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Simple Summary: The paper investigates the evolutionary significance of genetic simplicity, propos-
ing that organisms with less complex genetic interactions (low epistasis) and genes with fewer
multiple effects (low pleiotropy) possess an evolutionary edge. This hypothesis suggests that such
simplicity could lead to greater mutational robustness, allowing these organisms to adapt more
efficiently to environmental changes. The experiment demonstrates that these simpler organisms
exhibit greater mutational robustness, challenging the traditional belief that complexity is synony-
mous with evolutionary success. The conclusion highlights the study’s findings that simpler genetic
architectures facilitate a higher degree of adaptability and evolutionary success.

Abstract: This study investigates whether reducing epistasis and pleiotropy enhances mutational
robustness in evolutionary adaptation, utilizing an indirect encoded model within the “survival of the
flattest” (SoF) fitness landscape. By simulating genetic variations and their phenotypic consequences,
we explore organisms’ adaptive mechanisms to maintain positions on higher, narrower evolutionary
peaks amidst environmental and genetic pressures. Our results reveal that organisms can indeed sus-
tain their advantageous positions by minimizing the complexity of genetic interactions—specifically,
by reducing the levels of epistasis and pleiotropy. This finding suggests a counterintuitive strategy
for evolutionary stability: simpler genetic architectures, characterized by fewer gene interactions
and multifunctional genes, confer a survival advantage by enhancing mutational robustness. This
study contributes to our understanding of the genetic underpinnings of adaptability and robustness,
challenging traditional views that equate complexity with fitness in dynamic environments.

Keywords: epistasis; pleiotropy; mutational robustness; survival of the flattest

1. Introduction

Evolution optimizes the fitness of organisms within a population over time. We often
think of this process as climbing to the peak of an imaginary fitness landscape, and while
doing so, organisms move from simpler to more complex forms of life [1]. Although, over
time, more and more information related to adaptation to the environment accumulates
in genomes [2]. In biology, the term complexity can pertain to different concepts, such
as genotypic complexity [3,4], phenotypic complexity [5], developmental complexity [6],
or the genotype–phenotype complexity [7–9], for example. However, complexity, in general,
remains an elusive term and a difficult-to-measure concept [10,11].

It has been argued that changes in complexity mostly happened at the macroevo-
lutionary level [12], which does not exclude that the complexity of organisms within a
population can also change in complexity [13] and give rise to macroevolutionary changes
later. Here, we focus on the complexity of the genotype–phenotype map and use the degree
to which genes interact with the aspect of complexity we study. Consequently, we are
addressing changes within a single population given a static fitness landscape. Therefore,
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we will focus on the complexity of interactions and use the change in these interactions as a
proxy to describe the changes in complexity at a microevolutionary level. However, given
the right evolutionary circumstances, evolution can also reduce the number of genetic
interactions and result in what one might call simpler solutions [14,15]. The question is
now about which circumstances give rise to which outcomes. However, before we get to
this question, we need to first elaborate on the interactions in the form of epistasis and
pleiotropy, explain how robustness can be affected by either, and then explore the role of
the fitness landscape.

Mutations introduce a range of genetic variations that can lead to changes in traits
known as phenotypic changes. These changes are caused by gains, losses, or modifications
to genes [16]. However, these genes do not act in isolation but instead interact with each
other [17]. Thus, these interactions, known as epistasis (ϵ) [18], play a crucial role in shaping
the ultimate effect of any given mutation. Epistatic interactions can also provide information
on how proteins, pathways, and components within cells function together [19]. These
interactions explain the complexity of some drug resistance mechanisms [20], improve the
understanding of synthetic lethality in cancer treatment [21], and provide insight into the
inheritance patterns of complex traits [22].

