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Simple Summary: Accurate tumor localization is essential for effective clinical diagnosis and
treatment. However, traditional magnetic particle imaging (MPI) algorithms struggle to precisely
locate tumors, resulting in challenges when quantifying them. This study aims to address the issue of
precise tumor localization in MPI through the application of a deep learning approach. By integrating
Convolutional Neural Network (CNN) and Transformer modules, the goal is to improve image
quality and enhance the accuracy of tumor quantification in MPI images. The research utilizes a
combination of CNN and Transformer modules to capture both global and local features within
MPI images. Through the application of deep learning techniques, the study seeks to remove
blurry artifacts from reconstructed images, ultimately may help improve the precision of tumor
localization and quantification in MPI. This approach holds significant potential for advancing MPI
technology and introducing novel methodologies for future medical imaging research. Additionally,
the validation of transfer learning on authentic MPI images may enhance the overall accuracy and
reliability of MPI image reconstruction.

Abstract: Background: Magnetic Particle Imaging (MPI) is an emerging molecular imaging technique.
However, since X-space reconstruction ignores system properties, it can lead to blurring of the
reconstructed image, posing challenges for accurate quantification. To address this issue, we propose
the use of deep learning to remove the blurry artifacts; (2) Methods: Our network architecture
consists of a combination of Convolutional Neural Network (CNN) and Transformer. The CNN
utilizes convolutional layers to automatically extract pixel-level local features and reduces the size of
feature maps through pooling layers, effectively capturing local information within the images. The
Transformer module is responsible for extracting contextual features from the images and efficiently
capturing long-range dependencies, enabling a more effective modeling of global features in the
images. By combining the features extracted by both CNN and Transformer, we capture both global
and local features simultaneously, thereby improving the quality of reconstructed images; (3) Results:
Experimental results demonstrate that the network effectively removes blurry artifacts from the
images, and it exhibits high accuracy in precise tumor quantification. The proposed method shows
superior performance over the state-of-the-art methods; (4) Conclusions: This bears significant
implications for the image quality improvement and clinical application of MPI technology.

Keywords: magnetic particle imaging; convolutional neural network; transformer; tumor imaging;
accurate quantification
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1. Introduction

Magnetic Particle Imaging (MPI) is an emerging non-radiative and non-invasive
biomedical imaging technique that employs magnetic nanoparticles (MNPs) injected into
the biological body to generate high-resolution images [1]. MPI offers exceptional spatial
resolution [2,3], enabling imaging at the millimeter level, thereby facilitating more accurate
lesion localization and cellular-level biological process studies. As MPI does not employ
X-rays or other forms of radiation, it ensures safety for both patients and operators. Due to
these advantages, MPI holds potential for detecting anomalies within the biological body,
studying organ functions, and conducting molecular-level biomedical research [4–9].

An MPI imaging system primarily consists of three components: the selection field, the
drive field, and the receiving coils. The selection field is a static magnetic field formed by
two like-polarity magnets, generating a Field Free Region (FFR) at the center [10]. The drive
field is an applied alternating magnetic field that moves the FFR along a predetermined
trajectory. The basic principle of MPI imaging is illustrated in Figure 1 [11], where the
black curves in Figure 1a,b represent the magnetization curve of MNPs, the green curve
represents the applied alternating magnetic field, the red curve indicates the resulting
response magnetic field signal, and the lower right depicts the frequency spectrum of the
response signal. When MNPs are within or near the FFR, they generate detectable signals
under the influence of the drive field. In regions outside the FFR, the MNPs are in a nearly
saturated state, exhibiting minimal changes in magnetization over time and resulting in
negligible induced signals. Figure 2 represents MPI imaging process. Firstly, tumor mice
labeled with MNPs is introduced into the MPI system. Secondly, after scanning the mice on
the MPI platform, MPI signals are generated at the location of the tumor. Finally, through
image reconstruction, the system can produce imaging results and accurately locate the
tumor position.

Figure 1. Basic principles of MPI imaging. (a) The response signal of the MNPs in the unsaturated
state. (b) Saturation state of MNPs signal.
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Figure 2. Schematic diagram of MPI imaging system.

