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Simple Summary: Trehalose is an easily and economically obtainable non-reducing disaccharide,
readily taken up by living organisms upon external application. Arthrospira platensis grew photoau-
totrophically under nitrogen-deficient conditions supplied with the appropriate trehalose, promoting
glycogen and PHB production. This is supported by a notable increase in the upregulation of glgA
and phaC expression, along with the induction of enzyme activity, including glycogen synthase
encoded by glgA and PHA synthase encoded by phaC. The present study offers new insights into the
contribution of exogenous trehalose in the regulation of glycogen and PHB production in A. platensis.

Abstract: Glycogen and poly-3-hydroxybutyrate (PHB) are excellent biopolymer products from
cyanobacteria. In this study, we demonstrate that nitrogen metabolism is positively influenced by
the exogenous application of trehalose (Tre) in Arthrospira platensis under nitrogen-deprived (−N)
conditions. Cells were cultivated photoautotrophically for 5 days under −N conditions, with or
without the addition of exogenous Tre. The results revealed that biomass and chlorophyll-a content
of A. platensis experienced enhancement with the addition of 0.003 M and 0.03 M Tre in the −N
medium after one day, indicating relief from growth inhibition caused by nitrogen deprivation. The
highest glycogen content (54.09 ± 1.6% (w/w) DW) was observed in cells grown for 2 days under
the −N + 0.003 M Tre condition (p < 0.05), while the highest PHB content (15.2 ± 0.2% (w/w) DW)
was observed in cells grown for 3 days under the −N + 0.03 M Tre condition (p < 0.05). The RT-PCR
analysis showed a significant increase in glgA and phaC transcript levels, representing approximately
1.2- and 1.3-fold increases, respectively, in A. platensis grown under −N + 0.003 M Tre and −N + 0.03 M
Tre conditions. This was accompanied by the induction of enzyme activities, including glycogen
synthase and PHA synthase with maximal values of 89.15 and 0.68 µmol min−1 mg−1 protein,
respectively. The chemical structure identification of glycogen and PHB from A. platensis was
confirmed by FTIR and NMR analysis. This research represents the first study examining the
performance of trehalose in promoting glycogen and PHB production in cyanobacteria under nitrogen-
deprived conditions.
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1. Introduction

Trehalose is a non-reducing disaccharide which is composed of two glucose units
linked by an α, α-1,1-glycosidic linkage [1,2]. Trehalose can improve the growth and
productivity of plants, as observed under varying water availability. Trehalose is easily
and affordably accessible, and when externally applied, plants readily uptake it [3]. In
addition, trehalose is a compatible solute able to respond to various stresses such as high
temperature, drought, and osmotic stress [4]. Extensive research has been conducted on
the role of trehalose in conferring resistance to desiccation stress in cyanobacteria. Nostoc
commune Vaucher ex Bornet and Flahault, 1888, a terrestrial cyanobacterium, exhibits re-
markable survival in a desiccated state. When faced with drought conditions, N. commune
not only produces extracellular polysaccharides, crucial for desiccation tolerance, but also
accumulates trehalose [5]. Similarly, other cyanobacteria such as Phormidium autumnale
Gomont, 1892, and Chroococcidiopsis Geitler, 1933, have been observed to accumulate tre-
halose and sucrose in response to drought stress [6]. The synthesis of trehalose is triggered
in response to water loss during the desiccation process. Conversely, when water becomes
available and cells undergo rehydration, the trehalose content within the cells decreases [5].
Likewise, Anabaena variabilis Kützing ex Bornet and Flahault, 1886, and Nostoc punctiforme
Hariot, 1891, accumulate trehalose under dehydration tolerance, but the quantities are
not sufficiently high to provide protection as a molecular chaperone [7]. The mechanism
through which trehalose alleviates stress conditions is closely linked to its capacity to
stabilize membranes and protein structures [8]. The concentration of trehalose in the cells
of Spirulina (Arthrospira) platensis Gomont, 1892, experienced a rapid increase when a high
concentration of NaCl was introduced into the culture medium [9]. However, there are no
reports on the results of trehalose on cyanobacterial performance under nutrient limitations.
Even if the nutrient limitation promotes glycogen and polyhydroxybutyrate (PHB) levels in
the cyanobacterial cells, the main drawback is the reduction in biomass production [10–13].
This suggests that the nitrogen metabolism is closely integrated with carbon metabolism
across various aspects of cell function, including photosynthesis. Application of trehalose
can potentially modify this regulation to prioritize the maintenance of productive functions
under low nitrogen conditions [3]. Trehalose can be stored as a carbohydrate reserve and
energy source.

