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Simple Summary: Poxviruses are large, complex, enveloped, double-stranded DNA viruses known
to cause contagious diseases in humans and animals. There is a pressing and urgent demand for the
development of effective vaccines to combat diverse sets of poxviruses. In the absence of significant
methods, predicting T-cell epitopes and antigens for poxviruses remains a challenging task. In this
study, we have employed an artificial intelligence-based approach and developed a method named
PoxiPred for the prediction of proteome-wide antigens and T-cell epitopes. We anticipate that this
open-source tool will be useful to the scientific community for accelerating vaccine development
efforts against contagious poxviruses.

Abstract: Poxviridae is a family of large, complex, enveloped, and double-stranded DNA viruses.
The members of this family are ubiquitous and well known to cause contagious diseases in hu-
mans and other types of animals as well. Taxonomically, the poxviridae family is classified into
two subfamilies, namely Chordopoxvirinae (affecting vertebrates) and Entomopoxvirinae (affecting
insects). The members of the Chordopoxvirinae subfamily are further divided into 18 genera based
on the genome architecture and evolutionary relationship. Of these 18 genera, four genera, namely
Molluscipoxvirus, Orthopoxvirus, Parapoxvirus, and Yatapoxvirus, are known for infecting humans.
Some of the popular members of poxviridae are variola virus, vaccine virus, Mpox (formerly known as
monkeypox), cowpox, etc. There is still a pressing demand for the development of effective vaccines
against poxviruses. Integrated immunoinformatics and artificial-intelligence (AI)-based methods
have emerged as important approaches to design multi-epitope vaccines against contagious emerging
infectious diseases. Despite significant progress in immunoinformatics and AI-based techniques, lim-
ited methods are available to predict the epitopes. In this study, we have proposed a unique method
to predict the potential antigens and T-cell epitopes for multiple poxviruses. With PoxiPred, we
developed an AI-based tool that was trained and tested with the antigens and epitopes of poxviruses.
Our tool was able to locate 3191 antigen proteins from 25 distinct poxviruses. From these antigenic
proteins, PoxiPred redundantly located up to five epitopes per protein, resulting in 16,817 potential
T-cell epitopes which were mostly (i.e., 92%) predicted as being reactive to CD8+ T-cells. PoxiPred is
able to, on a single run, identify antigens and T-cell epitopes for poxviruses with one single input,
i.e., the proteome file of any poxvirus.
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1. Introduction

Poxviruses (members of the Poxviridae family) are large, complex viruses, with linear
double-stranded DNA (dsDNA) genomes ranging from 135 to 360 kbp [1,2]. It has been
well-reported that poxviruses’ genomes are entirely replicated in the cytoplasm [2]. The
members of this large family exist throughout the world and can cause a plethora of diseases
in humans and animals (reptiles, birds, and mammals) [3]. Poxviruses have the capability
to spread by aerosol, insects, and direct contact [4]. Based on their genome architecture and
evolutionary relationship, the International Committee on Taxonomy of Viruses (ICTV)
classified Poxviridae members into two subfamilies, Chordopoxvirinae (infect vertebrates)
and Entomopoxvirinae (infect insects). The subfamily Chordopoxvirinae is further divided into
18 genera; among them, four genera, Molluscipoxvirus, Orthopoxvirus, Parapoxvirus, and
Yatapoxvirus, are known to cause human infections [5–7]. As many as half of the conserved
genes (around 100 in total) of chordopoxviruses are also found in entomopoxviruses [4].
Based on previous reports, reptiles, birds, and over 30 mammals have been defined as
vertebrate hosts of chordopoxviruses [2,4]. To date, the genomes of the many known
poxviruses have been sequenced and well annotated with the aid of molecular biology and
bioinformatics approaches, and many more genomes will be sequenced and annotated in
the upcoming years (https://www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi?taxid=
10240) (accessed on 1 September 2023). The recognized contagious diseases associated with
this subfamily include Mpox (formerly Monkeypox), smallpox, cowpox, and lumpy skin
disease, which affects cattle [8]. Variola virus, the causative agent of smallpox, has been
classified as the most infamous member of the poxviridae. This highly fatal disease was
responsible for causing millions of deaths before its successful eradication from the natural
environment [9].

Today, several poxviruses continue to pose threats to the world, including Mpox
(an ongoing pandemic) and lumpy skin disease (LSD) in cattle. Mpox is a viral illness
caused by the monkeypox virus and has the capacity to infect a broad range of animals,
including humans. This infectious disease can be spread through human-to-human (H2H)
transmission, with contaminated materials or with infected animals [8]. The Mpox virus
is divided into two clades, I (formerly the Congo Basin Clade) and II (formerly the West
African Clade) [10]. The world is experiencing an ongoing pandemic due to the Mpox virus
belonging to Clade II, specifically referred to as Clade IIb, as recognized by WHO in 2022 [8].
As of 23 September 2023, a total of 90,168 confirmed cases and 157 deaths in 115 countries
with local transmission have been identified [11]. Lumpy skin disease is an acute to chronic,
highly infectious skin disease that affects cattle and water buffalo, caused by the lumpy
skin disease virus (LSDV) poxvirus. This very important emerging transboundary disease
is transmitted by a range of arthropods, including blood-feeding insects and ticks [12]. LSD
has emerged in most East European and Asian countries, and is well documented for its
large genome structure and its high resistance to environmental conditions [12–14]. Other
than these two viruses, some other poxviruses, including tanapoxvirus, cowpox virus, and
Yaba-like disease virus have the capacity to infect humans and cause morbidity [4,15–18].