Positive epistasis plays a crucial role in evolutionary adaptation by facilitating syn-
ergistic gene interactions that enhance the organism’s fitness beyond the additive effects
of individual mutations. This form of epistasis can significantly contribute to the rapid
adaptation of organisms to changing environmental conditions, as it allows for the emer-
gence of complex traits that are highly beneficial for survival [23]. Conversely, negative
epistasis introduces a layer of genetic constraint that can limit evolutionary potential. This
occurs when the interaction between genes results in a phenotypic outcome that is less ad-
vantageous than expected based on the individual effects of the mutations involved. Such
antagonistic interactions can hinder the accumulation of beneficial mutations, potentially
slowing the pace of adaptation [24].

Unlike epistasis, which involves interactions between different genes, a single gene
can also influence multiple traits. This is known as pleiotropy (π) [25]. Pleiotropy demon-
strates how a single genetic variation can have wide-ranging effects on an organism’s
phenotype, potentially affecting fitness, adaptation, and disease susceptibility. For example,
pleiotropic genes have been identified as critical factors in human diseases, where a single
gene mutation can lead to multiple symptoms or conditions [26]. Studies on pleiotropy
also contribute to the understanding of biological systems, revealing how genes regulate
multiple developmental pathways to shape the form and function of an organism [27].

Robustness in biological systems refers to the ability of organisms to maintain the same
phenotypic traits despite genetic mutations or variations and environmental challenges [28].
Functional stability is essential to ensure survival and facilitate adaptation. Robustness
is achieved through various genetic mechanisms, among which epistasis and pleiotropy
play significant roles. For comparison, when a single gene is responsible for a phenotypic
trait, when it is hit by the right mutation, that trait disappears, as in the case of antibiotic
resistance [29]. However, the effect of such a mutation could be augmented if the same gene
is pleiotropic in the sense that it plays multiple roles and thus contributes to multiple traits.
A single mutation can have multiple negative effects [25]. Interestingly, this can also go in
the other direction; when, for example, a mutation enhances expression, it could benefit
multiple traits [25,30]. Mixed situations can be imagined for pleiotropic genes, where a
single mutation improves some traits while also preventing others, making pleiotropic
genes notoriously hard to study [31].

Conversely, epistasis can also modulate the effect of mutations on single genes. Positive
epistasis can lower the effect of a deleterious mutation [23,32], while negative epistasis
could enhance the effect. In the extreme case, where many genes have a high degree of
epistasis and are pleiotropic, the effects of mutations might become even less predictable
and more multifaceted.
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Consequently, π and ϵ play a crucial role during evolutionary adaptation but are also
the consequence of evolution. However, whether or not an increase or decrease in π or
ϵ makes organisms more or less robust is still highly debated [33–38]. What likely made
answering this question hard is not only the difficulty one faces when doing evolutionary
experiments with natural organisms but also the way how computational models were
made. In most previous cases related to this matter, evolution occurred at the phenotypic
level or did not distinguish between the genotype and the phenotype [39,40]. This is
especially curious, as π and ϵ are phenomena that happen in translating a genotype to
phenotype. Genes affecting multiple traits or interacting to form a trait can only occur
within a model with a genotype and phenotype. This translation from a genotype to
phenotype is called encoding within the evolutionary computation community [41] and,
of course, the subject of biological research, as we want to know how one can make an
organism’s phenotype from its genes.

We previously extended the NK fitness model with such encoding [42]. In this model,
a genotype experiences mutations that affect not only the expression of genes but also
how they interact epistatically and what pleiotropy a gene has while also resulting in
a phenotype with multiple traits. This model uses a simple matrix to determine which
gene influences which trait. Natural protein or transcription factor networks are likely
more complicated, and thus, other indirect encodings have been used [43–45]. However,
including further complications from more sophisticated models might induce other con-
founding findings, and we thus use a very simple method to model encoding. Indirect
encodings in nature come from the genotype to phenotype mapping [46], which can be
very complicated and thus result in different notions of complexity, such as genotypic,
phenotypic, or developmental complexity [47,48], and while interesting, we focus on the
relation between the components and how they map to traits in the simplest form and thus
are, as described above, considering the number of interactions as a proxy for complexity
(interaction complexity), but be aware that the notion of complexity is more nuanced in
nature. The question now is in which environment can we test whether π and ϵ increase or
decrease to facilitate mutational robustness?