In MPI, two primary reconstruction methods exist: X-space [12,13] and system ma-
trix (SM) reconstruction [14]. Both methods are employed to reconstruct images of the
spatial distribution of magnetic particles within a target area from collected magnetic signal
data. The key to system matrix-based reconstruction in MPI lies in constructing the system
matrix. The SM describes the mapping between spatial concentration distribution and
induced voltage signals, composed of the Fourier components of time signals produced
by each magnetic nanoparticle at all possible spatial positions. The SM is constructed
through measurements of MNPs’ spatial movement along specific trajectories or through
mathematical modeling. However, the construction of the SM is time-consuming and
memory-intensive [15]. On the other hand, the X-space method separates image recon-
struction from convolution, allowing for modular imaging and faster reconstruction [16].
Nevertheless, X-space reconstruction introduces artifacts that can impact the localization ac-
curacy of MNPs. Previous research has often employed traditional deconvolution methods
to mitigate these artifacts, but deconvolution can amplify noise and introduce additional
image artifacts [17,18].

As a prominent branch of artificial intelligence, deep learning continues to make sig-
nificant breakthroughs in various fields [19,20]. Within this landscape, the field of artifact
removal holds a crucial place as an important application of deep learning. In recent years,
researchers have shown increasing interest and dedication to this area. Artifact removal,
situated within image processing and computer vision domains, involves in-depth explo-
ration and mitigation of artifacts, noise, and other adverse factors present in images [21,22].
The overarching goal of this domain is to leverage deep learning techniques to accurately
identify and effectively eliminate artifacts from images, thereby enhancing image quality
and usability. In the past, artifacts posed significant challenges in medical imaging, leading
to compromised reliability and accuracy. Nevertheless, the integration of deep learning
into the field of medical image artifact removal has yielded substantial progress [23–25].
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Lin et al. [26] utilized an end-to-end trainable dual-domain network (DuDoNet) to elimi-
nate metal artifacts in CT images, enhancing image contrast and restoring the true structure
of scanned subjects. Similarly, Luthra et al. [27] proposed the use of transformers for
medical image denoising while preserving edge information. In recent years, deep learning
have received interest in MPI as a powerful alternative [28,29]. Shang et al. [30] proposed
a cost-effective method called the fusing dual-sampling network (FDS-MPI), which effec-
tively enhances the resolution of low-gradient MPI. Gungor et al. [31] tackled the issue
of time-consuming system matrix calibration by utilizing the transformers for system
matrix super-resolution (TranSMS). Wu et al. [32] addressed the sparse-view problem
in projection MPI by introducing a projection generative network (PGNet), which gen-
erates novel projections. Gungor et al. [33] designed a new physics-driven method for
MPI reconstruction based on a deep equilibrium model with learned data consistency
(DEQ-MPI). However, there is a limited amount of research dedicated to enhancing MPI
image quality by specifically addressing the removal of blurred artifacts and the recovery
of edge information.

In this study, leveraging the physical characteristics of MPI imaging, we employ a
cascaded CNN-Transformer deep learning network model to address the issue of image
blurriness in the X-space method. he structural composition is fundamentally characterized
by three key elements: a dual-branch convolution module, an efficient transformer module,
and a feature fusion with channel attention module. The dual-branch convolution mod-
ule operates two distinct convolutional neural networks in parallel. These branches are
designed to extract diverse and complementary features from the input data. Additionally,
the transformer module utilizes efficient multi-head self-attention (EMHA) and multi-layer
perceptions (MLPs) to capture intricate patterns and meaningful features within the input
sequence. Furthermore, the feature fusion module leverages convolutional layers enriched
with attention mechanisms, particularly channel attention, to integrate and refine the fea-
tures obtained from the preceding modules. The results demonstrate the efficacy of the
CNN-Transformer network in effectively addressing image blurriness in MPI, leading to
improved spatial localization capabilities and achieving clear imaging. This advancement
holds promise for enhancing the potential of MPI in spatial precision and accuracy. The
main innovations and contributions of our research can be summarized as follows:

(1) Structural Composition: We propose a novel deep learning network model that
combines a dual-branch convolution module, an efficient transformer module, and a
feature fusion with channel attention module to address image blurriness in MPI.

(2) Improved Image Quality: The proposed method effectively mitigates blurring artifacts,
resulting in improved spatial localization capabilities and clearer imaging.

(3) Potential Impact on MPI: Our approach has the potential to enhance the capabilities of
MPI as a non-invasive imaging technique by improving spatial precision and accuracy.
This paper is structured as follows: Section 2 presents the materials and methods used
for our experiments, followed by Section 3, which details the results obtained. In
Section 4, we discuss the implications of our findings, and finally, in Section 5, we
conclude with a summary of our key contributions and potential future directions for
this research.