Currently, the proper treatment methods to overcome or treat these infectious diseases
caused by poxviruses are still limited; therefore, there is a pressing and urgent demand to
develop effective vaccines against poxviruses. Epitopes, also known as antigenic determi-
nants, are defined as the portion of a foreign protein or antigen that could elicit an immune
response mediated by antibodies or T- or B-cells. These antigenic determinates offer a
targeted approach to vaccines against infectious diseases [19]. Epitope-based vaccine devel-
opment is one of the most popular applications of immunoinformatics and is widely used
for the development of effective vaccines against a plethora of pathogens [20]. It has been
reported that epitope-based vaccines offer optimal therapeutic effectiveness with minimal
side effects [21]. There are different major challenges for the prediction of peptide-based
significant epitopes, and the prediction of T-cell epitopes (TCEs) is one of them [22]. Over
the decades, a wide set of direct and indirect methods has been developed for the prediction
of TCEs based on sequential and structural analysis and MHC binders [23]. However, there
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is a still a need for more accurate methods for the development of high-throughput epitopes
to accelerate vaccine development efforts against a wide set of diseases.

Recent advancements in machine learning (ML) methods have enabled the compu-
tational biologist–immunologist to design accurate epitopes for vaccine development. In
these regards, viral proteins and peptides are commonly coded into numeric features such
as Z-descriptors [24], representing their structural conformations in a way such that ML
applications can classify proteins/peptides with different functions (i.e., antigens and
non-antigens; epitopes and non-epitopes, among others). Moreover, some of the methods
that enable immunoinformatics have not yet fully adapted to the arrival of ML and still
employ mechanistic statistics as a basis of classification [25], which might fail to capture
the distinctive signal portrayed by data with known immune function. We also argue
that current methods are still limited to designing genome-specific epitopes to cope with
emerging and re-emerging viral diseases. In the present study, we attempted to develop an
AI-based method for predicting antigen proteins as well as design T-cell epitopes targeting
25 poxviruses belonging to different genera of the Chordopoxvirinae subfamily.

2. Materials and Methods
2.1. Retrieval of Known T-Cell Epitopes

Our method consists of three instances of prediction: (i) prediction of antigens,
(ii) prediction of T-cell epitopes, and (iii) prediction of type of T-cell epitope. First, to
predict T-cell epitopes, we gathered a dataset comprising 977 experimentally verified T-cell
epitopes [26](Grifoni et al., 2022) originating from various orthopoxviruses, including
Variola (69 epitopes), Vaccinia (863 epitopes), Cowpox (1 epitope), Mpox (2 epitopes),
and Ectromelia (42 epitopes) viruses. These T-cell epitopes, which constitute the ‘positive’
epitopes exhibit a varied length, spanning from 11 ± 3 amino acids (aa), with a minimum
length of 8 aa and a maximum length of 25 aa. To constitute a negative dataset, we ob-
tained 977 random linear peptides within the same protein in which the T-cell epitopes
were originally located. This resulted in a 1:1 (ratio positive to negative) balanced dataset
for classification. Second, each epitope is annotated as per its reactivity (i.e., CD4+ and
CD8+ T-cell epitopes). Our T-cell epitopes consist of 318 CD4 and 659 CD8 epitopes. We
used this information to propose another instance of classification of epitopes to predict
their T-cell reactivity. Third, to predict antigens, we have isolated the molecular parent
(i.e., protein of origin) of each ‘positive’ epitope. This resulted in 217 unique proteins across
five orthopoxviruses. We selected an additional set of 217 proteins, which are not the
molecular parents of the T-cell epitopes, to constitute a negative dataset of antigens in a
ratio of 1:1.

Finally, for comparison purposes, we obtained an additional set of 1067 T-cell epitopes
from IEDB. A total of 2 epitopes for bovine popular stomatitis virus, 3 epitopes for cowpox
virus, 43 epitopes for ectromelia virus, 3 epitopes for tanapox virus, 944 epitopes for vaccinia
virus, and 73 epitopes for variola virus. These epitopes had their molecular parents tracked
to obtain their antigen of origin. We used IEDB’s antigens and epitopes for validating
the models with unseen data. After removing duplicates, we were left with 108 unique
antigens, 80 unique T-cell epitopes, and 15 unique TCD4+ epitopes. Also, these epitopes
were compared with the epitopes predicted by our tool in regard to their length and amino
acid composition.

2.2. Retrieval of Proteomes

We obtained proteomes of 25 poxviruses belonging to eight different genera of the
subfamily Chordopoxvirinae, including Avipoxvirus (Canarypox virus, Fowlpox virus, and
Turkeypox virus), Capripoxvirus (Sheeppox virus, Goatpox virus, and Lumpy skin dis-
ease virus), Leporipoxvirus (Myxoma virus), Molluscipoxvirus (Molluscum contagiosum
virus), Orthopoxvirus (Camelpox virus, Cowpox virus, Ectromelia virus, Horsepox virus,
Monkeypox virus, Tetrapox virus, Vaccinia virus, Variola virus, and Volepox virus), Para-
poxvirus (Bovine papular stomatitis virus, Orf virus, Pseudopox virus, Squirrel pox virus,
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and Sealpox virus), Suipoxvirus (Swinepox virus), and Yatapoxvirus (Yaba monkey tumor
virus, and Tanapox virus), which were then downloaded from the comprehensive UniProt
(https://www.uniprot.org/) (accessed on 5 September 2023) repository in fasta format. A
detailed description of the species, proteome accessions, and number of proteins can be
found in Table S1.