One of the more interesting examples of mutational robustness and how it influ-
ences evolution is the survival of the flattest (SoF) phenomenon. Here, populations with
wider genetic variability and flatter fitness landscapes have a greater chance of enduring
and adapting in variable environments than those perched on high fitness peaks [39].
Adami et al., 2006 [40] demonstrated that a population might not remain on a high fitness
peak, instead preferring a lower one, as long as the lower peak is flatter. In this context,
a peak refers to a phenotype with higher fitness than all its mutational neighbors, specif-
ically those with a Hamming distance of 1. Flatness relates to a peak’s average fitness,
or neutral network, and describes the mean fitness of these mutational neighbors (see
Figure 1). If the mutation rate is high enough [49], populations are small [39], or the ratio
between the primary and secondary peaks is closer to 1.0 [39,49], populations will prefer
the secondary peak.

This SoF landscape also presents an interesting challenge to adaptation. The higher
and narrower peak can only be reached or remained on by a population with higher
mutational robustness against the mutation rate. Previous studies clearly showed that
reducing the mutation rate is one way un which the population can stay at a higher peak.
Alternatively, making the landscape around the higher peak wider or the flatter peak
smaller was modeling mutational robustness, and both could control the experiment’s
outcome. Previous studies considered only computational models in which there was no
distinction between genotype and phenotype. Thus, a change in the fitness landscape did
not change the way the genotype translates to the phenotype in any way, as both were
the same in these models. Here, instead, we use a model with a genotype-to-phenotype
translation and the ability to evolve π and ϵ, thus allowing us to investigate how both can
facilitate or hamper mutational robustness.
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We will show that computational model organisms having an indirect encoding
from genotype to phenotype experience the same survival as the flattest phenomenon as
directly encoded ones. However, in indirectly encoded organisms, mutational robustness
is determined by the effect that mutations have on the individual genes and how they
interact, specifically their degree of epistasis and pleiotropy. The question we answer
here, which has been debated before, is whether an increase or decrease in epistasis or
pleiotropy increases or decreases mutational robustness. We show that a reduction in
both epistasis and pleiotropy makes organisms more mutationally robust and thus allows
them to avoid the survival of the flattest tragedy of not being able to remain at a higher,
narrower peak. It is essential to note that the survival of the flattest phenomenon is
about the ability of a population to remain at a higher peak or about two populations in
competition ending with the slower replicating one outcompeting the one at the higher
peak due to mutational robustness. Therefore, we focus on epistasis and pleiotropy’s effect
on mutational robustness and a population’s ability to maintain their position at the higher
peak, and while that does not exclude a way for a population to climb to a higher peak by
reducing its mutational robustness, our work does not seek to find evidence for the latter.
We, however, argue that such a reduction in epistasis and pleiotropy reduces the number of
interactions, makes organisms less genetically complex, and thus presents another example
where evolution prefers a simpler over a more complicated solution.

W

genotype space
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0.0
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2 5

10

scondaryprimary

52

Figure 1. Illustration of the survival of the flattest phenomenon. When comparing the two peaks of
different heights, one would expect the population to sit at the highest (primary) and not a lower
adjacent one (secondary). However, if the mutation rate and the mutation effect size (horizontal
arrows) are strong enough, populations (red dots) converge on the lower one (red arrow). The y-
axis illustrates the fitness of all organisms, and the x-axis depicts the mutational distance between
genotypes. The scale bars show the mutational distance between peaks (10) or the width of the
primary (2) and secondary peak (5).

