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Simple Summary: An urban wetland, a critical component of an ecosystem, provides diverse
habitats and has important functions such as water purification and nutrient cycling. However, under
urbanization, wetland ecosystems face serious challenges from human activities like dredging, which
often removes aquatic plants and destroys their functions. Therefore, studying the contributions
of aquatic plants is key to wetland conservation. The present study was conducted in 10 urban
wetlands in Jinan, China, to investigate the effects of aquatic plant coverage on wetland water
quality, phytoplankton diversity, and resource use efficiency. The study area was categorized into
three different aquatic plant coverage groups: low coverage (0–25%), medium coverage (26–35%),
and high coverage (36–66%). The relationships among water quality parameters, phytoplankton
diversity, and resource use efficiency were analyzed. Data show that the increase in aquatic plant
coverage could directly absorb excess nutrients (e.g., nitrogen and phosphorus) and help to reduce
sediment resuspension, thus significantly reducing the nutrient and suspended solid content of
the water body and improving the water quality of the wetland. Furthermore, the increase in
coverage was also associated with the increase in phytoplankton diversity, including species richness
and functional diversity. The present study has shown that the composition of phytoplankton
functional groups is positively affected by the degree of aquatic plant coverage. Phytoplankton
groups adapted to still-water conditions and low light intensity were predominant in sites with higher
aquatic plant coverage. Meanwhile, lower nutrients prevented dominant species from outcompeting
others, allowing increased diversity. This increased phytoplankton diversity was associated with
increased resource utilization efficiency (RUE), which is the ratio of phytoplankton biomass to
available nutrients such as nitrogen and phosphorus. More diversity allows for better ecological
niche allocation and complementarity in the utilization of limited resources. Adequate aquatic plant
coverage plays a critical role in maintaining biodiversity, water quality, and ecosystem function in
urban wetlands. Conservation of aquatic plants should be a priority in management plans. The
results of this study provide a scientific basis for incorporating aquatic plants into sustainable urban
wetland conservation strategies.

Abstract: With the acceleration of urbanization, biodiversity and ecosystem functions of urban
wetlands are facing serious challenges. The loss of aquatic plants in urban wetlands is becoming more
frequent and intense due to human activities; nevertheless, the effects of aquatic plants on wetland
ecosystems have received less attention. Therefore, we conducted field investigations across 10 urban
wetlands in Jinan, Shandong Province, as a case in North China to examine the relationships between
aquatic plant coverage and phytoplankton diversity, as well as resource use efficiency (RUE) in urban
wetlands. Multivariate regression and partial least squares structural equation modeling (PLS-SEM)
were used to analyze the water quality, phytoplankton diversity, and RUE. The results demonstrate
that the increase in aquatic plant coverage significantly reduced the concentration of total nitrogen
and suspended solids’ concentrations and significantly increased the phytoplankton diversity (e.g.,
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species richness and functional diversity). The aquatic plant coverage significantly affected the
composition of phytoplankton functional groups; for example, functional groups that had adapted to
still-water and low-light conditions became dominant. Furthermore, the increase in phytoplankton
diversity improved phytoplankton RUE, highlighting the importance of aquatic plants in maintaining
wetland ecosystem functions. This study may provide a scientific basis for the management strategy
of aquatic plants in urban wetlands, emphasizing the key role of appropriate aquatic plant cover in
maintaining the ecological stability and ecosystem service functions of wetlands.

Keywords: wetland degradation; aquatic plants; resource use efficiency; phytoplankton diversity;
ecosystem functions

1. Introduction

A natural wetland is an ecosystem with unique hydrological, soil, vegetation, and
biological characteristics distributed between terrestrial and aquatic environments, thereby
providing an irreplaceable ecological function in protecting water resources, regulating
climate, providing diverse habitats, and preserving biodiversity [1]. The global decline
in wetland areas and the severe fragmentation of habitats have gradually lost ecosystem
functions and reduced biodiversity [2]. In the past century, approximately 70% of wetland
areas have decreased because of increased human activities and climate change [3]. Urban
wetlands—as an important component of urban ecosystems—are more vulnerable to
human-induced disturbances [4]. Phytoplankton are fundamental to material and energy
flow in aquatic ecosystems and are essential for maintaining the stability and integrity of
wetland ecosystems [5]. By altering the water environment, aquatic plants can influence the
dynamics of phytoplankton growth and community structure, thereby affecting resource
acquisition and utilization [6,7]. Therefore, understanding how aquatic plant coverage
affects the diversity and function (e.g., resource use efficiency (RUE) of phytoplankton) in
urban wetlands is crucial for optimizing wetland planting configuration and preserving
wetland biodiversity and ecosystem services.

Aquatic plants can purify water by absorbing excess nutrients from the water body. In
lake water, the roots, stems, and leaves of submerged plants absorb substantial quantities
of nitrogen and phosphorus compounds, effectively controlling internal loading and re-
ducing nitrogen and phosphorus levels, thereby reducing the eutrophication level of the
water body [8,9]. Emergent plants, such as Phragmites australis and Cyperus alternifolius,
have an enhanced capacity to absorb water pollutants as they possess more supporting
tissues to store nutrients over longer durations [10]. These plants are vital in controlling
phytoplankton [11]. Aquatic plants affect phytoplankton dynamics by competing for nu-
trients and light [12,13]. As nitrogen and phosphorus are crucial nutrients necessary for
algal photosynthesis, metabolism, and reproduction, they are the most limiting resources
for phytoplankton growth in freshwater ecosystems [14]. Aquatic ecosystems with high
aquatic plant coverage readily adsorb nitrogen and phosphorus, restricting the supply
of dissolved inorganic nutrients that restrain phytoplankton growth [15]. Furthermore,
phytoplankton encounter an obstacle when competing for light with expansive floating
plants: the substantial leaf area of the latter hinders light penetration and suppresses the
photosynthesis and growth of phytoplankton [13,16].