2.3. Data Preparation

Once all data were collected (i.e., antigenic and non-antigenic proteins, epitopes and
non-epitopes), they were processed and prepared with in-house Python (version 3.9.7)
scripts. To establish similarities or differences within a protein, such as toxicity (ref),
allergenicity (ref), antigenicity (ref), hydrophobicity, molecular size, and polarity between
amino acids, can be annotated by Z-descriptors [24]. Moreover, to eliminate the need for
alignment, the Auto Cross Covariance (ACC) method [27] was developed to transform
Z-descriptor-annotated proteins into same-sized vectors, benefitting quantitative structural
activities relationships (QSARs) between peptides with varied length. Additionally, all the
independent variables were scaled to the same magnitude with the StandardScaler function
implemented by the sklearn.preprocessing library.

2.4. Classification Routines

We used different algorithms to classify each dataset. There are three classification
tasks considered: (i) antigen prediction; (ii) epitope prediction; (iii) epitope type prediction.
First, we used a panel composed of the algorithms Random Forest (RF), Support Vector
Machines (SVMs), Logistic Regression (LR), Gradient Boosting (GB), Extreme Gradient
Boosting (XGBoost), and K-Nearest Neighbors (KNN); all the algorithms were built in
Python using the packages RandomForestClassifier, SVC, LogisticRegression, Gradient-
BoostingClassifier, XGBClassifier, and KNeighborsClassifier, respectively, of the scikit-learn
(version 1.3.1) library. All algorithms were initially executed with default parameters. For
the sole purpose of model selection, each algorithm underwent a data split, allocating
80% for training and 20% for validation. The algorithm that presented the highest test
accuracy, precision, F1 score, and recall metrics was selected. In case the aforementioned
algorithms did not yield a test accuracy, precision, recall, and F1 score all above 80%, a
more robust classifier, i.e., Deep Learning Artificial Neural Networks (DL-ANNs) were
used with the data splits being restarted. If an algorithm of the initial panel showed satis-
factory performance, we re-instantiated the model and used GridSearchCV to search for
best hyperparameters. We implemented the DL-ANN with the TensorFlow (version 2.12.0)
package. To tune the hyperparameters of the DL-ANN, we had our data split in a 10-fold
cross-validation; we then manually evaluated the train/test performance of the mod-
els by manually iterating over one, two, and three hidden layers, each with 10, 25, and
50 neurons. We stopped adding hidden layers and neurons to the model once it reached
a test loss of less than 0.1. We allowed each model to run for a fixed number of training
epochs to systematically explore different hidden layer configurations, avoiding premature
stopping, and achieving a consistent evaluation of each architecture. Next, we selected
these algorithms and conducted hyperparameter tuning by re-instantiating the selected
models and submitting them to a 10-fold cross-validation step to isolate the best hyper-
parameters. Once the hyperparameters were identified, we re-instantiated each model,
restarted the 10-fold cross-validation process in which, iteratively, 9/10 of the data is used
for training the model, and the remaining 1/10 is reserved for testing the model so that each
testing fold is used exactly once. The performance of both train and test splits is measured
per its accuracy, precision, recall, and specificity. The models were then evaluated on their
capacity for, iteratively, classifying 1/10 of the data in a way that the models did not have
prior access to these data. Ultimately, external data are predicted so the generalization
capacity of the model is assessed with the validation data. We included the pipeline of the
method described in PoxiPred in Figure 1.

https://www.uniprot.org/
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Figure 1. Methodological approach of the classification rationale of PoxiPred.

In Figure 1, we describe the classification rationale of PoxiPred, consisting of three
independent stages, i.e., model selection, hyperparameter tuning, and model evaluation.

The python codes that performed the whole classification pipeline of PoxiPred as
well as the pre-trained ML models ready to be used by third parties are freely available at
https://github.com/gustavsganzerla/poxipred.

3. Results
3.1. Antigenicity Classification

To determine the best algorithm for classifying the antigens, we ran our data split in
training/testing subsets through six different classification algorithms (Table S2). Initially,
none of the algorithms could sustain a performance higher than 70% for all the accuracy,
precision, recall, and F1 scores. Thus, we opted to carry over the classification with a
Deep Learning Artificial Neural Network (DL-ANN). To determine the best DL-ANN
architecture, we trained and tested our data per the accuracy, precision, recall, specificity,
and loss in the training simulations with one, two, and three hidden layers each with 10, 25,
and 50 neurons. By using three hidden layers each with 50 neurons trained over 500 epochs,
we achieved a performance of 0.95, 0.99, 0.92, 0.99, and 0.06 of the accuracy, precision, recall,
specificity, and loss, respectively (Table 1). Moreover, in Figure 2A, we show the AUC
over each step of the 10-fold cross-validation process, which when averaged, resulted in a
mean AUC of 0.93 ± 0.13. In Figure 2B, we show the generalization capacity of the antigen
prediction model, which correctly labeled 81.48% of the external data.
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Figure 2. AUC for antigenicity. (A), we show the test Area Under the Curve (AUC) score for each
fold of a Deep Learning Artificial Neural Network classifying between antigens and non-antigen
data. The mean AUC score was 0.93 ± 0.13. (B), we show the performance of PoxiPred’s antigen
predictor in identifying an external dataset of known antigenic proteins.

https://github.com/gustavsganzerla/poxipred


Biology 2024, 13, 125 6 of 13

Table 1. Determining the best Deep Learning Artificial Neural Network architecture to classify
antigenic proteins from orthopoxviruses.