2. Materials and Methods
2.1. Indirect Encoding

The indirect encoding method distinguishes between an organism’s genotype and phe-
notype. The genotype is organized into N genes, each with an expression value—imagine
a catalytic activity, for example—in the range of [−1.0, 1.0]. Each gene can interact with
all other N genes, including itself, and these interaction weights are defined by a value
from the range [−1.0, 1.0] (see Figure 2). The phenotype can be computed by taking the
dot product between the expression values G and the interaction weights M. The resulting
phenotypic vector P is then discretized so that all positive values become 1, while all other
values become 0. This vector, of size N, is then treated as the traits of the classic NK model,
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and the fitness can be assigned depending on K. However, the degree to which genes can
interact is now freely evolvable by changing the expression values G and the weights of
the interaction matrix M, independent of K.
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Figure 2. Illustration of the indirect encoding method. Each organism possesses a genome made
from N genes. Each gene (green bar) is defined by a value and a vector of length N (circles). These
gene vectors form the interaction matrix W, and the values of each gene form the vector G. The dot
product between G and M results in the phenotype vector (orange), which becomes discretized (black
or white circles) and each element defines one of the N binary traits of the phenotype. Mutations can
now change all values in the genome, and the interaction between G and M can indirectly affect the
phenotype. In the case of direct encoding, W would be an immutable identity matrix.

2.2. Epistasis and Pleiotropy

In our extended model [42], the degree of genetic interactions determining traits is
decoupled, while those interactions can still evolve. Therefore, we need to independently
measure epistasis (ϵ) and pleiotropy (π).

First, we calculate an interaction matrix (IM) that reveals how individual genes control
individual traits. Since each organism has N genes and N traits, the IM matrix is square,
with dimensions N × N [42]. To test if a gene affects a trait, its expression value Gi is set
to −1.0 and 1.0. For both alternatives, the phenotype is constructed (P = G × M), and for
each trait, Pj, it is determined if the change in gene i alters trait j. If so, the interaction
matrix IMi,j becomes 1; otherwise, it becomes 0. The sum of each row of the matrix shows
the number of traits influenced by each gene (π), while the sum of each column shows
the number of genes contributing to each trait (ϵ). The mapping of genes to traits relies on
the mapping matrix, which evolves. Because mutations appear randomly, the resulting
vectors for π and ϵ of two organisms cannot be compared directly. To address this, we sort
the vectors from low to high [42], which ignores the exact ϵ or π of each individual gene,
but instead provides a distribution over the entire organism.

We used a method to quantify the difference between ϵ and π from the random
expectation (black line; see Figure 3). The random expectation is determined using a
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1000 mapping matrix with values drawn from a uniform distribution [−1, 1]. This method
yields a negative value if ϵ and π are lower than the random expectation and a positive
value otherwise [42].

We compute the area between the measured ϵ or π and the random expectation to
quantify the difference between them. The total area above the random expectation is
calculated independently of the area below it, resulting in two measurements, denoted
as a for above and b for below. The difference between the random expectation and the
measured ϵ or π is then quantified as the distance ∆, which is equal to the difference
between a and b (see Figure 3).

genes

π

ε
or

Figure 3. Difference between the expected distribution of epistasis (ϵ) or pleiotropy (π) and a specific
measurement. For all genes, their degree of ϵ or π, depending on what is supposed to be measured,
is obtained, and the values are sorted in an ascending manner. This results in a specific organism’s
value distribution (red line). This needs to be compared to the random expectation (black line). Thus,
the surfaces between both lines (red and black) that are above (a) the random expectation, shown
in orange, and their negative counterparts below (b) the expectation, shown in blue, are measured.
The total difference is then determined to be a − b. In the vast majority of measurements taken,
the measurements illustrated as the red line do not straddle above and below the expectation but are
strictly on either side. This method, however, takes care of intermittent cases where values end up
not being strictly above or below.