It is critical to comprehend the dynamics of ecological systems and their response
to environmental changes. A decrease in species and functional groups (FGs) within an
ecosystem decreases the efficiency of capturing essential biological resources (i.e., nutrients,
water, light, and prey) and converting them into biomass [17]. RUE—an important indi-
cator for evaluating ecosystem functions—is improved in natural freshwater ecosystems
because of the diversity of phytoplankton communities [18]. RUE refers to the efficiency of
unit resources transformed into unit biomass, reflecting the ecosystem’s capacity to utilize
and convert limiting resources [19]. Ecologists define phytoplankton RUE as the ratio of
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biomass (dry weight, fresh weight, or chlorophyll concentration) to limited resources, such
as total nitrogen (TN) or total phosphorus (TP) [19,20]. To a certain extent, RUE eliminates
the interference of differences in nutrient concentration between sites in research findings.
Therefore, RUE has been widely used to explore the relationship between phytoplankton
diversity and ecosystem productivity in aquatic ecosystems [21]. Studies have demon-
strated that ecosystems with high species diversity and complementary ecological niches
utilize resources more thoroughly and efficiently than species-poor communities [22]. Func-
tional diversity defines the range of functional traits determining how organisms obtain
resources from the environment and is crucial in deciding resource utilization [23]. High
functional diversity in communities may correlate with greater resource niche partitioning,
thereby potentially improving RUE within the community [24]. This finding contributes to
understanding the relationship between biodiversity and ecosystem functioning.

Unlike natural aquatic ecosystems, urban wetlands are subject to more severe hu-
man disturbance and environmental pressures due to urban construction and pollution,
which has negatively impacted vital ecosystem services provided by urban wetlands, such
as water purification and maintenance of biodiversity. In addition, urban wetlands also
shoulder social functions, including recreational and cultural services. As a result, urban
wetlands’ ecological functions and conservation needs may differ significantly from those
of natural aquatic systems. Previous studies have focused mainly on the influence of
phytoplankton diversity on RUE in river and lake ecosystems [25]. However, research is
scarce in investigating how aquatic plants in urban wetlands influence RUE by affecting
the water environment and phytoplankton diversity. In urban wetlands, human activities,
such as navigational dredging, often lead to unscientific removal of aquatic plants [26].
The loss of aquatic plants has severely disrupted important ecosystem services provided
by wetlands, including water purification, maintenance of biodiversity, and support of
ecosystem functions [27,28]. Therefore, appropriate maintenance of aquatic plant coverage
in urban wetlands is critical for wetland conservation. Given the rapid urbanization in Jinan
City, conducting research on urban wetland ecology and conservation has become increas-
ingly important. The present study examined relationships among aquatic plant coverage,
phytoplankton diversity indices including species richness and functional richness (FRic),
and RUE using the data collected from 78 monitoring sites in 10 urban wetlands in Jinan,
China. We hypothesized that (1) increased aquatic plant coverage would improve water
quality by absorbing excess nutrients in the water; (2) an improvement in water quality
could affect phytoplankton community structure and increase biodiversity; (3) increased
phytoplankton diversity could significantly enhance phytoplankton RUE.

2. Methods and Materials
2.1. Study Area

Jinan City is located in the central region of Shandong Province, between north
latitudes 36◦02′–37◦54′ and east longitudes 116◦21′–117◦93′. Mount Tai is situated to
the south, whereas the city extends north across the Yellow River. The terrain slopes
down gradually from south to north and showcases landforms of low mountains and
hills, inclined plains, and Yellow River alluvial plains. The area features a warm temperate
continental monsoon climate, characterized by four distinct seasons with an annual average
temperature of 14–15 ◦C and a mean annual precipitation of 1039.3 mm [29]. The spring-
renowned city of Jinan has devoted itself to developing water conservation initiatives [30].
The management system and ecological improvements have expanded wetland restoration.
There are 391.07 hectares of wetland, including 5 national and 10 provincial wetland parks.

In September 2020 and September 2021, sampling surveys were conducted at ten
wetland parks in Jinan, including five national parks (Jixi Wetland, Baiyun Lake Wetland,
Rose Lake Wetland, Xueye Lake Wetland, and Dawen River Wetland) and five provincial
parks (Tumahe Wetland, Chengbo Lake Wetland, Yanziwan Wetland, Dashahu Wetland,
and Huashan Lake Wetland) [31]. The study also included Daming Lake Park, a location
characterized by a substantial wetland ecosystem and a close relationship with human
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activities (Figure 1). Based on considerations of wetland area and geographical location, six
sampling sites were selected in each park, with an additional three sites chosen in Daming
Lake. The latitude and longitude of each sampling site were accurately recorded using the
Magellan Explorist 200 GPS device.
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Figure 1. The distribution of 10 wetland parks in Jinan, Shandong Province, China. JX—Jixi Wetland,
BY—Baiyun Lake Wetland, MG—Rose Lake Wetland, XY—Xueye Lake Wetland, DW—Dawen
River Wetland, TM—Tumahe Wetland, CB—Chengbo Lake Wetland, YZ—Yanziwan Wetland, DS—
Dashahu Wetland, and HS—Huashan Lake Wetland.

2.2. Phytoplankton Collection and Functional Group Analysis

Sampling was conducted at a total of 78 stations established across 10 wetlands
situated in Jinan City, Shandong Province, China. These wetlands have an average depth of
1.6 m. At each station, 1 L of water was collected at a depth of 0.5 m of water using a water
sampler for a qualitative analysis. After collection, the samples were fixed with Lugol’s
solution in a ratio of 100:1.5. For a quantitative analysis, triplicate samples were collected
from each sampling site using 5 L glass bottles, with 1 L per replicate, and fixed with
Lugol’s solution immediately after collection. Samples were transported to the laboratory
in the dark and were allowed to settle for 48 h. In the laboratory, the supernatant of
parallel samples was removed and condensed to 100 mL and then transferred to 100 mL
plastic bottles. To quantify phytoplankton, plastic bottles were shaken vigorously 100 times
horizontally. Then, 0.1 mL aliquots were transferred using a liquid transfer gun into
0.1 L phytoplankton counting frames with 10 columns and 10 rows of 2 mm × 2 mm
quadrants (20 mm × 20 mm in total area) for taxonomic identification and count under a
light microscope at 400×magnification. Phytoplankton species were identified following
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previous studies [32–35]. Cell number and biomass (wet weight) were measured using the
visual field method and volumetric measurements, respectively [36]. Functional groups’
classification aims to group phytoplankton species with similar sensitivities to a given
habitat type. This grouping is performed by comprehensively considering phytoplankton’s
various morphological, physiological, and ecological factors [37]. The functional group
classification method has been continuously revised and supplemented in its practical
application, developing a more sophisticated and refined classification system [38]. The
present study used the FG classification method to investigate variations in FG composition
among wetland ecosystems under different aquatic plant coverages. Phytoplankton were
categorized based on genus affiliation among the 39 FGs of the classification system [37,38].