Arthrospira platensis is a filamentous photosynthetic cyanobacterium that thrives in
high alkalinity (pH 9 to 10) and high salinity [14,15]. Under stress situations, the strategic
utilization of A. platensis has been developed as a resource for compatible solutes [9] and the
production of common biopolymers [16], including glycogen [17] and PHB [10,18]. Altering
the levels of trehalose in living organisms could serve as a method to enhance performance
under nitrogen-limiting conditions [3,19]. Applying trehalose under low-nitrogen condi-
tions resulted in an increase in the assimilation of both nitrate and ammonium, leading to a
modified accumulation of amino acids [3]. This stimulation was correlated with enhanced
photosynthesis, growth, and biomass of the plants and cyanobacteria.

The current study was carried out to evaluate the efficacy of exogenous trehalose in
triggering A. platensis growth, as well as its impact on glycogen and PHB contents under
nitrogen-deficient conditions. Furthermore, we investigated the expression of glgA (which
encodes glycogen synthase) and phaC (which encodes PHA synthase) genes, crucial for the
biosynthesis of glycogen and PHB, respectively. Additionally, we conducted quantitative
and qualitative analyses of glycogen and PHB extracted from A. platensis.
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2. Materials and Methods
2.1. Bacterial Strain and Culture Conditions

The culture of Arthrospira platensis IFRPD1182 was obtained from the Institute of
Food Research and Product Development, Kasetsart University (IFRPD). The strain was
pre-cultivated in a 250-mL Erlenmeyer flask with 50 mL of Zarrouk medium (pH 10.0)
containing NaNO3 as a source of nitrogen. The cultures were incubated aerobically under
continuous white-fluorescent illumination of 40 µmolE m−2 s−1 on a rotary shaker at
120 rpm and 32 ◦C with atmospheric CO2 for 7 days. After pre-cultivation, the cells were
harvested and inoculated into 50 mL of nitrogen-deprived Zarrouk medium (−N) followed
by cultivation under continuous illumination for various times up to 5 days. Different con-
centrations of trehalose were added to the −N medium when required. Biomass production
and chlorophyll-a determination were examined according to [10,20], respectively.

2.2. Transcriptional Expression Study

Cells of A. platensis were harvested and immediately frozen in liquid nitrogen. Total
RNA was extracted using TRIZolTM reagent (Invitrogen, Waltham, MA, USA), following
the manufacturer’s instructions. RNA was treated with RNase-free DNase (Promega,
Madison, WI, USA) to remove contaminating DNA. The yield and purity of extracts were
quantified using a NanoDrop spectrophotometer (Thermo Scientific, Waltham, MA, USA).
Reverse transcription of 100 ng of total RNA per 20 µL reaction was carried out using
the RevertAid First Strand cDNA Synthesis Kit following the manufacturer’s instructions
(Thermo scientific, Waltham, MA, USA). The 286-bp of glgA, 340-bp of phaC, and 284-bp of
16S rRNA of A. platensis were amplified using PCR with specific primer pairs, FglgA: 5′-
TACGGACTCAGCCGAGAGTT-3′; and RglgA: 5′-GAAGGCAAACCGCATATTGT-3′ for
glgA; FphaC: 5′-CCCGAAGCCGTAGATATTGA-3′; and RphaC: 5′-CTTTTTCGGCGTAGA-
GGTTG-3′ for phaC; and F16S: 5′-GTTTACGGGATTGGCTCAGA-3′; and R16S: 5′-TCTTGG-
TGAAAGCCGAGAGT-3′ for 16S rRNA. The RT-PCR conditions were as follows: initial
denaturation step at 94 ◦C for 5 min, followed by 25–33 cycles of denaturation at 94 ◦C for
45 s, then annealing at 50 ◦C for 45 s, and extension at 72 ◦C for 45 s. A final extension
step was carried out at 72 ◦C for 10 min followed by reaction storage at 4 ◦C. The products
were separated by electrophoresis on a 1.2% agarose gel and visualized using a gel imaging
system (Omega FluorTM, San Francisco, CA, USA). Relative quantification of target genes
in each sample was normalized to the internal housekeeping gene, 16S rRNA, under the
same condition, which was represented as a relative transcript ratio (fold).