2.3. Two-Peak Model

The computational model [50] to test the survival of the flattest phenomenon is almost
identical to the one used by Channon et al., 2011, which itself follows the experimental
design of Wilke 2001 and Comas 2005 [39,51]. In this landscape (see Figure 1 for an
illustration), the traits selected are a binary vector of length N = 20. However, there are
only two peaks exactly ten mutations away from each other. The primary peak has a fitness
of one, with a mutational neighborhood with a Hamming distance of 1, with each genotype
having a lower fitness. When not explicitly specified, that fitness is 0.5. The height of the
secondary peak (Wsec) is lower depending on the conditions tested (here 0.6, 0.7, 0.8, or 0.9).
The mutational neighborhood includes up to four more mutations. Their height depends
on their Hamming distance linearly dropping (Hamming distance of 1 has a fitness of
0.8Wsec, distance 2 0.6Wsec, distance 3 0.4Wsec, and finally distance 4 0.2Wsec). All other
genotypes have a fitness of 0.0.

The main difference between the two-peak model used here and the predeces-
sors [39,50,51] is indirect encoding; while fitness is still calculated based on the organism’s
traits defined by its phenotype, indirectly encoded organisms have a genome that deter-
mines the phenotype, and while the location of a peak defines the phenotype, it does not
define the genotype. Thus, here, two random organisms with an indirect encoding are
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generated until we find a pair whose phenotype has a Hamming distance of 10. Then,
the fitness values for the peaks and surrounding mutations are defined.

In this experiment, half of the population starts at the primary peak, and the other half
starts at the secondary peak. This is carried out by generating a random organism and using
its phenotype to define where the highest peak is. Then, organisms are generated at random
until one is found that has exactly ten phenotypic traits different than the first, which is used
to define the center of the second peak. This method is necessary to prevent organisms from
evolving all their sites to 0. In the indirect encoded model, if all elements in the mapping
matrix become negative or 0.0, the resulting phenotype is also all 0 with no interaction
between genes. This does not imply that the trait in question is removed, like the loss of
a phenotypic feature. It means that this trait now has a value of 0 instead of 1. Similarly,
traits are not added when their value becomes 1 which is a limitation of this computational
model system [48]. Instead, in this static fitness landscape, we have N = 20 traits in the
state of 0 or 1. One could think of these traits as the white or black color of the peppered
moth Biston betularia [52], which evolves from being white to black as a response to the
pollution caused by the Industrial Revolution. Here, white would be the absence or low
expression of a pigment (lack of interactions), while the black phenotype would require the
presence or upregulated expression of a pigment (presence of interactions).

Thus, a genotype of all 0 could be adaptive when either of the peaks or their respective
vicinity has that phenotype. However, since we first pick a random genotype, which has
on average half of its phenotypic sites 0 and the other 1, and the secondary peak to have
50% of these sites flipped from 0 to 1 or 1 to 0, we ensure that at least five phenotypic sites
have to change from 0 to 1 (on average), which can not be achieved by just removing all
interactions. Even if, by chance, the second peak is accidentally at the phenotype made
from all 0, it would be not only an infrequent occurrence (with a chance of 9.54 × 10−7

considering 20 times the same draw from a binomial distribution with p = 0.5), but it
would also happen into the other direction in half of the cases. In other words, the selection
of peaks for the high number of samples, and the juxtaposition of both peaks to be ten
mutations different from each other, prevents adaptation from just removing all interactions
to achieve high fitness.

Like in the previous models, organisms can evolve for 10,000 generations, given a
specific mutation rate µ and population size. It was recorded if, within this time, either of
the peaks was vacated, indicating that a population either lost both or converged on the
other peak. A peak is considered vacated when no individuals are present anywhere in its
mutational range. This experiment was repeated 10,000 times. Given the times at which
the primary P1 and secondary P2 peaks were vacated, we can calculate the fraction of times
that the population remained at the highest peak:

p(P1) =
P1

P1 + P2 + 1
(1)

In Equation (1), a pseudo count of 1 accounts for very high mutation rates in which
neither peak remains populated. This approach allows us to examine the dynamics of the
survival of the flattest phenomenon and understand how the population navigates the
rugged fitness landscape under different mutation rates and population sizes. The results
can then be analyzed to determine the influence of the indirect encoding and the adaptabil-
ity of mutational robustness on the population’s ability to avoid the survival of the flattest
phenomenon and find higher fitness peaks.