Hidden
Layers Neurons Accuracy Specificity Recall Precision Loss Epochs

Train

1

10

0.542857 1 0.085714 1 0.27382

500

2 0.697884 1 0.395767 1 0.065661

3 0.85873 1 0.71746 1 0.009175

1

25

0.661111 1 0.322222 1 0.059489

2 0.933598 1 0.867196 1 0.000419

3 0.983069 1 0.966138 1 0.000034

1

50

0.747354 1 0.494709 1 0.014109

2 0.953704 1 0.907407 1 0.000072

3 1 1 1 1 0.000001

Test

1 10 0.533333 0.995238 0.071429 0.4875 0.616637

500

2 0.680952 0.97619 0.385714 0.871985 0.986844

3 0.788095 0.966667 0.609524 0.932477 1.191654

1 25 0.65 0.995238 0.304762 0.885714 0.490774

2 0.861905 0.985714 0.738095 0.9625 0.364647

3 0.840476 0.97619 0.704762 0.958974 0.832513

1 50 0.707143 0.990476 0.42381 0.933333 0.30011

2 0.883333 0.985714 0.780952 0.957143 0.370044

3 0.959524 0.995238 0.92381 0.995 0.066186

3.2. Epitope Classification

To determine the best algorithm for classifying the epitopes, we ran our data split in
training/testing subsets through six different classification algorithms (Table S3). From the
initial search with six non-Deep Learning algorithms, we report that none of them achieved
a satisfactory classification performance as they failed to show a classification report equal
to or higher than 70% in the accuracy, precision, recall, and F1 score. Next, we ran the
data through a DL-ANN to try to obtain a better performance in classifying the epitopes.
We iterated over one, two, and three hidden layers each with 10, 25, and 50 neurons over
100 learning epochs (Table 2). We report the best classification performance as being three
hidden layers with 50 neurons each as it resulted in a test accuracy, specificity, recall,
precision, and loss of 0.93, 0.99, 0.86, 0.99, and 0.09, respectively. Moreover, in Figure 3A, we
show the AUC over each step of the 10-fold cross-validation process, which when averaged,
resulted in a mean AUC of 0.96 ± 0.09. In Figure 3B, we show the generalization capacity
of the antigen prediction model, which correctly labeled 73.75% of the external data.

Once our model successfully distinguished between epitopes and non-epitopes, we
added another layer of classification regarding the nature of the epitope per T-cell reactivity
(i.e., CD4 and CD8 T-cell epitopes). We first determined the best algorithm for conveying
the classification (Table 3).

From the six tested algorithms, we selected XGBoost as the best performer. Moreover,
we tuned the hyperparameters of the XGBoost classification with 50, 100, 200, and 300
as the number of estimators; 0.01. 0.1, 0.2, and 0.3 as the learning rate; 3, 5, 7, and 9
as the maximum depth; 1, 3, 5 as the minimum sum of hessian weight (minimum child
weight) needed in a child; and 0, 0.1, and 0.2 as gamma (i.e., minimum loss reduction
to make a further partition of a leaf node of the tree). We report that by setting the
number of estimators, learning rate, maximum depth, minimum child weight, and gamma,
respectively, as 50, 0.3, 5, 1, and 0.2, the model achieved an accuracy of 0.83.
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Table 2. Determining the best Deep Learning Artificial Neural Network architecture to classify T-cell
epitopes from orthopoxviruses.

Hidden
Layers Neurons Accuracy Specificity Recall Precision Loss Epochs

Train

1

10

0.500057 1 0.000114 0.1 0.492214

100

2 0.506767 1 0.013529 0.7 0.406405

3 0.534196 1 0.046385 0.9 0.368531

1

25

0.505401 1 0.0108 0.7 0.353444

2 0.700928 1 0.401827 1 0.073519

3 0.80755 0.999886 0.615183 0.999833 0.028656

1

50

0.56396 1 0.127903 0.9 0.163809

2 0.900867 1 0.801725 0.00165 0.827208

3 0.999943 1 0.999886 1 0.000021

Test

1 10 0.5 1 0 0 0.621593

100

2 0.5082 0.998969 0.017473 0.06 0.587974

3 0.519487 0.99898 0.040112 0.591667 0.580427

1 25 0.503074 0.99898 0.007185 0.55 0.569142

2 0.688061 0.998969 0.377341 0.9975 0.395682

3 0.765824 0.988776 0.543194 0.940396 0.408892

1 50 0.568184 0.998969 0.137513 0.895455 0.41917

2 0.827208 0.981633 0.672996 0.960404 0.32027

3 0.93145 0.996928 0.86599 0.996532 0.090237
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Figure 3. AUC for T-cell epitope classification. (A), we show the test Area Under the Curve (AUC)
score for each fold of a Deep Learning Artificial Neural Network classifying between antigens and
non-antigen data. The mean AUC score was 0.96 ± 0.09. (B), we show the performance of PoxiPred’s
T-cell epitope predictor in identifying an external dataset of known T-cell epitopes.