2.3. Glycogen Synthase Activity Assay

The activity of the glycogen synthase (GS) was determined from NADH oxidation
at 30 ◦C, according to [21]. This assay was carried out in the reaction mixture (100 µL)
containing 200 mM HEPES buffer (pH 7.0), 4 mg mL−1 glycogen, 2 mM ADPG (adenosine-
5′-diphosphoglucose disodium salt), 0.7 mM phosphoenolpyruvic acid, 0.6 mM NADH
β-nicotinamide adenine dinucleotide, 50 mM KCl, 13 mM MgCl2, pyruvate kinase (7.5 U),
lactate dehydrogenase (15 U), and an appropriate amount of crude enzyme. The GS activity
was measured spectrophotometrically at 340 nm. One unit of enzyme activity was defined
as the amount of enzyme catalyzing the consumption of 1 µmol of NADH in 1 min at 30 ◦C.
Protein content was determined by a Bio-Rad protein assay kit using bovine serum albumin
(Sigma-Aldrich, Burlington, MA, USA) as standard.

2.4. PHA Synthase Activity Assay

The amount of CoA (reaction product) produced by PHA synthase was estimated
using DL-hydroxybutyryl coenzyme A (HB-CoA) as an artificial substrate [22]. The
experiment was performed in a reaction mixture (1 mL) comprising 50 mM of DL-3-
hydroxybutyryl coenzyme A (3HB-CoA) and 20 mM 5, 5-Dithio-bis (2-nitrobenzoic acid)
(DTNB) in 100 mM Tris-HCl buffer (pH 8.0), and enzyme incubation was carried out at
30 ◦C for 1 min. The liberation of CoA was measured at 412 nm by a spectrophotometer.
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One unit of the enzyme activity was defined as the amount of enzyme that catalyzes the
conversion of 1 µmol substrate into a product in 1 min.

2.5. Glycogen Extraction and Quantitative Analysis

Glycogen was extracted from dry cells by a modified method from [23]. Briefly, dry
cells of A. platensis (0.5 g DW) were digested by 30% (w/v) KOH, incubated at 100 ◦C for
90 min, and subsequently placed on ice. To precipitate glycogen, 900 µL of cold ethanol
was added and kept on ice for 2 h. The precipitate was recovered by centrifugation at
4 ◦C, 10,000× g for 15 min. Pellets were washed twice with 90% and 70% cold ethanol,
respectively, and then dried at 60 ◦C in a heat block for 10 min. Each dried sample was
reconstituted in 200 µL of water and centrifuged at 10,000× g for 5 min at 4 ◦C, and the
supernatant was subjected to high-performance liquid chromatography (HPLC) (Waters
Corp., Milford, MA, USA) analysis. The glycogen content was determined as described
by [17]. Oyster glycogen (Sigma-Aldrich, Burlington, MA, USA) was used as the standard
for glycogen quantification.