2.3. Measurement of Water Environmental Factors and Aquatic Plant Coverage

Dissolved oxygen (DO) concentration and pH were measured on-site using the YSI
ProPlus (YSI Inc, Yellow Springs, OH, USA) multi-parameter water quality meter. Water
samples (2 L) were collected from each site at a depth of 0.5 m using a water sampler and
then stored in an insulated box at 4 ◦C for a laboratory analysis. Following alkaline potas-
sium persulfate digestion, total nitrogen (TN) and total phosphorus (TP) concentrations
were quantified using UV spectrophotometry. Ammonium nitrogen (NH4

+–N), nitrate
nitrogen (NO3–N), phosphate (PO4

3−–P), suspended solids (SSs), and chlorophyll a (Chl–a)
were measured following the standard procedures specified by China’s EPA [39]. Pho-
tographic techniques and visual observation assessed aquatic plant coverage in wetland
ecosystems. To capture images of vegetation coverage, we took two to three repeated
shots at each site using a high-resolution camera. We analyzed each image to determine
plant coverage, and the average value was then recorded for the specific area. A stratified
sampling approach was used to investigate diverse aquatic plant communities at each
site [40]. Quadruplicate samples of floating, floating-leaved, and submerged plants were
collected through a hand net measuring 0.5 m × 0.5 m. The total biomass was calculated
by determining the fresh weight of all plants within every quadrant and dividing by the
unit area. At every site, four 2 m × 2 m quadrants were chosen randomly to gauge the
plant’s above-ground biomass (fresh weight). The unit area’s biomass was then calculated
for the emergent plant communities. Based on the range of aquatic plant coverage, the
sampling sites were classified into three groups, the low coverage group (LCG), the medium
coverage group (MCG), and the high coverage group (HCG) (Table 1), with the aquatic
plant coverage in each group ranging from 0 to 25% (n = 32), 26 to 35% (n = 24), and 36 to
66% (n = 22), respectively.

Table 1. Number of samples and groups of aquatic vegetation coverage. Classes: low
coverage = 0–25%; medium coverage = 26–35%; high coverage = 36–66%.

Coverage (%) Range (%) Sample (n)

Low coverage group (LCG) 0–25% 32
Medium coverage group (MCG) 26–35% 24

High coverage group (HCG) 36–66% 22

2.4. Calculation of Phytoplankton Diversity and Dominance Degrees

The dominance degree provides insight into the roles of each species within the
community, summarizing the trait values and ranges that influence ecosystem functions.
Functional diversity is gaining prominence as a description of phytoplankton diversity [41].
This study created a trait matrix using ten functional traits associated with phytoplankton’s
critical morphological, physiological, and behavioral features to determine functional
richness (FRic) [42] (Table 2). Calculation of phytoplankton dominance was conducted as
described in [43].
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Table 2. Traits of phytoplankton according to [44,45].

Traits Categories Code

Morphological traits

Biovolume (µm3) <100, 100–1000, 1000–10,000, >10,000 Sma, Med, Lar, Xla
Greatest axial linear dimension (GALD) <35 µm or >35 µm Gal

Life form Single-celled, colonial, filamentous Sin, Col, Fil
Behavioral traits

Motility Presence/absence of flagella Fla
Vacuolated Yes/no Vac

Physiological traits
N2 fixation Yes/no N2f

Si requirements Yes/no Sil
Mixotrophy

(phagotrophy) Yes/no Mix

Heterotrophy Yes/no Het
Pigment composition Chl-b, Chl-c, phycobiliproteins ChlB, ChlC, Phy

2.5. Phytoplankton Resource Use Efficiency

Phytoplankton RUE is the ratio of phytoplankton biomass to available resources [20,21].
Nitrogen and phosphorus limit the growth of phytoplankton in most freshwater ecosys-
tems. These primary nutrients are typically used to determine phytoplankton RUE using
the following formulas:

RUE_TN = log10

(
Biomass
ρ(TN)

+ 1
)

(1)

RUE_TP = log10

(
Biomass
ρ(TP)

+ 1
)

(2)

Phytoplankton biomass is measured in mg/L, and ρ(TN) and ρ(TP) represent the
total nitrogen (TN) and total phosphorus (TP) concentrations (mg·L−1), respectively.
RUE_TN and RUE_TP represent the phytoplankton utilization efficiencies for TN and
TP, respectively.

2.6. Data Analysis

A Kruskal–Wallis test was used to compare differences in aquatic environmental
variables and the coverage of various aquatic plant categories among coverage groups. A
radial stacked bar plot was created in the software Origin 2023 (Origin Lab, Northampton,
MA, USA) to display changes in the functional group biomass for different levels of aquatic
plant coverage. Phytoplankton functional richness was calculated using the “FD” package
in R-4.2.2 software [46,47]. After conducting a square root transformation of the functional
richness, we performed a single-factor ANOVA in Origin 2023 to analyze statistical differ-
ences in species richness and functional diversity between the coverage groups. Doughnut
plots, illustrating the abundance and biomass of phytoplankton, were generated using
Origin 2023. Based on our research objectives and a comprehensive literature review, we
adopted the stepwise forward selection strategy and selected five environmental variables
for a further analysis. Compared to the conventional Structural Equation Model (SEM), PLS-
SEM is generally better suited for small sample sizes. Therefore, we developed four latent
variables—aquatic plant coverage, environmental factors, and phytoplankton diversity—to
investigate the direct and indirect effect of plant coverage on phytoplankton RUE through
PLS-SEM. A multiple regression analysis explored the relationship between aquatic plant
coverage, environmental factors, phytoplankton diversity, and RUE. The observed variables
for aquatic plant coverage comprised submerged, floating, floating-leaved, and emergent
plant coverage. The observed environmental factors were water depth (WD), TN, Chl-a,
SS, and PO4

3–P. Furthermore, species richness and functional diversity were the observed
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variables for the diversity index. These variables were analyzed using the “plspm” and
“tidyverse” packages in the R software [48,49].