2. Materials and Methods
2.1. Dataset
2.1.1. Simulation Data

Ensuring an ample and diverse dataset to train our model was a foundational aspect
of our research. The structure of simulation data was hand-drawn, with varying sizes,
shapes, and numbers of tumor features. Each feature was individually designed and
created by our team using custom drawing tools. This ensured that the tumors exhibited
diverse characteristics and variations in size, shape, and number. This dataset consisted of
400 original binary images, diversified by allocating distinct grayscale domains to simulate
varying concentrations of MNPs. To introduce particle concentration gradients, we utilized
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different blur kernels to generate gradient grayscale values. Additionally, we increased
the diversity of our dataset by incorporating flips and rotations to the binary images,
grayscale images, and gradient grayscale images. The image size is 50 × 50 pixels. This
holistic approach culminated in an extensive dataset, comprising a total of 8000 images.
Among these, 7000 images were earmarked for training purposes, while the remaining
1000 images served as the test set. We have made our data publicly available on https:
//github.com/kutuy123/MPI-Phantom-dataset. Our research was the utilization of the
Langevin equation to meticulously simulate the magnetic responses of MNPs in the MPI
context. The received MPI signal s(t) can be expressed as in [17]:

s(t) =
d
dt

σs(r)M(r, t)dr, (1)

where:

M(r, t) = m0ρ(r)L[
∥G(rs(t)− r)∥

Hsat
]× G(rs(t)− r

∥G(rs(t)− r∥ , (2)

where σs is the sensitivity of the receiver coil; M(r, t)is the magnetization density at time
t and position r; m0 is the magnetic moment ρ is the nanoparticle concentration; L is the
Langevin function; G is the gradient intensity. The actual reconstruction of MPI images was
conducted through the application of the X-space method, grounded in the principles of
X-space theory. Employing the capabilities of MATLAB (Mathworks, Natick, MA, USA), we
generated simulated MPI images tailored to the x-z plane. To ensure a seamless integration
of authentic noise disturbances inherent to MPI imaging, we turned to a commercially
available MPI device—the MOMENTUM CT by Magnetic Insight Inc., based in Alameda,
CA, USA. This device facilitated the collection of genuine noise images, capturing the intri-
cate nuances of noise patterns arising during actual MPI imaging operations. By employing
the device, we gathered genuine noise images, guaranteeing that the captured noise pat-
terns accurately reflect the real noise experienced during the MPI imaging procedure [34].
Regarding the spatial characteristics of the noise, it was spatially varying in nature. This
means that the noise patterns differed across different regions or areas within the images.
Following this, we cropped 10 noisy images and added them to the native MPI images,
thereby creating a dataset with signal-to-noise ratios (SNR) ranging from 5 to 15 dB. Table 1
lists MPI simulation parameters.

Table 1. The MPI simulation parameters.

Symbol Parameters Value Unit

µ0
Permeability of

vacuum 4π × 10−7 NA−2

D Nanoparticle
diameter 20 nm

T0 Kelvin temperature 293 K
kB Boltzmann constant 1.28 × 10−23 JK−1

m0 Magnetic moment 6.75 × 10−18 Am2

G Gradient intensity 6 T/m−1µ−1
0

σ SNR 5–15 dB

2.1.2. Experimental Data

To validate the feasibility of our method, we conducted experiments using 100 experi-
ments data. The phantoms were created using 3D printing technology and were made from
resin materials. Each phantom had dimensions of 3 cm × 3 cm. The height is 0.8 cm. The
depth of the features within the phantoms is 0.6 cm. The shape of the features is randomly
generated. To introduce the MNPs into the phantoms, we used commercially avaliable
MNPs, Perimag® 102-00-132 (micromod Partikeltechnology GmbH, Rostock, Germany).
The MNPs were inserted into the phantoms at a concentration of 1 mg/mL. The phantoms
were then scanned using a commercial MPI scanner (MOMENTUM CT, Magnetic Insight

https://github.com/kutuy123/MPI-Phantom-dataset
https://github.com/kutuy123/MPI-Phantom-dataset
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Inc., Alameda, CA, USA). The field of view (FOV) size is 4 × 4 cm. The scan mode is the
high resolution mode (G = 5.7 T/m−1µ−1

0 ). The scanner utilized its proprietary software to
generate the native image files from the acquired MPI data.