With the selected hyperparameters, we further classified the input data in a 10-fold
cross-validation step. As the classification is unbalanced (2.07 CD8+ epitopes per 1 CD4+
epitope), we assessed each fold performance per the F1 score, balanced accuracy, geometric
mean, and AUC. Respectively, we report the classification metrics of 0.87 ± 0.04, 0.82 ± 0.06,
0.82 ± 0.07, and 0.91 ± 0.03 (Table 4 and Figure 4A). We also obtained an additional
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15 independent CD8+ epitopes that are not present in the train/test data. Our epitope type
prediction model correctly labeled 11 epitopes as CD8+, totaling 73.33% of the data (Figure 4B).

Table 3. CD4/CD8 T-cell epitope classification performance.

Accuracy Precision Recall F1 Score

Random Forest 0.76 0.78 0.92 0.84

Support Vector Machines 0.69 0.69 1 0.82

Logistic Regression 0.65 0.68 0.93 0.79

Gradient Boosting 0.80 0.82 0.81 0.86

Extreme Gradient Boosting 0.82 0.84 0.90 0.87

K-Nearest Neighbors 0.61 0.84 0.54 0.66

Table 4. Performance of a CD4+ and CD8+ epitope classification in a 10-fold cross validation step
over the test folds.

Fold n. F1 Score Balanced Accuracy Geometric Mean

1 0.89 0.72 0.82

2 0.85 0.74 0.72

3 0.88 0.84 0.84

4 0.82 0.71 0.70

5 0.82 0.78 0.78

6 0.90 0.87 0.87

7 0.84 0.79 0.79

8 0.94 0.93 0.93

9 0.89 0.87 0.87

10 0.88 0.84 0.83

Mean 0.87 0.82 0.82

Standard deviation 0.04 0.06 0.07
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Figure 4. AUC for CD4+ and CD8+ epitope classification in a 10-fold cross validation step over the
test folds. (A), we show the test Area Under the Curve (AUC) score of an Extreme Gradient Boosting
(XGBoost) classification between the CD4+ and CD8+ T-cell epitopes. The mean AUC was 0.91 ± 0.03.
(B), we show the performance of our model in classifying the independent data.
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3.3. Antigen and Epitope Prediction in the Proteome Files of 25 Poxviruses

We obtained a dataset consisting of the proteome files of 25 distinct poxviruses, en-
compassing a total of 4471 unique proteins. Our goal was to identify potential antigens,
uncover potential T-cell epitopes, and distinguish these epitopes in terms of CD4 and CD8
recognition. To achieve this, we implemented the pipeline that employed our classifiers.
First, we subjected each of the 4471 proteins individually to our antigen predictor. This
initial step yielded a total of 3198 proteins that were predicted as antigens. Subsequently,
we conducted epitope searches for each of these positively identified antigens. The size of
the predicted epitopes was determined following a distribution with a mean and standard
deviation extracted from our training data (i.e., an average size of 11 ± 3 amino acids).
Starting from the N-terminus of each antigen, we systematically sliced peptide sequences
for submission to the epitope predictor. To prevent exhaustive searches, we set a maximum
number of attempts based on the protein’s length divided by the size of the largest epi-
tope observed in our training data range (i.e., 14 amino acids). The search process halted
either upon reaching the maximum number of attempts or upon discovering a total of five
epitopes per protein. Lastly, every predicted epitope underwent the epitope type filter,
resulting in the assignment of a CD4 or CD8 label to each epitope. In total, 16,817 T-cell
epitopes were predicted, where 15,389 are predicted to be recognized by CD8+ T-cells and 1428
by CD4+ T-cells. In Figure 5, we show the breakdown of the predictions achieved by PoxiPred.Biology 2024, 13, x FOR PEER REVIEW 10 of 15 
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In Figure 5, we show a histogram consisting of the submission of the proteome files of
25 different poxviruses applied to the PoxiPred predictor. For each poxvirus (y-axis), we
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show the count of PoxiPred (x-axis) for the total number of proteins in the proteome file
(orange), number of proteins predicted as potential antigens (yellow), number of total T-cell
epitopes predicted (green), number of TCD4+ epitopes predicted (olive), and number of
TCD8+ epitopes predicted (maroon).

The predictions derived from the execution of the PoxiPred pipeline have been
made publicly accessible as CSV files, available at https://github.com/gustavsganzerla/
poxipred. The structure of these files comprises three columns: (i) a description of the
protein of origin; (ii) the amino acid sequence of the epitope; and (iii) the designation of
CD4 or CD8, denoting the T-cell reactivity of each epitope.