3. Results
3.1. Physicochemical Characteristics in Different Aquatic Plant Coverage Groups

The ANOVA results show significant differences among coverage groups in several
indicators (Table 3). The coverage of submerged and floating plants exhibited no significant
differences among the groups. Emergent plants were the dominant species in all cover
groups, with an average coverage ranging from 8.7% to 31.7%. The highest coverage of
floating-leaved plants was observed in the MCG, with 4.6 ± 6%. The concentration of TN
decreased to its minimum level in the MCG (2.595 ± 2.799), which was significantly lower
than in the LCG (p = 0.029; Kruskal–Wallis test). Additionally, the NO3–N trend was similar
to that of TN, reaching the lowest value in the MCG (1.615± 1.865), which was significantly
lower than the other two groups (p = 0.026). The statistical differences in TN and NO3–N
concentrations among groups imply that aquatic plant coverage may influence nutrient
cycling in water bodies.

Table 3. Comparison of environmental variables and aquatic plants among low, medium, and high
coverage groups (mean± SD). Bold values indicate significant differences in variables across coverage
levels (Kruskal–Wallis test: p < 0.05).

Variable Low Coverage
Group

Medium
Coverage Group

High Coverage
Group p χ2

Total aquatic plant coverage (%) 0.127 ± 0.084 0.273 ± 0.041 0.42 ± 0.087 <0.001 63.018
Submerged plant coverage (%) 0.023 ± 0.044 0.046 ± 0.053 0.036 ± 0.053 0.106 4.486

Floating plant coverage (%) 0.006 ± 0.017 0.009 ± 0.038 0.029 ± 0.064 0.132 4.047
Floating-leaved plants 0.01 ± 0.027 0.046 ± 0.06 0.038 ± 0.06 0.004 10.941

Emergent plant coverage (%) 0.087 ± 0.074 0.171 ± 0.077 0.317 ± 0.099 <0.001 44.521
Water depth (WD) (m) 1.658 ± 0.668 1.518 ± 0.833 1.5 ± 0.769 0.557 1.172

pH 8.139 ± 0.452 8.268 ± 0.508 8.111 ± 0.336 0.492 1.42
Electrical conductivity (EC) (s/cm) 1127.424 ± 829.96 1149.455 ± 718.367 890.5 ± 499.538 0.519 1.31

Dissolved oxygen concentration
(DO) (mg/L) 8.267 ± 2.525 8.75 ± 1.565 8.706 ± 1.355 0.768 0.527

Ammonium nitrogen (NH4
+–N)

(mg/L) 0.279 ± 0.397 0.153 ± 0.182 0.167 ± 0.153 0.201 3.208

Nitrate nitrogen (NO3–N) (mg/L) 3.018 ± 2.274 1.615 ± 1.865 1.738 ± 2.051 0.026 7.286
Total nitrogen (TN) (mg/L) 4.175 ± 2.818 2.595 ± 2.799 2.92 ± 3.214 0.029 7.109

Total phosphorus (TP) (mg/L) 0.065 ± 0.037 0.051 ± 0.023 0.051 ± 0.016 0.431 1.681
Phosphate (PO4

3−–P) (mg/L) 0.029 ± 0.043 0.015 ± 0.014 0.014 ± 0.024 0.099 9.047
Suspended solids (SSs) (mg/L) 81.091 ± 119.642 31.182 ± 27.150 20.056 ± 18.574 0.178 3.454
Chlorophyll-a (Chl–a) (µg/L) 0.014 ± 0.01 0.011 ± 0.007 0.011 ± 0.007 0.474 1.491

3.2. Phytoplankton Community Composition and Functional Groups

A total of 255 phytoplankton species belonging to eight phyla were identified across
the wetlands. Among them, Chlorophyta (87 species, 34%), Bacillariophyta (74 species,
29%), and Cyanobacteria (45 species, 18%) were the dominant phyla. At different levels of
aquatic plant coverage, Chlorophyta and Bacillariophyta were the dominant phytoplankton
taxa. The low coverage group had a total of 178 species, with Chlorophyta accounting
for 31% and Bacillariophyta for 30%. The medium coverage group had 148 species, with
31% Chlorophyta and 28% Bacillariophyta. The high coverage group had 132 species,
with Chlorophyta and Bacillariophyta representing 39% and 27%, respectively. In Figure 2,
box plots show the differences in species richness and FRic among the different coverage
groups. The one-way analysis of variance (ANOVA) showed species richness and FRic
were significantly higher in MCG and HCG than in LCG, while there was no significant dif-
ference between MCG and HCG. As shown in Table 4, cyanobacteria were overwhelmingly
abundant in urban wetlands. Cyanobacteria, particularly Phormidium tenue, dominated all
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three aquatic coverage groups. In urban wetlands, phytoplankton can be classified into
28 functional groups, named A, B, C, D, F, G, H1, J, K, LM, LO, M, MP, N, NA, P, S1, S2,
SN, T, TB, TC, W1, W2, X1, X2, X3, and Y, each corresponding to unique genera and habitat
characteristics as shown in Table 5. We defined the phytoplankton functional groups with
a relative biomass of more than 5% as the dominant functional groups in this period. In
the LCG, the dominant functional groups were C, D, J, MP, S1, and TC, with S1 and TC
accounting for 19.18% and 32.66%, respectively. The predominant functional groups in the
MCG were D, S1, and TC, accounting for 5.37%, 36.74%, and 42.65%, respectively (Figure 3).
In contrast, the HCG was dominated by S1, TC, and Y, accounting for 12.31%, 46.71%, and
19.09%, respectively. With the gradual increase in coverage, the proportion of functional
group TC increased significantly, establishing its dominance in all three groups. Thus, this
functional group emerged as the dominant force in the urban wetland.
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Figure 2. (a) Box plots showing functional diversity (FRic) in the low, medium, and high coverage 
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Figure 2. (a) Box plots showing functional diversity (FRic) in the low, medium, and high coverage
groups. (b) Box plots showing taxonomic diversity (species richness, SR) in the low, medium, and
high coverage groups. One-way ANOVA reveals significant differences in both indices across varying
coverage levels at * p < 0.05 and ** p < 0.01.