2.2. Network Architecture

The workflow of this study, illustrated in Figure 3, unfolds in three main phases: data
preprocessing, network training, and MPI image deblurring. In the data preprocessing
phase, the dataset undergoes augmentation operations, including inversion and rotation,
to enrich its diversity. Subsequently, this augmented dataset is subjected to normalization
for consistency. Once the training data is prepared, it is fed into our model to initiate
the training process, adjusting model parameters for optimization. Upon completion of
training, the trained model can be employed to input MPI images afflicted with artifacts,
thereby generating predictions of artifact-free, clear images.

Figure 3. Illustrative workflow of the study.

The network architecture is shown in Figure 4. Our proposed architecture leverages
the inherent physical attributes of MPI imaging, presenting a cascaded CNN-Transformer
deep learning network model. The proposed network comprises three main components:
a dual-branch convolution module, a transformer module, and a feature fusion module.
The dual-branch convolution module is designed to capture local features in MPI images.
It consists of two parallel CNNs. One network extracts relevant information, while the
other focuses on removing unwanted artifacts, effectively addressing image blurriness
issues in MPI images. The transformer module is designed to extract global features and
mitigating overall image non-uniformity. It contains convolutional projection, EMHA, and
MLP components. The convolutional projection module utilizes depth-wise separable
convolution (DWSC) to extract query, key, and value components for each marker. These
projections are then processed by the EMHA module, followed by the extraction of global
features using the MLP. This module primarily focuses on alleviating global image non-
uniformity. The feature fusion module predominantly consists of convolutional layers and
effectively integrates local and global features using attention mechanisms.
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Figure 4. The architecture of our method.

2.2.1. Convolutional Neural Network (CNN) Module

The CNN module leverages twin convolutional networks to extract local features from
MPI images, with each independent branch network serving a distinct purpose. Here, we
adopt a dual-branch network architecture, where one branch consists of convolutional layers,
ReLU layers, and downsampling layers. The other branch includes convolutional layers and
ReLU layers. The purpose of this approach is to preserve the essential features of MPI while
simultaneously filtering out unwanted artifacts. Subsequently, we combine the two parallel
convolutional networks by adding them together, ensuring that the images are resized to
the same dimensions before addition. In the CNN module, a total of three convolutional
networks are utilized. We denote the feature that the CNN module extracts as Uc.

2.2.2. Transformer Module

To extract the comprehensive spatial characteristics of MPI images, we employ the
Transformer module. This module is composed of three essential components: convolu-
tional projection, EMHA, and MLP. The convolutional projection module plays a pivotal
role by employing DWSC to extract crucial elements such as query (Q), key (K), and
value (V) values for each marker. This can be written as the following equation:

Q, K, V = Flatten(DWSC((I)), (3)

where I is the input of the transformer module. This extraction process underpins the
foundation of EMHA, facilitating the establishment of meaningful relationships between
different parts of the image. In greater detail, the convolutional projection commences by
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implementing DWSC, which serves as an effective mechanism to parse out the fundamental
Q, K, and V components. These components, integral for the subsequent EMHA module,
enable the establishment of vital associations between distinct elements within the image.
The EMHA element, constituting the core of the Transformer module, is instrumental in
capturing the intricate interdependencies within the image’s global context. The EMHA
operation concurrently considers multiple “heads”, each concentrating on distinct aspects
of the image, effectively synthesizing a comprehensive representation of global spatial
relationships. This, in turn, enriches the model’s understanding of the overall image
composition. The process is defined as follows:

Q, K, V = lineari(Q, K, V), i = 1, 2, . . . , N, (4)

where lineari() is the parametric representation associated with the i-th head for query, key,
and value. each head is applied with a Scaled Dot-Product Attention (SDPA) operation:

Oi = so f tmax(
(Qi(Ki)

T)√
H × W × C

)(Vi)
T , (5)

To generate the complete output feature, we concatenate all of the outputs (O1, O2, . . . ,
ON) produced by SDPA. This process combines the attention maps from each head of the
Transformer network to create a comprehensive representation of the input sequence.