2.4. Changing Epistasis and Pleiotropy while Keeping the Phenotype Identical

The indirect encoding method provides a unique opportunity to study how different
genotypes result in the same phenotype vector, allowing for an exploration of the effects of
varying epistatic and pleiotropic interactions on mutational robustness. By manipulating
the gene expression values G and interaction weights M while keeping the phenotype con-
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stant, we can observe the consequences of changes in ϵ and π on an organism’s adaptability
and survival.

To study these effects, we implement a Hill climber algorithm that compares an
organism with its mutant counterpart, which has the same phenotype but different degrees
of ϵ or π. Depending on our goal, we can either maximize or minimize these values
and observe the resulting changes in mutational robustness. We can also simultaneously
manipulate ϵ and π or choose one randomly to emulate drift.

In this experiment, we generate a random mutant with µ = 0.001 until we find one
with an identical phenotype. If the mutant has a different degree of ϵ or π, it is retained,
given the direction in which ϵ or π should be changed: higher or lower. The selection
process is then repeated 100 to 1000 times. Throughout this process, the phenotype remains
constant, ensuring that the organism’s position in the fitness landscape is unchanged.
However, the values of ϵ and π can be altered, allowing us to observe the impact of these
changes on mutational robustness.

3. Results

The two-peak model has previously been tested only on directly encoded organ-
isms [50,51]. It demonstrated that, in the absence of the capacity to evolve mutational
robustness, the probability of staying at the higher peak given the mutation rate depends
on three factors: the height of the second peak, population size, and the flatness of the first
peak. Consequently, we expect the same parameters to control the adaptation of indirectly
encoded organisms. Namely, lower mutation rates or lower secondary peak heights allow
populations to stay on the higher peak, and smaller population sizes also cause populations
to leave earlier.

Upon varying the height of the second peak (0.6, 0.7, 0.8, and 0.9) or the population size
(ranging from 100 to 1000), we find our expectations corroborated (see Figure 4). The critical
mutation rate, at which a population can no longer remain at the highest peak, decreases as
the secondary peak becomes taller. Likewise, larger populations can withstand a higher
critical mutation rate before they cannot stay at the higher peak.

0.
00

01
0.

00
05

0.
00

1
0.

00
5

0.
01

0.
02

0.
05 0.
1

0.
2

0.
3

0.0
0.2
0.4
0.6
0.8
1.0

p(
P 1

) height
P2 = 0.6
P2 = 0.7
P2 = 0.8
P2 = 0.9

Figure 4. Survival of the fittest versus flattest. The x-axis shows the mutation rate µ, and the y-axis
shows the ratio of experimental runs that remained on the highest fitness peak P1 compared to all
experiments that did not stay on either peak P1 or P2. The population size was varied, and results
shown as a solid line indicate a population size of N = 1000, dashed for N = 100. The height of the
second peak was varied (0.9, 0.8, 0.7, and 0.6); see the legend for the corresponding colors.
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The critical mutation rate for a population to leave a peak is also influenced by the
direct mutational environment of the higher peak. The higher the fitness of the mutants
surrounding the highest peak, the greater the critical mutation rate must be for the popula-
tion to vacate the peak. This effect is corroborated in the two-peak model using indirect
encoding (see Figure 5).

0.
00

1
0.

01
0.

05 0.
2

0.0
0.2
0.4
0.6
0.8
1.0

p(
P 1

)
W

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Figure 5. Survival of the flattest versus the drop in fitness surrounding the higher peak. All one-
mutant neighbors around the higher primary peak were set to different fitness values (0.1 to 0.9 in
0.1 increments; see legend for the color code), and the likelihood for the population to remain at the
primary peak (y-axis) was plotted against the different mutation rates (x-axis). Populations of size
100 were tested in 10,000-replicate experiments.