Table 4. Composition of dominant species in different coverage groups.

Coverage Dominance Dominant Species

Low coverage group (LCG) 0.153 Phormidium tenue

Medium coverage group (MCG) 0.099 Phormidium tenue
0.025 Merismopedia tenuissima

High coverage group (HCG) 0.071 Phormidium tenue
0.097 Anabaena circinalis

3.3. Differences in Species Abundance and Biomass of Phytoplankton by Category among Different
Aquatic Plant Coverage Groups

Figure 4 comprehensively presents the proportion of phytoplankton species abun-
dance (a) and biomass (b) for different phyla across aquatic plant coverage groups. The
results showed no significant change in the proportion of cyanobacterial species abundance
between the groups. The MCG exhibited a higher cyanobacterial biomass proportion of
72.1%, attributable to the prolific growth of Phormidium tenue. Furthermore, Bacillariophyta
species richness and biomass decreased accordingly when aquatic plant cover exceeded
35%. Specifically, the percentage of species abundance reduced from 30.1% to 21.2%, while
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the corresponding biomass proportion decreased from 28.5% to 9.3%. However, no sig-
nificant difference in the abundance of Chlorophyta species was observed between the
coverage groups. The decrease in the abundance and biomass of Bacillariophyta increased
the percentage of Chlorophyta biomass from 30.7% to 41.2%. Also, the proportion of
Cryptophyta biomass increased from 3.4% to 21.4%.

Table 5. Habitat template and representative species for the functional groups of phytoplankton taxa
in the studied wetland ecosystem.

Code Habitat Template Representative Genus/Species

A Clear, deep-water oligotrophic lakes, usually well-mixed and
phosphorus-deficient Cyclotella comensis

B Mesotrophic, small to large, shallow lakes with vertical mixing Cyclotella spp.
C Eutrophic small and medium lakes Cyclotella meneghiniana
D Shallow, eutrophic, well-aerated waters, typically turbid Synedra spp., Nitzschia spp.

F Clear mesotrophic lakes Dictyosphaerium spp., Kirchneriella spp.,
Oocystis spp.

G Small, eutrophic, still lakes Eudorina spp., Pandorina spp.

H1 Eutrophic, both stratified and shallow lakes with low
nitrogen content Anabaena flos-aquae, Anabaena circinalis

J Eutrophic shallow freshwaters, including low-gradient rivers Pediastrum spp., Coelastrum spp.,
Crucigenia spp., Scenedesmus spp.

K Eutrophic shallow water Aphanocapsa spp., Aphanothece spp.
LM Small–medium eutrophic–hypereutrophic, low-carbon waters Microcystis spp.

LO Stratified mesotrophic lakes Peridinium spp., Merismopedia spp.,
Ceratium spp., Ceratium spp.

M Eutrophication to severe eutrophication, small- and
medium-sized water bodies Microcystis spp.

MP Frequently churned, turbid, shallow lakes

Cocconeis spp., Dictyosphaerium spp.,
Surirella spp.

Nitzschia spp., Chlorococcum spp.,
Oscillatoria spp.

N Summer in low-latitude or temperate lakes Cosmarium spp.
NA Poor to mesotrophic, hydrostatic, low-latitude regions Cosmarium spp.

P Eutrophic low-latitude or temperate lakes Melosira spp., Closterium spp.,
Staurastrum spp.

S1 Turbid mixed environments Phormidium spp., Lyngbya spp.
S2 Warm, shallow, highly alkaline waters Spirulina spp.
SN Warm mixed epilimnia Raphidiopsis spp.
T Continuously mixed epilimnia Tribonema spp.

TB Highly lotic environments, rapids
Achnanthes spp., Fragilaria spp.,

Gomphonema spp., Melosira varians,
Navicula spp., Nitzschia spp., Surirella spp.

TC Eutrophic lentic waters, or low-gradient lotic systems Oscillatoria spp., Phormidium spp.
W1 Shallow waters with organic pollution Euglena spp., Phacus spp., Lepocinclis spp.
W2 Mesotrophic pools, temporary shallow lakes Trachelomonas spp., Strombomonas spp.
X1 Eutrophic shallow waters Ochromonas spp.
X2 Moderately eutrophic to eutrophic shallow waters Chrysocromulina spp.

X3 Shallow, clean mixed water bodies Schroederia spp., Chlorella spp.,
Chromulina spp.

Y Medium to eutrophic, low-light still-water bodies Cryptomonas spp., Teleaulax spp., Komma
spp., Gymnodinium spp., Glenodinium spp.
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Figure 4. Doughnut plots of phytoplankton species abundance (a) and phytoplankton biomass
(b) among different aquatic plant coverage groups, from the inner to the outer, for groups LCG, MCG,
and HCG, respectively. Species category labels and values for species occupying less than 3% of the
total are omitted.