2.6. PHB Extraction and Quantitative Analysis

The quantification of PHB was analyzed by HPLC (Waters Corp., Milford, MA, USA)
with 5 µm of InertSustain C18 reverse-phase column (I.D. 4.6 × 150 nm) equipped with an
SPD-20A UV/VIS detector at 210 nm [10]. Dry cells (0.5 g DW) were boiled with H2SO4
for 1 h to hydrolyze the PHB polymer into crotonic acid. HPLC analysis was performed
using a 20 µL sample injection. The isocratic solvent system was run at 60% (v/v) of 0.1%
acetic acid and 40% (v/v) of acetonitrile with a flow rate of 0.6 mL min−1. The HPLC
chromatogram of the sample was calculated from the regression equation derived from the
PHB standard (Sigma-Aldrich, Burlington, MA, USA) curve.

2.7. Fourier Transform Infrared (FTIR) Spectroscopy

FTIR analysis was performed in a Nicolet 6700 spectrometer (Thermo Scientific Inc.,
Waltham, MA, USA) by recording 100 scans with a spectral width ranging from 500
to 4000 cm−1, at a spectral resolution of 4 cm−1. The functional group patterns were
determined using FTIR and compared with Oyster glycogen (Sigma-Aldrich, Burlington,
USA) or PHB standard (Sigma-Aldrich, Burlington, MA, USA).

2.8. 1H- NMR and 13C-NMR Analysis

The PHB samples were dissolved in deuterochloroform, CDCl3 (Sigma-Aldrich, Burling-
ton, MA, USA), at a concentration of 10 mg mL−1. The chemical structure was character-
ized using 1H and 13C resonance frequencies. The spectra were acquired using a Bruker
AVANCE III HD/OXFORD 500 MHz NMR spectrometer. Tetramethylsilane (Si(CH3)4) was
employed as the internal shift standard.

2.9. Statistical Analysis

All experiments were performed in triplicate, and the results were presented as mean
values ± standard error of mean (SEM). One-way ANOVA was performed followed by
Tukey’s post hoc tests using the GraphPad Prism software (GraphPad Software, Version 5,
San Diego, CA, USA). A p value of < 0.05 was considered statistically significant.

3. Results
3.1. Effects of Exogenous Trehalose (Tre) on Biomass and Chlorophyll-a Contents under
Nitrogen Deprivation

The A. platensis was grown in the normal nutrient condition (+N) or nitrogen-deprived
condition (−N) with or without exogenously added Tre under continuous illumination. The
biomass and chlorophyll-a contents of A. platensis grown with deficient nitrogen decreased
significantly on the first day compared to those grown with sufficient nitrogen (Figure 1a,b).
After five days, the biomass and chlorophyll-a levels had dropped by about 70–75%, and
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the culture had turned yellowish green. Interestingly, biomass and chlorophyll-a contents
of A. platensis were enhanced at 0.003 M and 0.03 M of Tre supplementation in the −N
medium after one day. However, even at a concentration as high as 0.3 M of Tre, there was
no observed improvement against the growth inhibition caused by −N.
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Figure 1. Biomass (a) and chlorophyll-a contents (b) of A. platensis. Cells were grown photoautotroph-
ically for 5 days under normal nutrient condition (+N), nitrogen-deprived condition (−N), and −N
supplied with trehalose (Tre) (−N + 0.003 M Tre, −N + 0.03 M Tre, or −N + 0.3 M Tre). Bar graphs
represent mean values (±SEM) of three independent experiments. The letters a, b, c, and d indicate
statistically significant difference between the group in each cultivation day (p < 0.05).