These results confirm that applying the two-peak model to indirectly encoded or-
ganisms, which can potentially evolve mutational robustness and vary in their ϵ and π,
produces the same observations regarding the survival of the flattest phenomenon.

We observed that organisms adapt to more rugged adaptive landscapes (where
genotype-to-phenotype relationships are more complex) by reducing ϵ and π [42]. We
hypothesize that the reduction in ϵ and π causes organisms to experience the survival of
the flattest phenomenon less frequently. We propose that to have a chance of staying at a
higher peak, organisms increase their mutational robustness by decreasing ϵ and π. It is
known that ϵ is correlated with mutational robustness [49].

Consequently, we predict that organisms should experience survival of the flattest
frequently with a higher degree of ϵ. We believe that π plays a similar role, with a gene
having more interactions being less robust to mutations. Therefore, a higher degree of π
should also lead to organisms experiencing the survival of the flattest effect more often.

To test these hypotheses, we took randomly generated organisms with indirect encod-
ing. We determined the critical mutation rate at which they could not remain on the primary
peak in the two-peak landscape given the height of the secondary peak (see Figure 6 black
line). As expected, the higher the secondary peak, the lower the critical mutation rate at
which populations vacate the primary peak.
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Figure 6. Probabilities for populations to remain at the primary peak under various conditions in the
two-peak model. Each row depicts results for different heights of the secondary peak (WP: 0.6, 0.7,
0.8, and 0.9). In each sub-panel, the black line indicates the likelihood of remaining at the primary
peak (y-axis) given the mutation rate µ (x-axis). The other colors (blue, light blue, orange, and red)
indicate that the organism first experienced different rounds of bias to ϵπ (left column), ϵ (middle
column), or π (right column). Light blue indicates 100 rounds of decrease, in dark blue, 1000 rounds,
in orange, 100 rounds of increase, and in red, 1000 rounds of increase. Since changing the product of
ϵ and π has almost identical effects to changing ϵ or π independently, the columns appear to be very
similar. They are thus given as a confirmation for that it does not illustrate a difference.

To assess the effect of ϵ and π, we took the same randomly generated organisms. Still,
before exposing them to the two-peak landscape, we artificially increased or decreased
their levels of ϵ and π using a hill climber (see Materials and Methods). Observe that the
hill climber is not supposed to model an evolutionary process; it is only used to alter ϵ
and π so we can test those organisms in the SOF landscape. We found that, as predicted,
organisms with increased ϵ or π have a lower critical mutation rate, while decreased ϵ and
π result in a higher critical mutation rate (see Figure 6). Moreover, the critical mutation
rate also depends on how much ϵ and π were modified. Finally, the effect of altering ϵ and
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π together, or each individually, is nearly indistinguishable, suggesting that a change in
one causes a change in the other in the same direction. Such behavior might be explained
by the relationship between genes and traits. If we consider a functional matrix that maps
a column of components to a row of functions, we can define epistasis for a trait as the sum
of a column and pleiotropy as the sum of a row. If we were to alter that matrix, such as by
removing a connection between a gene and a trait, then both ϵ and π would be reduced.
This concept applies to any functional mapping matrix and is not reliant on a specific model.
We consequently believe that this constraint affects ϵ and π in the same manner.

These findings suggest that organisms could endure the survival of the fittest phe-
nomenon for more extended periods if they decreased ϵ and π.