3.4. Results of Multiple Regression Analysis

The Tables 6–8 presents the associations between variables determined from the
multiple regression analysis. It encompassed the influence of aquatic plant coverage on
environmental factors (Table 6), aquatic plant coverage and environmental factors on phy-
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toplankton diversity, and aquatic plant coverage (Table 7), environmental factors, and
phytoplankton diversity on RUE (Table 8). Table 6 shows the different influences of four
aquatic plant types on environmental factors. Emergent plants significantly reduced the
TN concentration in the water body, while submerged and floating-leaved plants also
showed negative correlations, but with non-significant effects. In particular, emergent
plants significantly reduced suspended solids, and the presence of floating-leaved plants
was associated with increased phosphate in the water column. Table 7 shows that enhancing
aquatic plant coverage and improving the water environment can increase phytoplankton
diversity. Aquatic plant coverage displayed a significant and positive correlation with both
the taxonomic and functional diversity of phytoplankton. The aquatic plant assemblage
accounted for 14.5% of the variation seen in functional diversity. Furthermore, the combi-
nation of environmental factors was identified as the primary factor driving biodiversity
change, explaining 38.3% and 38.9% of the variance in species richness and functional
diversity, respectively. The results showed that increased concentrations of Chl-a and phos-
phate concentrations as well as decreased SS were associated with higher species richness,
whereas lower TN was associated with higher functional diversity. Excessive TN may lead
to dominant species overgrowth, thus inhibiting other populations. Table 8 shows that
water environmental factors and biodiversity significantly affect the RUE of phytoplankton.
Environmental factors account for 43.9% and 15.3% of the variation observed in RUE_TN
and RUE_TP, while biodiversity explains 23.6% and 8.5%, respectively. TN was negatively
correlated with RUE_TN, whereas Chl-a, phosphate, and functional diversity positively
influenced it. This suggests that managing nitrogen sources and increasing diversity may
optimize nitrogen resource use.

Table 6. Results of multiple regression analysis for the effect of aquatic plant coverage on environ-
mental factors.

Variable Regression
Coefficient

Standard
Error t-Value p-Value R2 p-Value

Water depth
(WD)

Submerged plants −0.089 0.124 −0.716 0.476

0.028 0.729
Floating-leaved plant −0.054 0.121 −0.445 0.658

Emergent plant 0.05 0.12 0.417 0.678
Floating plant −0.112 0.117 −0.955 0.343

Total
nitrogen (TN)

Submerged plants −0.136 0.118 −1.15 0.254

0.111 0.073
Floating-leaved plant 0.026 0.115 0.224 0.823

Emergent plant −0.307 0.114 −2.68 0.009
Floating plant 0.149 0.112 1.332 0.187

Chlorophyll-
a

(Chl-a)

Submerged plants 0.163 0.122 1.332 0.187

0.048 0.461
Floating-leaved plant −0.119 0.119 −0.994 0.323

Emergent plant 0.106 0.118 0.893 0.375
Floating plant −0.115 0.116 −0.991 0.325

Suspended
solids (SSs)

Submerged plants 0.003 0.114 0.027 0.978

0.18 0.006
Floating-leaved plant −0.154 0.111 −1.388 0.17

Emergent plant −0.407 0.11 −3.701 <0.001
Floating plant 0.009 0.107 0.08 0.937

Phosphate
(PO4

3−–P)

Submerged plants −0.089 0.121 −0.743 0.46

0.066 0.29
Floating-leaved plant 0.263 0.118 0.222 0.03

Emergent plant −0.002 0.117 −0.015 0.988
Floating plant −0.029 0.114 −0.261 0.795



Biology 2024, 13, 44 12 of 19

Table 7. Results of multiple regression analysis for the effect of aquatic plant coverage and environ-
mental factors on phytoplankton diversity.

Variable Regression
Coefficient

Standard
Error t-Value p-Value R2 p-Value

Species
richness (SR)

Submerged plants 0.133 0.116 1.147 0.255

0.048 0.197
Floating-leaf plant 0.024 0.113 0.214 0.831

Emergent plant 0.392 0.112 3.502 <0.001
Floating plant −0.021 0.109 −0.191 0.849

FRic

Submerged plants 0.141 0.116 1.218 0.227

0.145 0.022
Floating-leaf plant −0.011 0.113 −0.1 0.921

Emergent plant 0.384 0.112 3.418 0.001
Floating plant −0.075 0.11 −0.683 0.497

Species
richness (SR)

Water depth (WD) 0.186 0.094 1.98 0.052

0.383 <0.001
Total nitrogen (TN) −0.042 0.103 −0.405 0.686

Chlorophyll-a (Chl-a) 0.353 0.094 3.743 <0.001
Suspended solids (SSs) −0.284 0.098 −2.9 0.005
Phosphate (PO4

3−–P) 0.366 0.1 3.673 <0.001

FRic

Water depth (WD) 0.186 0.093 2.005 0.049

0.399 <0.001
Total nitrogen (TN) −0.459 0.102 −4.514 <0.001

Chlorophyll-a (Chl-a) 0.323 0.093 3.467 0.001
Suspended solids (SSs) −0.071 0.097 −0.737 0.463
Phosphate (PO4

3−–P) 0.324 0.098 3.292 0.002

Table 8. Results of multiple regression analysis for the effect of aquatic plant coverage, environmental
factors, and phytoplankton diversity on resource use efficiency.

Variable Regression
Coefficient

Standard
Error t-Value p-Value R2 p-Value

RUE_TN

Submerged plants 0.168 0.091 1.848 0.069

0.072 0.242
Floating-leaf plant 0.021 0.089 0.241 0.81

Emergent plant 0.138 0.088 1.565 0.122
Floating plant −0.046 0.086 −0.536 0.593

RUE_TP

Submerged plants 0.047 0.029 1.636 0.106

0.06 0.339
Floating-leaf plant 0.013 0.028 0.46 0.647

Emergent plant −0.017 0.028 −0.625 0.534
Floating plant 0.005 0.027 0.198 0.844

RUE_TN

Water depth (WD) −0.069 0.068 −1.012 0.315

0.439 <0.001
Total nitrogen (TN) −0.461 0.074 −6.218 <0.001

Chlorophyll-a (Chl-a) 0.203 0.068 2.982 0.004
Suspended solids (SSs) 0.107 0.07 1.515 0.134
Phosphate (PO4

3−–P) 0.163 0.072 2.278 0.026

RUE_TP

Water depth (WD) −0.051 0.026 −1.964 0.053

0.153 0.034
Total nitrogen (TN) −0.03 0.029 −1.052 0.297

Chlorophyll-a (Chl-a) 0.057 0.026 2.199 0.031
Suspended solids (SSs) 0.002 0.027 0.069 0.945
Phosphate (PO4