3.2. Effects of Exogenous Trehalose (Tre) on Glycogen and PHB Contents under Nitrogen Deprivation

The A. platensis was cultured under the normal nutrient condition (+N) or the nitrogen-
deprived condition (−N) under continuous illumination with or without exogenously
added Tre. The glycogen content was significantly increased (54.09 ± 1.6% (w/w) DW) in A.
platensis cells grown under −N condition supplied with 0.003 M Tre for two days (p < 0.05).
Subsequently, the glycogen content declined, but it still remained higher than in cells under
−N conditions without Tre (Figure 2a). Increasing the Tre concentration with either 0.03 M
or 0.3 M in the cultures reduced the glycogen level compared to that at 0.003 M Tre on
the same days. Moreover, the PHB content of autotrophically grown A. platensis under
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−N condition increased to 2.6 ± 0.3% (w/w DW) on the first day. Particularly, the −N
conditions yielded higher levels of PHB accumulation than the +N conditions. Under the
−N condition with either 0.003 M or 0.03 M in the cultures, the increased PHB contents
ranging from 4.5 ± 0.4 to 15.2 ± 0.2% (w/w DW) were observed from day 1 to day 5
(Figure 2b). The highest PHB content (15.2 ± 0.2% (w/w DW)) was greatly increased in
cells grown under the −N condition supplied with 0.03 M Tre for three days (p < 0.05), and
the PHB contents declined after that day.
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Figure 2. Glycogen (a) and PHB contents (b) of A. platensis. Cells were grown photoautotrophically
under normal nutrient condition (+N), nitrogen-deprived condition (−N), and −N supplied with
trehalose (Tre) (−N + 0.003 M Tre, −N + 0.03 M Tre, or −N + 0.3 M Tre). Bar graphs represent mean
values (±SEM) of three independent experiments. The letters a, b, c, and d indicate statistically
significant differences between the group in each cultivation day (p < 0.05).

3.3. Effects of Exogenous Trehalose (Tre) on the Expression of glgA and phaC Genes under
Nitrogen Deprivation

The highest relative expression of the glgA gene was significantly observed in cells
grown under the −N condition supplied with 0.003 M Tre, while the phaC gene exhibited
an increase under −N with 0.03 M trehalose supplementation. Both glgA and phaC genes
increased by approximately 1.2-fold and 1.3-fold, respectively (p < 0.05), compared to cells
grown in the −N condition without Tre (Figure 3a,b). Additionally, it is noted that the
expression of glgA was detected at low levels, particularly at very high concentrations of
Tre at 0.03 and 0.3 M. On the other hand, the expression of phaC consistently remained high
across all concentrations of Tre.
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Figure 3. Transcriptional expression analysis of A. platensis glgA and phaC using RT-PCR. Cells were
grown photoautotrophically under the normal nutrient condition (+N), nitrogen-deprived condition
(−N), −N supplied with trehalose (Tre) (−N + 0.003 M Tre, −N + 0.03 M Tre, or −N + 0.3 M Tre), and
no template control (NC). The upper panel (a) shows a typical example of DNA products resolved
on an agarose gel, and the lower panel (b) shows the relative expression of glgA and phaC genes
(mean values ± SD). The 16S rRNA gene was used as a reference gene for normalizing the expression
of target genes. The relative transcript levels of target genes were represented as the fold change.
Bar graphs represent mean values of each data (± SEM) of three independent experiments. The
letters A, B, C, D, E and a, b, c, d indicate statistically significant difference between the group in each
cultivation day (p < 0.05).

3.4. Effects of Exogenous Trehalose (Tre) on Glycogen Synthase and PHA Synthase under
Nitrogen Deprivation

The specific enzyme assays were performed for the glycogen synthase (GS) and PHA
synthase (PS) by using crude extracts of A. platensis grown under the normal nutrient
condition (+N) or the nitrogen-deprived condition (−N) with or without exogenously
added Tre. The highest specific GS and PS activities were increased 1.3-fold and 1.5-fold
compared to the −N condition, approximately 89.15 and 0.68 µmol min−1 mg protein−1 in
cells grown in −N + 0.003 M Tre and −N + 0.03 M Tre, respectively (Figure 4).
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Figure 4. Specific activity determination of crude glycogen synthase (GS) and crude PHA synthase
(PS) extracted from A. platensis. Cells were grown photoautotrophically under normal nutrient condi-
tion (+N), nitrogen-deprived condition (−N), and −N supplied with trehalose (Tre) (−N + 0.003 M
Tre, −N + 0.03 M Tre, or −N + 0.3 M Tre). Bar graphs represent mean values (±SEM) of three
independent experiments. The letters A, B and a, b, c, d indicate statistically significant difference
between the group (p < 0.05).