3.4. Comparison of the Predicted with Experimentally Verified Epitopes

In order to compare the epitopes obtained with the PoxiPred method, we selected all
1067 of the T-cell epitopes available at IEDB for the viruses we aimed to predict. In total, the
epitopes for seven orthopoxviruses were obtained (See Section 2.2). To identify similarities
or differences between the properties of our epitopes, we analyzed the distribution of
the length and composition of the amino acids of the epitopes predicted by PoxiPred as
well as the experimentally validated epitopes; this information is provided in Figure 6.
First, we show the mean of the length of each epitope (Figure 6A,D); we report the lengths
being similar to the mean length of PoxiPred’s epitopes, at 11.06 ± 2.05 aa, while the mean
length of the experimentally validated epitopes from IEDB is 11.49 ± 4.03 aa. The shortest
epitope predicted by PoxiPred was 8 aa in comparison to 6 from IEDB. The lengthiest
from PoxiPred was 26 compared to 46 from IEDB. We also report the most common aa
in PoxiPred’s epitopes (Figure 6B) and IEDB’s epitopes (Figure 6C). We report both sets
of epitopes having a leucine (L) as their most common aa, followed by isoleucine (I),
serine (S), valine (V), and asparagine (N). The least common aa of PoxiPred’s predictions
are, respectively, tryptophan (W), histidine (H), glutamine (Q), and cysteine (C) while
IEDB’s are W, C, H, Q.
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4. Discussion

In our work, we trained and tested three distinct machine learning algorithms to learn
a distinct signal that would distinguish antigens, T-cell epitopes, and the T-cell reactivity of
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each epitope in the context of poxviruses. Our research has delivered sets of epitopes to be
used as part of vaccine constructs in a reverse vaccinology methodology.

T-cells are well known to monitor MHC-bound ligands expressed on the cell type
surface throughout the body [28]. MHC ligands known to trigger a T-cell immune response
are commonly known as T-cell epitopes. Accurately predicting such epitopes is important
for phenotyping, tracking, and stimulating T-cells involved in the immune response against
a plethora of infectious diseases, autoimmunity diseases, allergies, cancers, and during
transplantation. Due to the high degree of MHC polymorphism and disparity in the
data volume at different stages of T-cell epitope generation and presentation within living
systems, the accurate prediction of T-cell epitopes remains a challenging task. So far, various
methods/algorithms and web servers have been developed to predict T-cell epitopes with
the fruitful utilization of quantitative metrics (QMs), artificial neural networks (ANNs),
and support vector machine (SVM) approaches [29,30]. Despite the availability of many
methods, algorithms, and web servers, a pressing demand to develop the T-cell epitope
prediction methods still remains. Existing methods are limited to predicting epitopes for a
candidate target in a single run and do not cover proteome-wide epitope prediction. To the
best of our knowledge, there is currently no automated method available for the prediction
of T-cell epitopes in poxviruses at the whole proteome level.

Good applications of machine learning (ML), in general, have as their starting point,
the use of a well-curated input data, so the patterns discovered by the ML approach are
valid [31]. In the context of reverse vaccinology, ML has been gaining attention due to its
ability to find hidden relationships in non-linear data structures [19,32,33]. In addition,
the ML discovery of immune-relevant properties such as antigens and epitopes might be
hindered by the way the input data are codified. ML approaches are known to work with
numerical inputs, which at first sight, directly clashes with the human way to recognize
the components of a protein/epitope (i.e., amino acids, represented as one out of twenty
symbols of the Latin alphabet). In this sense, there have been ways to represent non-
numerical data as numerical inputs; for instance, one-hot encoding can successfully convert
categorical data into a numeric input and it has had relative success in the discovery of
DNA motifs [34] (Choong and Lee, 2017). However, we argue that such methods can
generate data in an over-abstracted manner and deviate the input data from its domain
origins. In these means, converting data per the structural relationship as we applied
with QSAR has the potential to highlight similar biological structures and properties as
stated by Doytchinova and Flower, 2007 [25]. When comparing the output of PoxiPred
with experimentally validated T-cell epitopes from 25 poxviruses, we noticed that only five
viruses (i.e., bovine popular stomatitis virus, cowpox virus, ectromelia virus, vaccinia virus,
and variola virus) had epitopes validated for. Still, there are 20 poxviruses we considered
with no epitopes found in the literature. We attribute this to the fact that some of these
viruses might not be widely studied. Thus, we see a gap in epitopes for ‘less popular’
viruses that might be filled by AI-based methods.

The current iteration of PoxiPred is limited to the discovery of T-cell epitopes in the
context of Poxviruses as the input data we had available at the developmental stage of
PoxiPred did not enable us to seek for B-cell epitopes. Moreover, there are characteristics
of an epitope such as its toxicity and allergenicity that have not been explored by the
current iteration of PoxiPred. In addition, if interested users want to use PoxiPred for the
discovery of epitopes for specific Poxviruses strands, they would be required to run the
freely available code and models of PoxiPred in their own computer environments, which
might not be user friendly. We argue that due to the iterative nature of our tool, we intend
to release future builds that function as webservices and will allow for the discovery of
other immunological properties in other viral families, increasing the scope of PoxiPred.

In conclusion, we were able to convert protein and epitope information in a distinctive
signal that was successfully captured by machine learning algorithms and allowed for the
prediction of antigens and T-cell epitopes (as well as their T-cell reactivity) in 25 distinct
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Poxviruses. To this extent, we delivered a novel set of epitopes to be further explored in
reverse vaccinology designs.