3−–P) 0.04 0.028 1.462 0.148

RUE_TN
Species richness (SR) −0.031 0.112 −0.275 0.784

0.236 <0.001FRic 0.389 0.112 3.457 <0.001

RUE_TP
Species richness (SR) 0.05 0.039 1.29 0.201

0.085 0.038FRic 0.024 0.039 0.61 0.544

3.5. The PLS-SEM Model

Figure 5 illustrates the pathways to investigate the effects of aquatic plant coverage on
RUE using PLS-SEM. The total effect of aquatic plant coverage on RUE was 0.168, and the
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direct effect on RUE was insignificant. Instead, RUE improvement primarily resulted from
enhancing water quality and phytoplankton diversity. The PLS-SEM analysis revealed that
submerged plants had a total impact effect of 0.218 on RUE, mainly through direct effects.
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one direct influence path. Rectangles represent latent variables including aquatic plant coverage, 
environmental factors, diversity indices, and RUE. Arrows indicate hypothetical relationships be-
tween latent variables. Grey, red, and blue arrows denote non−significant, significantly positive, and 
significantly negative correlations, respectively. Path coefficients are displayed on the arrows. 
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than the negative direct effect, resulting in an overall effect of 0.06. Different aquatic plants 
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4. Discussion 
The present study showed that an increase in the total coverage of aquatic plants 

significantly lowered the concentrations of TN and SS in the water body, creating favora-
ble habitats for phytoplankton. Therefore, phytoplankton species richness and functional 
diversity were enhanced, increasing RUE. As primary producers and water purifiers in 
wetland ecosystems, plants play a critical role in regulating the ecological balance and 
development of wetlands [50]. Aquatic plants effectively remove excess nutrient salts such 
as nitrogen and phosphorus from the water [51]. They also effectively purify water quality 
by intercepting and immobilizing suspended particles and inhibiting the resuspension of 
sediments through tissues such as the root system. Furthermore, plants can suppress ex-
cessive algal growth by competing with phytoplankton for living space, light, and nutri-
ents or by secreting allelopathic compounds that inhibit algae [52,53]. Considering these 

Figure 5. Model demonstration of the impact of different categories of aquatic plants on RUE.
(a) Model of the influence paths of aquatic plant coverage on RUE based on PLS−SEM. (b) Model
of the influence paths of submerged plant coverage on RUE based on PLS−SEM. (c) Model of the
influence paths of floating−leaved plant coverage on RUE based on PLS−SEM. (d) Model of the
influence paths of emergent plant coverage on RUE based on PLS−SEM. (e) Model of the influence
paths of floating plant coverage on RUE based on PLS−SEM. The model includes three indirect
influence paths and one direct influence path. Rectangles represent latent variables including aquatic
plant coverage, environmental factors, diversity indices, and RUE. Arrows indicate hypothetical
relationships between latent variables. Grey, red, and blue arrows denote non−significant, signifi-
cantly positive, and significantly negative correlations, respectively. Path coefficients are displayed
on the arrows.
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In contrast, the total impact effects of floating-leaved plants and floating plants on
RUE were 0.096 and−0.021, respectively, which were smaller and non-significant, probably
because of their lower coverage in the wetland. The direct effect of aquatic plant coverage
on RUE was negative (−0.192), but the positive indirect effect (0.252) was greater than the
negative direct effect, resulting in an overall effect of 0.06. Different aquatic plants had
different effects on RUE, with submerged aquatic plants having the most significant effect
on increasing phytoplankton RUE.

4. Discussion

The present study showed that an increase in the total coverage of aquatic plants
significantly lowered the concentrations of TN and SS in the water body, creating favorable
habitats for phytoplankton. Therefore, phytoplankton species richness and functional
diversity were enhanced, increasing RUE. As primary producers and water purifiers in
wetland ecosystems, plants play a critical role in regulating the ecological balance and
development of wetlands [50]. Aquatic plants effectively remove excess nutrient salts such
as nitrogen and phosphorus from the water [51]. They also effectively purify water quality
by intercepting and immobilizing suspended particles and inhibiting the resuspension
of sediments through tissues such as the root system. Furthermore, plants can suppress
excessive algal growth by competing with phytoplankton for living space, light, and
nutrients or by secreting allelopathic compounds that inhibit algae [52,53]. Considering
these factors, the increase in aquatic plant coverage significantly improved water quality,
increased phytoplankton diversity, and further improved phytoplankton RUE.

The growth of aquatic plant communities has a non-linear effect on ecosystem energy.
Our results indicate that aquatic plants in wetlands can significantly reduce the levels
of TN and SS in water bodies while serving as an important means of removing excess
nutrients and purifying overall water quality. This finding is consistent with previous
research. Aquatic plants in wetlands have the potential to eliminate excess inorganic
nutrients. Madsen and Cedergreen [54] reported that the roots and leaves of submerged
plants could absorb high levels of nutrients. For instance, Vallisneria natans exhibited
purification effects of 12.16% on nitrogen and 92.98% on phosphorus [55]. Similarly, Rong
et al. found that Potamogeton distinctus could remove TP and total dissolved phosphorus
from water [56]. Emergent plants are advantageous in light competition, allowing them
to obtain nutrients from sediments and the water column. During the growth process,
aquatic plants continuously absorb nutrients, such as nitrogen and phosphorus, from the
surrounding environment and accumulate the nutrients in their organs, including roots,
stems, and leaves. The stems and leaves of aquatic plants often protrude from the water,
making it easy to harvest and remove the accumulated nitrogen and phosphorus from the
plant tissues. For instance, aquatic plant assemblages have been used successfully in park
pond restoration [57]. Floating-leaved plants possess robust root systems, which can extract
excess nutrients from water bodies. Lythrum salicaria is known for its efficient nitrogen
and phosphorus removal capabilities [58]. Ipomoea aquatica has exceptional wastewater
nitrogen and phosphorus removal efficacy [59]. Without roots, floating aquatic plants with
rapid growth rates float on the water’s surface. Hyacinthus orientalis and Tagetes erecta are
floating plants that absorb diverse heavy metal pollutants in water bodies and are highly
valuable in water purification [60]. The buffering layer of emergent plants reduced wave
disturbance in the water, improving conditions for the sedimentation of SS and reducing
the possibility of resuspension [57]. Studies have indicated that floating-leaved plants
significantly reduced SS to increase water transparency [16,61]. However, our study did
not find this to be the case.