O = concat(Oi), i = 1, 2, . . . , N, (6)

where, concat represents the channel fusion of features. The features extracted by the
EMHA module are denoted as UEMHA and can be represented by the following equation:

UEMHA = O + I2, (7)

Furthermore, the MLP within the Transformer module contributes to refining the
extracted global features. The MLP applies a sequence of densely connected layers to
distill and consolidate these features, enabling a more refined understanding of the image’s
holistic context. The features extracted by the Transformer module are represented as Ut
and can be described by the following equation:

Ut = MLP(Norm(UEMHA)) + UEMHA, (8)

2.2.3. Channel Attention Fusion Module

The feature fusion module plays a pivotal role in consolidating the features extracted
by the convolutional and Transformer networks. This module harmonizes the local features
from the convolutional network with the global features from the Transformer network,
creating a multi-channel information representation.

U f = F(concat(Uc, Ut)), (9)

where U f represents the fusion teature, F is the feature fusion module. To further enhance
the discriminative power of the fused features, we employ a channel attention mechanism.
The Global Average Pooling (GAP) plays a crucial role in the channel attention mechanism.
By introducing the GAP operation, the model can automatically learn the correlation
and importance among different channels and adjust the representational capacity of the
feature map based on these learned weights. This mechanism selectively emphasizes
the informative channels while suppressing irrelevant or noisy channels within the fused
feature representation.

F = sigmoid(W2 ∗ ReLU(W1 ∗ U f ))⊗ U f , (10)
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where W1 and W2 is the convolution kernel parameter; ⊗ is Multi-plication of elements. F
is final fusion teature.

2.2.4. Multi-Supervisory Loss Function

The utilization of a multi-supervisory loss function is a cornerstone of our approach,
amalgamating the losses from each individual module. The loss function employed is the
Mean Squared Error (MSE), and it is defined as follows:

MSE(X, Y) =
1

M × N

M

∑
i=1

N

∑
j=1

∥X(i, j)− Y(i, j))∥2
2, (11)

where, X and Y respectively represent the predicted and ground truth artifact-free MPI
images, with dimensions M × N. The envisaged multi-supervisory loss function is crafted
as follows:

Loss = λa · MSE(Xa, Ya) + λb · MSE(Xb, Yb) + λ f · MSE(X f , Yf ), (12)

where, Xa and Ya represent the predicted and ground truth artifact-free MPI images from
the dual-branch convolution module, while Xb and Yb correspond to those from the Trans-
former module. Similarly, X f and Yf symbolize the predicted and ground truth artifact-free
MPI images from the feature fusion module. The final loss is an amalgamation in the form
of a weighted sum, where the weights are denoted as λa, λb, and λ f . This multi-supervisory
loss strategy circumvents the challenge of gradient vanishing during the backpropagation
process, bolstering the robustness of the algorithm.

2.2.5. Transfer Learning

To employ pre-trained models for transfer learning, we opted for a deep neural
network that had been trained on a simulation dataset as our base model. The weights of
this base model were then loaded into our target task model as initialization parameters.
Subsequently, we froze the weights of the base model and exclusively trained the last few
layers or introduced additional layers in the target task model. This strategic approach
allowed us to effectively exploit the feature representations acquired by the base model
through training on the extensive dataset, consequently enhancing the performance and
generalization capabilities of our model.

2.2.6. Evaluation Metrics

For a quantitative assessment, we used two metrics: peak signal to noise ratio (PSNR) [35]
and structural similarity index measure (SSIM) [36]. PSNR is estimated as:

PSNR = 10log10(
2552

MSE
), (13)

where MSE is estimated as:

MSE =
1
m

m

∑
i=1

(Xi − X̂i)
2
, (14)

where Xi and X̂i are the means of the real and estimated MPI images, respectively, and m
represents the number of images. SSIM is estimated as:

SSIM =
(2µXµX̂ + t1)(2σXX̂ + t2)

(µ2
X + µ2

X̂
+ t1)(σ

2
X + σ2

X̂
+ t2)

, (15)

where µX and µX̂ are the means of real and estimated MPI images, respectively. t1 and t2 are
constants, σ2

X and σ2
X̂

represent the variances, and σXX̂ is the covariance between X and X̂.
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3. Results
3.1. Simulation Data Analysis