3.5. Fourier Transform Infrared Spectroscopy Analysis

The glycogen from A. platensis cells (ApGly) grown under the nitrogen-deprived
condition (−N) supplied with 0.003 M Tre was analyzed by FTIR spectroscopy as shown
in Figure 5a. The intense band at 3241.71, 3265.25, and 3248.04 cm−1 of ApGly, glycogen
standard, and D-glucose, respectively were assigned to the O–H stretching vibration. The
ApGly showed prominent peaks at 998.31 cm−1 for the antisymmetric stretching vibrations
of C–O corresponding to the peaks recorded for the pure glycogen standard at 996.79 cm−1,
while D-glucose also showed a peak at 992.07 cm−1. The region of 1200–800 cm−1 was
assigned to the stretching vibrations of the C–O and C–C groups. Also, the PHB from
A. platensis cells (ApPHB) grown under −N condition supplied with 0.03 M Tre was
analyzed by FTIR spectroscopy (Figure 5b). The unique characteristics of ApPHB were
presented by the strong carbonyl group (C=O) at 1718.36 cm−1 and asymmetric C–O–C
stretching vibration at 1267.80 cm−1. Other adsorption bands obtained at 1452.54 and
1451.49 cm−1 designated the −CH3 groups. The absorption peaks at 2929.12, 2978.85, and
3432.72 cm−1 were characteristic peaks of alkane (−CH) and hydroxyl (−OH) groups.

3.6. NMR Analysis

The 1H-NMR spectrum of the extracted PHB, dissolved in deuterochloroform, revealed
distinct proton signals in the range of (δ) 1.267–5.276 ppm, encompassing the 3HB subunit
(Figure 6a). Within the 3-hydroxybutyrate subunit, signals in the range of 5.236–5.276 ppm
were observed for the asymmetric carbon (−CH), corresponding to the chiral carbon atom.
The multiplet resonance in the range of 2.581–2.627 and 2.450–2.492 ppm indicated di-
astereotopic methylene (−CH2) protons. Additionally, the doublet signals at 1.267–1.279 ppm
pointed to methyl protons (−CH3). The 13C-NMR spectrum displayed vibrating carbon
signals in the range of (δ) 19.760 to 169.134 ppm. A signal at 169.134 indicated carboxylic
carbon (–C=O), while the signal at 67.605 ppm indicated asymmetric carbon as −CH. The
signal at 40.786 ppm represented −CH2. Vibrating signals at 19.760 ppm were attributed to
methyl carbon (−CH3) (Figure 6b).
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4. Discussion

Trehalose is a non-reducing disaccharide extensively distributed in diverse organisms,
including bacteria, yeasts, fungi, and plants [1]. The accumulation of trehalose is involved
in response to abiotic stress, including osmotic stress [24]. However, the significance
of trehalose uptake by living cells remains uncertain, given that all organisms possess
enzymes capable of synthesizing and maintaining optimal levels for their metabolism.
There are a few scattered reports on trehalose accumulation and utilization in cyanobacteria
in response to nitrogen availability, particularly in A. platensis [8,25,26]. In conditions of
nitrogen deficiency, the treatment of appropriate exogenous trehalose resulted in increased
levels of chlorophyll-a and biomass contents in A. platensis, which contributed to the
partial alleviation of nitrogen deficiency. Likewise, the application of external trehalose
can enhance plant growth and overall performance in conditions of limited nitrogen
availability, marked by a significant increase in the upregulation of nitrate and ammonium
assimilation [3]. Under conditions of low nitrogen availability, the total carbohydrate
content, which includes sucrose, trehalose, and glucose, in Microcystis Kützing, 1846,
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cells was enhanced compared to Microcystis cultured under conditions of high nitrogen
availability [27]. According to our results, glycogen accumulation (54.09 ± 1.6% (w/w
DW) induced by exogenous trehalose (0.003 M) could alleviate the damage to A. platensis
caused by nitrogen-deprived (−N) conditions for 2 days. Indeed, glycogen accumulation is
an essential component of the nitrogen stress response in Synechococcus elongatus Nägeli,
1849 [28]. Similarly, as reported by Hasunuma et al. [23], after being subjected to −N
conditions for 3 days, A. platensis showed a significant accumulation of glycogen in its
cells, reaching 63.2% (w/w DW). These findings suggest that trehalose plays a vital role
in the glycogen accumulation in cyanobacteria under −N conditions, though the precise
mechanism of trehalose synthesis in cyanobacteria remains not fully understood [24].
Additionally, the accumulation of glycogen may be beneficial during periods of starvation,
providing both a stored source of energy and excess carbon [29]. Moreover, the flow of
photosynthetically fixed carbon is redirected not only towards carbohydrates but also
towards lipids in the metabolic pathway of protein synthesis [30].