The increase in aquatic plant coverage had a significant effect on the water environ-
ment and the structure of the phytoplankton community. The phytoplankton functional
groups in the LCG were mostly those that preferred turbid, shallow water with frequent
stirring and adaptation to low temperatures, such as the functional group MP represented
by Oscillatoria spp., the functional group J dominated by Scenedesmus spp., the functional
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group D represented by Synedra spp., and the functional group C represented by Aulacoseira
spp. and Cyclotella spp. With the increase in aquatic plant coverage, the light intensity
was further decreased, causing the functional group Y, characterized by a relatively high
surface area and adaptation to low-light conditions, to emerge as the dominant group
in the HCG [62,63], with Cryptomonas spp. and Gymnodinium spp. being the primary
representative genera. Nutrients, along with light, are crucial for the growth of phytoplank-
ton. Nutrient deficiencies can affect phytoplankton growth, reproduction, and community
structure. According to a previous study [64], an N:P ratio of around 16:1 was optimal
for phytoplankton growth. The present study found an average N:P ratio of 60:1 in the
evaluated wetlands (N = 3.28 mg/L and P = 0.05 mg/L). Figure 4 indicates that the absorp-
tion of nitrogenous nutrients by aquatic plants significantly increased when their coverage
exceeded 35%. The species abundance and biomass of Bacillariophyta decreased with
the decrease in the N:P ratio from 71.4 in the LCG to 45.9 in the HCG. Previous research
has indicated that high N:P ratios (64:1 and 128:1) have a positive effect on the growth of
Bacillariophyta [65], possibly because added nitrogen and phosphorus facilitate the uptake
of silicates by Bacillariophyta to promote their growth. Additionally, increased coverage
leads to a higher proportion of Cryptophyta biomass. Cryptomonas belongs to functional
group Y, which thrives in low-light, still-water environments with high coverage.

Our study demonstrated that apart from emergent plants, other aquatic plants in
urban wetlands did not significantly affect phytoplankton diversity. Increased emergent
plant coverage significantly elevated phytoplankton species richness and functional diver-
sity. Emergent plants absorb excess nitrogen in water and reduce SS, thus improving the
living environment for phytoplankton and enhancing their diversity [66]. The PLS-SEM
path analysis demonstrated a significant role of water environmental factors in influencing
phytoplankton diversity, with TN concentration being a decisive factor. Regression analysis
results revealed that TN had a significantly negative effect on phytoplankton functional
diversity, possibly because excessive nitrogen concentrations can disrupt the nutrient ratio
in wetlands, allowing for the rapid dominance of certain species, such as cyanobacteria,
which are highly adaptable to the environment [67]. Consequently, non-dominant species
may experience a gradual loss of nutrient and survival space, ultimately decreasing the
community diversity and homogenization of the functional phytoplankton community.
Decreased nitrogen concentration provides a survival environment for some non-dominant
species, causing algae to adopt different growth strategies and increasing the overall func-
tional diversity of the community. Reduced SS alters underwater light conditions, increases
transparency, relieves light limitation, and increases the abundance of species well adapted
to light [68]. Besides TN, phosphate is also an important variable affecting phytoplankton
diversity. Results presented in Table 7 indicate that phosphorus significantly affects both
phytoplankton species richness and functional diversity. Previous studies have suggested
that inorganic orthophosphate is essential for algae’s energetic and biochemical processes
and is the preferred phosphorus source for algae growth, particularly for cyanobacteria. In
this wetland, algae quickly assimilate and utilize increased levels of inorganic orthophos-
phate, creating nutritional conditions for the rapid growth of cyanobacteria, which is
the limiting factor for algal growth [64]. The findings suggest that reducing phosphorus
limitation has a positive effect on phytoplankton growth within this wetland.

In the present study, the PLS-SEM model demonstrated a remarkable positive correla-
tion between species diversity and RUE, consistent with other studies [20]. For instance,
Ptacnik and coworkers analyzed more than 3000 phytoplankton samples from lakes in
Finland, Norway, Sweden, and Denmark and found that phytoplankton with high di-
versity had a greater ability to utilize limited resources [20]. Similarly, Striebe and his
team reported a positive correlation between phytoplankton species richness and RUE in
natural aquatic ecosystems [69]. An increasing number of studies have shown that the
effects of diversity on ecosystem functioning largely depend on species traits and functional
roles [70,71]. Therefore, functional diversity has been proposed to improve mechanistic
understanding of the relationship between biodiversity and ecosystem functioning [42].
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Indeed, several studies have shown that trait-based functional diversity is superior to
species diversity in predicting ecosystem functioning [72]. The multiple regression analysis
in the present study also showed that functional diversity outperformed species richness
in improving RUE, possibly because communities with more diverse traits have better
ecological niche differentiation [70,73]. Furthermore, ecological niche complementation
provides physiological advantages for more efficient use of resources, allowing for more
optimal functioning of diverse ecosystems [74].

5. Conclusions

During the management process in urban wetlands, increasing the proportion of sub-
merged aquatic plants is crucial while maintaining a certain level of aquatic plant coverage.
Future research should focus on community structures, spatial distribution patterns of
aquatic plants in wetlands, and their allelopathic effects. More comprehensive surveys
are needed to characterize assemblages of aquatic plants occupying different wetland
habitat types, elucidating their community characteristics and environment relationships.
In addition, the massive attachment and excessive growth of benthic microalgae and
cyanobacteria could inhibit the growth of aquatic plants. Certain cyanobacteria may release
cyanotoxins, which can have toxic effects on plants through direct contact or transportation
pathways. However, the mechanisms and extent of the ecological impact on aquatic and
phytoplankton plants require further elucidation. Thus, a quantified analysis of aquatic
plant distributions and effects would inform management decisions and provide insights
into underlying mechanisms, which govern the role of aquatic flora in maintaining wetland
ecosystem functions and may facilitate more prudent management strategies to conserve
vulnerable aquatic ecosystems.
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