To validate the efficacy of our proposed approach, we conducted a series of experi-
ments using diverse datasets and compared our method with conventional techniques such
as blind deconvolution, Lucy deconvolution, and Wiener filtering. In addition, we also
contrasted our method with the learning-based approach (FDS-MPI [30]). We conducted
validation on the simulation dataset, selecting three different tumor shapes, each containing
simulated instances of two tumors. As depicted in Figure 5, the first, third, and fifth rows
illustrate the reconstruction outcomes for various simulation data, while the second, fourth,
and sixth rows represent the corresponding error maps. The findings revealed that, irrespec-
tive of the tumor’s shape, our method adeptly restored the precise boundary contours of the
simulation data. This capability holds critical significance for accurate tumor localization.
Additionally, we quantified the results, and the quantitative outcomes are presented in
Table 2. The PSNR of traditional methods did not exceed 20, and the SSIM did not exceed 0.5.
Our method achieved a PSNR of 27.9796 and an SSIM of 0.8062.

Figure 5. Visualization results of different methods with simulation dataset. The reconstruction
outcomes for various simulation data are illustrated in the first, third, and fifth rows, while the
corresponding error maps are represented in the second, fourth, and sixth rows.
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Table 2. The metrics results of different methods.

Metrics Native MPI Blind
Deconvolution Lucy-Richardson Wiener FDS-MPI Our Method

PSNR 13.9062 ± 1.0367 11.1576 ± 1.5498 17.0005 ± 2.8273 18.2658 ± 3.2391 23.6107 ± 4.0975 27.9796 ± 2.4312
SSIM 0.1806 ± 0.0291 0.1668 ± 0.0938 0.3978 ± 0.1002 0.4689 ± 0.0850 0.6291 ± 0.09913 0.8062 ± 0.0241

During MPI imaging, the accurate quantification of low-concentration targets is often
challenging when multiple targets with varying concentrations are present in the field of
view. In our study, we simulated five concentration ratios: 1:0.2, 1:0.4, 1:0.6, 1:0.8, and
1:1. Each ratio was applied to two tumor targets, and MPI imaging was performed. The
resulting images were analyzed using conventional methods such as Blind deconvolution,
LucyRichardson, and Winear algorithms, as well as our proposed deep learning algorithm.
In Figure 6, the first column of the figure displays the original MPI images, while the
second to fourth columns present the results obtained from the aforementioned conven-
tional methods. The fifth column showcases the outcomes of our proposed approach,
while the sixth column presents the ground truth concentration distribution. Notably,
the traditional methods struggled to accurately reconstruct the target with concentration
differences, particularly the Blind and Lucy methods. Conversely, our deep learning al-
gorithm demonstrated superior performance in restoring the original concentrations of
both targets, thereby may help facilitate precise tumor localization. To further evaluate the
performance of the different methods, we conducted a quantitative analysis. The result
of Table 3 demonstrates the substantial improvements achieved by our proposed method
across two metrics: PSNR and SSIM. Moreover, irrespective of the concentration ratio,
our method consistently outperformed the other techniques, particularly in cases with no
concentration difference between the two targets.

Figure 6. Visualization results of multiple targets with varying concentrations.
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Table 3. The metrics results of multiple targets with varying concentrations.

Concentration
Ratio Metrics Native MPI Blind

Deconvolution
Lucy-

Richardson Wiener FDS-MPI Our Method

1:0.2
PSNR 8.3267 11.4971 11.3208 11.1897 19.2972 22.0169
SSIM 0.1248 0.1245 0.1197 0.2959 0.5108 0.6097

1:0.4
PSNR 10.2323 15.2176 15.4426 12.8129 20.5721 25.5540
SSIM 0.1320 0.2012 0.2281 0.2923 0.3720 0.4247

1:0.6
PSNR 9.2481 14.0769 14.0875 13.9752 21.2109 25.6356
SSIM 0.1283 0.1538 0.1568 0.2856 0.4019 0.4890

1:0.8
PSNR 8.8087 13.1996 13.0744 14.7216 21.0128 25.5039
SSIM 0.1251 0.1408 0.1362 0.2833 0.4209 0.5171

1:1
PSNR 8.4024 12.3050 12.2112 13.1736 22.1980 25.3194
SSIM 0.1262 0.1283 0.1204 0.2811 0.4381 0.5053

3.2. Ablation Study

We conduct extensive ablation studies to evaluate the individual contributions of the
CNN module, Transformer module, and channel attention module. We conduct experi-
ments on a testing dataset of MPI images to evaluate the performance of each module and
their combination.

CNN Module: We first evaluate the performance of our proposed approach using only
the CNN module. As shown in the Table 4, the PSNR and SSIM of the reconstructed image
are 25.6309 and 0.6623.