The maximum PHB content, reaching 15.2 ± 0.2% (w/w DW), was observed in cells
cultured under −N conditions and supplemented with 0.03 M trehalose for a duration
of 3 days. However, PHB contents declined after this period. This pattern implies that
the synthesis of PHB may be triggered by the concurrent presence of trehalose and a brief
period of −N. One possible hypothesis is that PHB contents may arise from the induction
of elevated intracellular NADPH levels, which is a prerequisite for the activity of the
enzyme acetoacetyl-CoA reductase in the PHB biosynthetic pathway [31]. In addition to
trehalose, cultures incubated with different carbon sources also showed an increase in PHB
contents across different cyanobacterial species [32–34]. Remarkably, acetate yielded the
highest PHB contents in A. platensis cells [10], surpassing those supplemented with butyrate,
glucose, glycerol, and propionate under the studied conditions [10,32]. This emphasizes
the influence of carbon sources on PHB accumulation in cyanobacterial cultures under
−N conditions.

In the current study, it was found that the expression levels of glgA and phaC genes
were increased in A. platensis grown under −N conditions and supplied with appropriated
trehalose. Even when trehalose concentrations were as high as 0.03 and 0.3 M, the presence
of glgA was hardly noticeable. In contrast, phaC expression was notably evident at the
exceptionally high trehalose concentration of 0.3 M. These findings indicate a correlation
between the increase in glycogen and PHB accumulation and the up-regulation of glgA and
phaC transcripts in the presence of appropriated trehalose, particularly when A. platensis
is cultivated under −N conditions. The altered response of glgA expression under −N
conditions with trehalose supplementation might be attributed to an increase in carbon
flux towards glycogen synthesis [17]. A comparable earlier study revealed up-regulation
of the glgA and glgC genes in Synechocystis sp. PCC 6803 (Synechocystis Sauvageau, 1892)
under nitrogen-deprived conditions [35].