5. Conclusions

Here, we developed an artificial intelligence-based method to enable the prediction
of both antigens and T-cell epitopes in poxviruses, i.e., PoxiPred. Our validation step
has achieved T-cell epitopes that are structurally comparable to experimentally obtained
epitopes. For these reasons, PoxiPred is a natural evolution to the field of epitope prediction,
as it employs Deep Learning, a mathematically robust classifier. The outcomes we obtained
with executing ProxiPred as well as the pre-trained models are made publicly available for
interested users who want to expand the immune factors around poxviruses and curate
information for reverse vaccinology.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/biology13020125/s1, Table S1: List of 25 poxviruses along with proteome
IDs and number of proteins; Table S2: Antigen classification performance; Table S3: T cell epitopes
classification performance.

Author Contributions: Conceptualization, A.K., M.D., D.J.K. and G.S.M.; visualization, G.S.M., A.K.
and M.D.; software, G.S.M.; data curation, M.D. and A.K.; writing—original draft preparation, M.D.,
A.K. and G.S.M.; writing—review and editing, A.K., G.S.M., D.J.K. and M.D.; supervision, D.J.K. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by awards from the Canadian Institutes of Health Research
(CIHR), Mpox Rapid Research Funding initiative (CIHR MZ1 187236), Research Nova Scotia Grant
2023-2565, Dalhousie Medical Research Foundation, and the Li-Ka Shing Foundation. DJK is the
Canada Research Chair in Translational Vaccinology and Inflammation.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the generated CSV files containing the predictions, the Python
code, as well as the pre-trained machine learning models are available at https://github.com/
gustavsganzerla/poxipred.

Acknowledgments: The authors would like to thank Nikki Kelvin for her valuable work in editing
this manuscript.

Conflicts of Interest: The authors G.S.M., M.D., D.J.K. and A.K. are members of the company BioForge
Canada Limited. BioForge Canada Limited is a company that uses bioinformatics in immunological
approaches in the monitoring, prevention, and treatment of infectious diseases. The authors disclose
that the interests of BioForge Canada Limited had no impact on this study.

References
1. Günther, T.; Haas, L.; Alawi, M.; Wohlsein, P.; Marks, J.; Grundhoff, A.; Becher, P.; Fischer, N. Recovery of the first full-length

genome sequence of a parapoxvirus directly from a clinical sample. Sci. Rep. 2017, 7, 3734. [CrossRef] [PubMed]
2. Gjessing, M.C.; Yutin, N.; Tengs, T.; Senkevich, T.; Koonin, E.; Rønning, H.P.; Alarcon, M.; Ylving, S.; Lie, K.-I.; Saure, B.; et al.

Salmon Gill Poxvirus, the Deepest Representative of the Chordopoxvirinae. J. Virol. 2015, 89, 9348–9367. [CrossRef] [PubMed]
3. Buller, R.M.; Palumbo, G.J. Poxvirus pathogenesis. Microbiol. Rev. 1991, 55, 80–122. [CrossRef] [PubMed]
4. Upton, C.; Slack, S.; Hunter, A.L.; Ehlers, A.; Roper, R.L. Poxvirus Orthologous Clusters: Toward Defining the Minimum Essential

Poxvirus Genome. J. Virol. 2003, 77, 7590–7600. [CrossRef] [PubMed]
5. Hughes, A.L.; Irausquin, S.; Friedman, R. The Evolutionary Biology of Poxviruses. Infect. Genet. Evol. 2010, 10, 50–59. [CrossRef]
6. Kaler, J.; Hussain, A.; Flores, G.; Kheiri, S.; Desrosiers, D. Monkeypox: A Comprehensive Review of Transmission, Pathogenesis,

and Manifestation. Cureus 2022, 14, e26531. [CrossRef]
7. McInnes, C.J.; Damon, I.K.; Smith, G.L.; McFadden, G.; Isaacs, S.N.; Roper, R.L.; Evans, D.H.; Damaso, C.R.; Carulei, O.; Wise,

L.M.; et al. ICTV Virus Taxonomy Profile: Poxviridae 2023. J. Gen. Virol. 2023, 104, 001849. [CrossRef]
8. Dutt, M.; Kumar, A.; Rout, M.; Dehury, B.; Martinez, G.; Ndishimye, P.; Kelvin, A.A.; Kelvin, D.J. Drug repurposing for Mpox:

Discovery of small molecules as potential inhibitors against DNA-dependent RNA polymerase using molecular modeling
approach. J. Cell. Biochem. 2023, 124, 701–715. [CrossRef]

9. Meyer, H.; Ehmann, R.; Smith, G.L. Smallpox in the Post-Eradication Era. Viruses 2020, 12, 138. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/biology13020125/s1
https://www.mdpi.com/article/10.3390/biology13020125/s1
https://github.com/gustavsganzerla/poxipred
https://github.com/gustavsganzerla/poxipred
https://doi.org/10.1038/s41598-017-03997-y
https://www.ncbi.nlm.nih.gov/pubmed/28623312
https://doi.org/10.1128/JVI.01174-15
https://www.ncbi.nlm.nih.gov/pubmed/26136578
https://doi.org/10.1128/mr.55.1.80-122.1991
https://www.ncbi.nlm.nih.gov/pubmed/1851533
https://doi.org/10.1128/JVI.77.13.7590-7600.2003
https://www.ncbi.nlm.nih.gov/pubmed/12805459
https://doi.org/10.1016/j.meegid.2009.10.001
https://doi.org/10.7759/cureus.26531
https://doi.org/10.1099/jgv.0.001849
https://doi.org/10.1002/jcb.30397
https://doi.org/10.3390/v12020138
https://www.ncbi.nlm.nih.gov/pubmed/31991671


Biology 2024, 13, 125 13 of 13

10. Isidro, J.; Borges, V.; Pinto, M.; Sobral, D.; Santos, J.D.; Nunes, A.; Mixão, V.; Ferreira, R.; Santos, D.; Duarte, S.; et al. Phylogenomic
characterization and signs of microevolution in the 2022 multi-country outbreak of monkeypox virus. Nat. Med. 2022, 28,
1569–1572. [CrossRef] [PubMed]

11. 2022-23 Mpox Outbreak: Global Trends. World Health Organization: Geneva, Switzerland, 2023. Available online: https:
//worldhealthorg.shinyapps.io/mpx_global/ (accessed on 7 September 2023).

