sexual
reproduction and clonal reproduction strategies [61–63].

In contrast to M. erythraea, and more similar to U. stolonifera, we anticipate a rapid
increase in the distribution of D. hemprichi throughout the Mediterranean Sea. Previous
studies consistently demonstrate its swift colonization of the available substrate, with it
being capable of multiplying colony numbers four-fold within a single year [48,53,54].
Furthermore, in specific environments, it frequently emerges as the dominant sessile organ-
ism, indicating its competitive prowess [47]. Notably, the clonal propagation model [51],
characteristic of the Dendronephthya spp., finds support in the observed diversity of colony
sizes within the localized area of the Mediterranean rocky reef. Thus, the future trajectory
of D. hemprichi in the Mediterranean holds great potential for displaying its rapid expansion
dynamics and ecological significance within the marine ecosystem.

In a broad perspective, the intervention and removal of alien species are nearly al-
ways preferred. However, this is more easily said than done, particularly in the marine
environment. As [64] emphasized, the high environmental connectivity of water enables
the rapid dispersion of species across large areas, and therefore dispersion methods and
the size of affected areas should be considered when considering an intervention effort.
The complete removal of marine invasive species is rare and has only been achieved in a
few restricted areas, aided by early detection and rapid response. Although an elaborate
guide has been prepared for monitoring marine invasive species in Mediterranean Marine
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Protected Areas [65], most regions and countries, including Israel, lack the resources (funds,
equipment, and manpower) to execute a swift and efficient intervention.

Marine ecosystems are currently facing combined effects from climate change and
local human stressors, which have the potential to induce profound shifts at the levels of
species, trophic dynamics, habitats, and entire ecosystems. The precise outcome of these
interactions varies depending on the specific nature of the interaction itself [66]. Lessepsian
migration serves as an exemplary illustration of such interplay. The construction of the
Suez Canal and subsequent intensified shipping activities have facilitated the arrival of
alien species, while climate change has concurrently reshaped the aquatic environment,
rendering it conducive for the establishment of viable populations. In fact, some researchers
have gone so far as to suggest that the combined effects of climate change and localized
human stressors could potentially drive certain local species toward functional extinction,
as emphasized by Edelist et al. [67].

In some studies, the processes observed in the Mediterranean Sea are referred to as
‘Tropicalization’ [68,69]. This overarching concept encapsulates the overall transition of
the region from a temperate ecosystem toward one with tropical characteristics. Such
a transformation holds diverse implications for the biota inhabiting these waters. On
one hand, it may offer a competitive advantage to thermophilic species, enabling their
proliferation. On the other hand, species with lower thermal tolerance may be compelled
to seek refuge in deeper, cooler waters [70], or find themselves operating at the boundaries
of their physiological limits. Additionally, there have been reports of poleward range
expansions in several cnidarian species [71,72]. These findings collectively underscore the
complex dynamics at play in response to the combined impacts of climate change and local
human stressors within marine ecosystems.

5. Conclusions

Once an alien species has migrated to a new environment, its long-term survival
and successful establishment as a population rely not only on favorable environmental
conditions [73], but also on various additional factors encompassing phenotypic plasticity,
competition dynamics, predator–prey interactions, and reproductive strategies [10]. In the
case of D. hemprichi, this particular species demonstrates several advantageous traits that
will likely contribute to its successful establishment in the Mediterranean region, as species
originating in the highly biodiverse Red Sea are typically more competitive than species
native to the Mediterranean Sea. Furthermore, this soft coral faces minimal predation pres-
sure, and its main mode of propagation involves asexual reproduction [50,51]. However,
due to the insufficiency of currently available genetic information, we could not conclu-
sively identify the alien Dendroenphthya sp. as D. hemprichi. This stresses the importance of
worldwide initiatives for obtaining full genome sequences for corals in general.

Amidst the doomsday predictions of a collapsing ecosystem, bio-invasions in the
Mediterranean Sea can also be observed through rose-colored glasses. As the Mediterranean
Sea is a remnant of the Tethys Ocean [10], from a historical perspective, the changes
observed can also be viewed as a return to the sea’s tropical origins [74].

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/biology12091220/s1. Table S1: Sclerites size at the different location.
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