In addition, the highest specific activities of glycogen synthase and PHA synthase
increased by 1.3- and 1.5-fold, respectively, in cells grown under −N with 0.003 M and
0.03 trehalose supplementation, respectively, compared to cells in −N without trehalose.
This, in turn, is anticipated to boost the production of PHB under −N conditions, especially
when supplemented with trehalose. Nevertheless, at a concentration of 0.3 M trehalose,
the activity of both enzymes decreased, despite the sustained high expression of the phaC
gene, while glgA showed a notable reduction. This observation suggests that reduction
of enzyme activity can also take place at the translation level, where the translation of a
transcript can be influenced by a molecule that modifies the obstruction or accessibility of
the ribosome binding site [36]. Moreover, the PHA synthase function has been previously
elucidated in Synechocystis sp. PCC 6803, indicating mediation by the carbon-to-nitrogen
(C/N) balance. This balance serves as a probable sink for reduction equivalents, thereby
influencing PHB metabolism [37]. In A. platensis, the activity of PHA synthase relies on the
existence of the catalytic triad, which comprises the amino acid residues cysteine, histidine,
and aspartate, and it impacts PHB production [38].
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The chemical structure and composition of glycogen and PHB from A. platensis was
confirmed by FTIR and NMR analysis. Indeed, the chemical structure of carbohydrate bears
a close resemblance to alcohol (O–H) functional groups [39]. The prominent bands observed
at 3241.71 cm−1 for ApGly, 3265.25 cm−1 for the glycogen standard, and 3248.04 cm−1 for
D-glucose were attributed to the O–H stretching vibration. Remarkably, the FTIR spectrum
of D-glucose exhibited multiple bands covering the entire fingerprint region, and these
bands were narrower and sharper compared to those observed for polysaccharides [40].
However, the most significant variations in the stretching vibration of C–O, as reported for
the glycogen band, were observed in the 945-1060 cm−1 region [40,41]. In particular, ApGly
displayed prominent peaks at 998.31 cm−1 for the antisymmetric stretching vibrations
of C–O, corresponding closely to the peaks recorded for the pure glycogen standard at
996.79 cm−1, while D-glucose also exhibited a peak at 992.07 cm−1. The stretching vibration
of C–O was associated with α-1, 4 glycosidic linkage regions in polysaccharides, while
the monosaccharide was linked to the C–C group [40]. The results conclusively identified
the extracted polymer as glycogen. In addition, the distinctive features of ApPHB were
identified by the prominent carbonyl group (C=O) at 1718.36 cm−1 and the asymmetric
C−O−C stretching vibration at 1267.80 cm−1, which are indicative of ester bondings in
PHB polyesters. These patterns align with earlier reports [10]. Additionally, absorption
bands observed at 1452.54 and 1451.49 cm−1 indicated the −CH3 groups, representing
the stretching vibration for both ApPHB and the PHB standard. The absorption peaks at
2929.12, 2978.85, and 3432.72 cm−1 corresponded to characteristic peaks of alkane (−CH)
and hydroxyl (−OH) groups, respectively, in ApPHB. The structure of extracted PHB
obtained from this experiment closely resembles that of commercial PHB, characterized by
the prevalence of ester, hydroxyl, methyl, and carbonyl groups.

NMR spectroscopy is employed for detailed structural elucidation [42–44]. The 1H
NMR spectrum of PHB extracted from A. platensis revealed absorption bands for methyl
(−CH3), methylene (−CH2), and asymmetric carbon (−CH) groups, confirming that the
polymer structure was PHB. Additionally, 1H NMR has displayed multiplet signals (at
1.267–1.279 ppm, 2.450–2.627 ppm, and 5.236–5.276 ppm) indicating the presence of distinct
hydrogen atom types (−CH3, −CH2, and −CH) relative to hydrogen bonds of PHB in the
sample. The confirmation of the extracted polymer in the 13C NMR spectrum was based on
the observed shifts in the signals of the carbonyl (–C=O), asymmetric carbon (−CH), methy-
lene (−CH2), and methyl (−CH3) groups. The 13C NMR spectrum of the PHB produced by
A. platensis showed chemical shift signals corresponding to the –C=O (169.134 ppm), −CH
(67.605 ppm), −CH2 (40.786 ppm), and −CH3 (19.760 ppm) groups. The observed results
are consistent with those reported for PHB produced in Nostoc muscorum Agardh ex Bornet
and Flahault, 1886, [43] and Anabaena Bory ex Bornet and Flahault, 1886 [45].

5. Conclusions

The present study provides novel insights into the role of exogenous trehalose in
mitigating the effects of nitrogen deprivation, as well as its regulatory impact on glyco-
gen and PHB production in A. platensis. This is supported by a notable increase in the
upregulation of glgA and phaC expression, along with the induction of enzyme activity,
including glycogen synthase and PHA synthase, respectively, in A. platensis grown under
nitrogen-deprived conditions and supplied with the appropriate trehalose. FTIR, 1H-NMR,
and 13C-NMR analyses revealed that PHB was predominantly composed of butyric es-
ters. Further investigation is needed to explore the metabolic interaction among trehalose,
glycogen, and PHB accumulation in this aspect.
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