12. Eom, H.J.; Lee, E.S.; Yoo, H.S. Lumpy skin disease as an emerging infectious disease. J. Vet. Sci. 2023, 24, e42. [CrossRef]
13. Liang, Z.; Yao, K.; Wang, S.; Yin, J.; Ma, X.; Yin, X.; Wang, X.; Sun, Y. Understanding the research advances on lumpy skin disease:

A comprehensive literature review of experimental evidence. Front. Microbiol. 2022, 13, 1065894. [CrossRef] [PubMed]
14. Tsai, K.J.; Tu, Y.C.; Wu, C.H.; Huang, C.W.; Ting, L.J.; Huang, Y.L.; Pan, C.H.; Chang, C.Y.; Deng, M.C.; Lee, F. First detection

and phylogenetic analysis of lumpy skin disease virus from Kinmen Island, Taiwan in 2020. J. Vet. Med. Sci. 2022, 84, 1093–1100.
[CrossRef] [PubMed]

15. Crandell, R.A.; Casey, H.W.; Brumlow, W.B. Studies of a Newly Recognized Poxvirus of Monkeys. J. Infect. Dis. 1969, 119, 80–88.
[CrossRef] [PubMed]

16. Downie, A.W. The epidemiology of tanapox and Yaba virus infections. J. Med. Microbiol. 1972, 5, 14.
17. Espana, C. Review of some outbreaks of viral disease in captive nonhuman primates. Lab. Anim. Sci. 1971, 21, 1023–1031.

[PubMed]
18. Kupper, J.L.; Casey, H.W.; Johnson, D.K. Experimental Yaba and benign epidermal monkey pox in rhesus monkeys. Lab. Anim.

Care 1970, 20, 979–988. [PubMed]
19. Yang, X.; Zhao, L.; Wei, F.; Li, J. DeepNetBim: Deep learning model for predicting HLA-epitope interactions based on network

analysis by harnessing binding and immunogenicity information. BMC Bioinform. 2020, 22, 231. [CrossRef] [PubMed]
20. Yurina, V.; Adianingsih, O.R. Predicting epitopes for vaccine development using bioinformatics tools. Ther. Adv. Vaccines

Immunother. 2022, 10, 25151355221100218. [CrossRef]
21. Oli, A.N.; Obialor, W.O.; Ifeanyichukwu, M.O.; Odimegwu, D.C.; Okoyeh, J.N.; Emechebe, G.O.; Adejumo, S.A.; Ibeanu, G.C.

Immunoinformatics and Vaccine Development: An Overview. ImmunoTargets Ther. 2020, 9, 13–30. [CrossRef]
22. Parvizpour, S.; Pourseif, M.M.; Razmara, J.; Rafi, M.A.; Omidi, Y. Epitope-based vaccine design: A comprehensive overview of

bioinformatics approaches. Drug Discov. Today 2020, 25, 1034–1042. [CrossRef]
23. Sanchez-Trincado, J.L.; Gomez-Perosanz, M.; Reche, P.A. Fundamentals and Methods for T- and B-Cell Epitope Prediction. J.

Immunol. Res. 2017, 2017, 2680160. [CrossRef]
24. Hellberg, S.; Sjöström, M.; Skagerberg, B.; Wold, S. Peptide Quantitative Structure-Activity Relationships, a Multivariate Approach.

J. Med. Chem. 1987, 30, 1126–1135. [CrossRef]
25. Doytchinova, I.A.; Flower, D.R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines.

BMC Bioinform. 2006, 8, 4. [CrossRef] [PubMed]
26. Grifoni, A.; Zhang, Y.; Tarke, A.; Sidney, J.; Rubiro, P.; Reina-Campos, M.; Filaci, G.; Dan, J.M.; Scheuermann, R.H.; Sette, A.

Defining antigen targets to dissect vaccinia virus and monkeypox virus-specific T cell responses in humans. Cell Host Microbe 2022, 30.
[CrossRef]

27. Wold, S.; Jonsson, J.; Sjörström, M.; Sandberg, M.; Rännar, S. DNA and peptide sequences and chemical processes multivariately
modelled by principal component analysis and partial least-squares projections to latent structures. Anal. Chim. Acta 1993, 277,
239–253. [CrossRef]

28. Peters, B.; Nielsen, M.; Sette, A. T Cell Epitope Predictions. Annu. Rev. Immunol. 2020, 38, 123–145. [CrossRef] [PubMed]
29. Desai, D.V.; Kulkarni-Kale, U. T-cell epitope prediction methods: An overview. Methods Mol. Biol. 2014, 1184, 333–364. [CrossRef]

[PubMed]
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