Table 4. The results of ablation study. Each rows represents the inclusion of a different module (CNN,
Transformer, Feature, Channel Attention), and a checkmarks indicates the inclusion of that module.

CNN Transformer Feature
Fusion

Channel
Attention PSNR SSIM

✓ 25.6309 ± 2.8278 0.6623 ± 0.0321
✓ 26.1242 ± 3.9173 0.7091 ± 0.0523

✓ ✓ ✓ 27.0598 ± 2.1294 0.7523 ± 0.0297
✓ ✓ ✓ ✓ 27.9796 ± 2.6932 0.8062 ± 0.0247

Transformer Module: Next, we evaluate the performance of the Transformer module
alone. This module extracts global features by employing self-attention mechanisms to
capture long-range dependencies and contextual information. the PSNR and SSIM of the
reconstructed image are 26.1242 and 0.7091.

Feature Fusion: We evaluate the contribution of feature fusion by comparing the
performance of our approach with and without the concatenated features from both the
CNN and Transformer modules. The results are shown in row 3 of Table 4.

Channel Attention Module: We evaluate the effectiveness of the channel attention
mechanism in enhancing the discriminative power of the fused features. This module
selectively emphasizes informative channels while suppressing irrelevant or noisy channels
within the fused feature representation.

Our ablation study confirms the effectiveness of each module and their combination
for achieving high-precision tumor imaging in MPI images. The CNN module captures
local features, the Transformer module captures global features, and the channel attention
module enhances the discriminative power of the fused features.

3.3. Experimental Data Analysis

To improve the performance of our method on real-world datasets, we conducted
transfer learning on a real dataset. Specifically, we fine-tuned the model for 20 epochs
on the real dataset and then evaluated its performance by using two phantoms. Figure 7
represents the 3D model of phantoms. Figure 8 shows the visualization results obtained
using different methods. After fine-tuning, our proposed method was capable of effectively
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removing the blurring effect and restoring the concentration distribution of MNPs in the
experiments data. These results demonstrate the effectiveness of our method in improving
the quality of images obtained from realistic datasets. In addition to the complexity analysis,
we have also conducted runtime calculations for different methods, as presented in Table 5.

Figure 7. The 3D model of phantoms.

Figure 8. Visualization results of different methods on experiments data.

Table 5. The running time of different methods.

Methods Blind
Deconvolution

Lucy-
Richardson Wiener FDS-MPI Our Method

Runtimes (s) 0.1708 0.0472 0.0282 0.0203 0.0234

Moreover, to demonstrate the practicality of our proposed method, we conducted
an in vivo experiment. Regarding the animal model, we used the C57BL/6 mice for the
in vivo study. The study was conducted in compliance with IACUC-approved protocols.
Anesthesia was induced using 4% isoflurane and maintained using 1–2% isoflurane during
the imaging procedure. The MNPs was administered as a slow infusion via tail vein over
a period of 1 min. The duration between injection and imaging was approximately 1 h.
The imaging acquisition took approximately 2 min. The results are presented in Figure 9.
Figure 9 shows (a) a white-light image of the mice, (b) a Native MPI image acquired by
the commercial system, which exhibits significant blurring, (c) the result obtained by blind
deconvolution, (d) the result obtained by Lucy-Richardson method, (e) the result obtained
by Wiener method, (f) the result obtained by FDS-MPI, and (g) the result obtained by our
proposed method. By applying the proposed method, we reduced the blurring around
the region of interest, potentially leading to improved accuracy in identifying organs such
as the liver and spleen. These findings further validate the effectiveness of our method
in improving image quality for in vivo experimental applications. Our proposed method
shows promise for enabling high-quality imaging of biological tissues and organs, which
has important implications for biomedical research and clinical applications.
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Figure 9. Visualization results on in vivo data. (a) white-light image of the mice. (b) Native MPI
image. (c–e) the results of traditional methods. (f) the result of FDS-MPI. (g) the result of our method.

4. Discussion

When it comes to MPI image reconstruction, the x-space method commonly used
in the field can result in blurry artifacts that make it difficult to accurately locate tumor
lesions. This can significantly impact a doctor’s ability to make informed decisions about a
patient’s condition. To overcome this challenge, we propose a deep learning-based method
to precisely locate the tumor lesion. Our approach directly utilizes a network model to
obtain clear MPI images. By leveraging both a CNN network and a Transformer network,
we extract both global and local features from the MPI images, which is necessary for
multi-target tumor imaging. Additionally, we fuse the features extracted by the CNN
and Transformer networks and further extract useful features using channel attention
mechanisms. Using our proposed method, we may help improve the quality of MPI images
and achieve accurate imaging of tumor lesions. This has important implications for cancer
diagnosis and treatment. By accurately locating tumor lesions, doctors can better assess the
stage of cancer progression and determine the most appropriate treatment plan. Overall,
our deep learning-based method represents an important step forward in improving the
accuracy and effectiveness of MPI image reconstruction.

Table 4 demonstrates that each module plays a crucial role in restoring MPI image
quality. The CNN module captures local features relevant to tumor localization, while the
Transformer module captures global features, providing contextual information important
for accurate localization. The channel attention mechanism further enhances the discrimi-
native power of the fused features by selectively emphasizing informative channels. The
feature fusion approach combining all modules achieves the best performance in terms
of tumor localization accuracy, indicating the complementarity and synergy between the
CNN and Transformer modules.

In order to simulate the clinical needs in real situations, we validate the imaging
problem of low concentration targets under a unified field of view with multiple targets. As
shown in Figure 6, we simulated the two tumors at different concentration ratios and added
noise. When the concentration ratio is 1:0.2, the low concentration target is covered by
noise, and the traditional deconvolution method is easy to identify the low concentration
target as noise, so the reconstruction effect of the traditional method is poor. By taking
into account the global characteristics of Transformer, our approach is able to restore low
concentration targets, which is particularly important in clinical situations where there is
interference from other organs such as the liver in actual imaging. Our method shows better
robustness and accuracy in imaging low-concentration targets, which is related to its ability
to capture global features and use channel attention mechanisms. In clinical applications,
this ability can help doctors more accurately detect low-concentration lesions and improve
diagnostic accuracy. It should be noted that in low concentration target imaging problems,
noise and interference from other organs are common factors to consider. This may include
factors such as body thermal noise and the interference caused by the liver’s strong uptake
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of MNPs affecting other imaging sites. Therefore, when designing the imaging algorithm,
it is necessary to take into account the influence of these factors and adopt corresponding
methods to reduce their influence. Our method provides a new idea and solution for
low concentration target imaging, which can be used as an important reference for future
clinical imaging technology.

In the experiment of transfer learning on real MPI images, we employed a pre-trained
model for comparison. We selected a network trained on simulated data as the base model
and fine-tuned it using the pre-trained model on the real MPI image dataset. We used
the same hyperparameters and training strategy to ensure a fair comparison. The results
showed that our network, after transfer learning, was able to handle real blurred data
effectively. Additionally, in the future, we can explore extending this approach to other
domains such as vascular imaging.

Our approach has several limitations. Firstly, our simulation model is based on the
Langevin model which does not consider the relaxation of particles. This may result in
reduced performance in handling particles with significant relaxation. In future work,
we will consider the relaxation effect of particles. Secondly, our method only utilizes
Native images in the X-space method and did not consider original signal information
before X-space reconstruction. In future research, we can use multidimensional information
(including images and signals) to optimize the reconstruction quality. Thirdly, while MPI
is a functional imaging technique, it does not include structural information, which may
lack information for accurate localization. In the future, we will explore multimodal
imaging, such as merging MPI images with MRI images, to address this limitation. In
addition, we will strive to further explore precise imaging of tumors within the body and
address challenges encountered in in vivo tumor imaging, such as deep tissue imaging and
dynamic change monitoring. Finally, we focused on evaluating the model’s performance in
accurately detecting and estimating MNPs concentrations without introducing additional
complexity through concentration changes. In the future, we could explore the value of
different MNP concentrations to model more diverse in vivo scenarios. This provides
insight into how the model performs under different conditions and helps to further
validate and improve the model.

5. Conclusions

In this study, we proposed a novel deep learning network model that combines a
dual-branch convolution module, an efficient transformer module, and a feature fusion
with channel attention module. Furthermore, our proposed method successfully mitigates
blurring artifacts, leading to improved image quality and enhanced spatial localization
capabilities. Our results confirm the superiority of our proposed method over traditional
approaches. The clearer imaging achieved through our approach has the potential to
significantly impact the field of MPI by improving spatial precision and accuracy.
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