4. Discussion

Incorporating indirect encoding into our evolutionary model maintains phenotypic
selection pressures while introducing a new dimension to the fitness landscape through
genotypic mutations. Unlike indirect encoding, where genotypic alterations directly trans-
late to phenotypic changes, the indirect approach introduces a broader array of potential
genotypic variations, especially epistatic and pleiotropic effects. This change in the interac-
tion complexity alters the fitness landscape, yet our findings reveal that the SoF principle
can still be observed. Indirectly encoded organisms face challenges in sustaining themselves
on the evolutionary peak, especially as mutation rates climb, population sizes diminish,
or the secondary peak’s prominence increases. Thus, mutational robustness is still present,
and therefore, the SoF landscape allows us to investigate how epistasis and pleiotropy
facilitate said robustness.

Our analysis demonstrates that organisms exhibiting lower levels of epistasis and
pleiotropy exhibit enhanced mutational robustness, stabilizing their position at the highest
peak. This insight underscores the intricate balance between genetic architecture and
evolutionary adaptability, highlighting how the configuration of genotypic to phenotypic
mappings can significantly influence an organism’s evolutionary trajectory.

While our computational model and the concept of indirect encoding serve as abstract
representations of genetic interactions, they offer valuable insights that may align with
biological realities. The model suggests that organisms characterized by lower levels
of π and ϵ exhibit greater mutational robustness—a hypothesis that merits empirical
investigation in natural settings. Similarly, more complicated models incorporating indirect
encoding, such as gene regulatory networks, should be tested for the same effect. While we
expect the same phenomenon to occur qualitatively, we also expect quantitative differences.
However, our proposition aligns with the broader scientific inquiry into genetic robustness
and its evolutionary implications, suggesting that similar principles could underpin both
computational and biological systems.

Moreover, our findings contribute to the ongoing debate about complexity in biologi-
cal systems, specifically the complexity of interactions between genes and traits. Contrary
to the prevailing notion that complex environments necessitate complex genetic archi-
tectures, our model presents a counter-narrative. It illustrates that simplicity, regarding
reduced genetic interactions and functionalities, can confer a survival advantage in certain
evolutionary landscapes.

While our results show that organisms can remain at high and narrow peaks by
reducing epistatic interactions and pleiotropy of genes to increase mutational robustness, it
falls short of elucidating the evolutionary journey from a lower to a higher peak. The SoF
landscape is characterized by a vast fitness valley between the lower (ancestral) peak
and the higher one. Valley crossing mutations are required to traverse this landscape to
transition from a lower, broader peak to a higher, narrower one. However, we have not
studied this phenomenon here.

Still, we can imagine a dynamic landscape where peaks evolve—growing higher and
narrower—suggesting that organisms must adapt by honing their mutational robustness
to secure their position atop the increasingly precarious peak, thereby avoiding descent
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into less optimal fitness zones. Our study demonstrates that adaptation, in terms of
retaining a position on the higher peak, can be achieved by reducing π and ϵ. However, this
mechanism’s role in the ascent of the fitness landscape needs to be verified using alternate
fitness models. This exploration underscores the interplay between genetic architecture
and evolutionary dynamics. Future research, perhaps utilizing models with temporally
varying landscapes, is crucial to unravel these dynamics further.

5. Conclusions

Our investigation into the evolutionary dynamics within the framework of indirect
encoding has shed light on the interplay between genetic architecture and evolutionary
adaptability. In the survival of the flattest (SoF) fitness landscape, evolving organisms
struggle to remain at the highest peak as their vulnerability to mutations drives them
towards a flatter and broader peak. We have shown that reducing epistasis and pleiotropy
levels enhances mutational robustness, enabling organisms to maintain their foothold on the
higher peak. This insight is crucial, suggesting that simplicity in genetic interactions may
be a favored evolutionary strategy under the conditions exemplified here. Moreover, this
work contributes to the broader discourse on biological complexity, challenging the notion
that complexity is a prerequisite for adaptation and survival within an evolving population.

However, the hypothesis that organisms with lower π and ϵ levels exhibit greater
mutational robustness beckons further investigation in natural settings, while we have
demonstrated the potential for adaptation by reducing genetic interactions, the evolu-
tionary pathways leading from lower to higher peaks—especially across vast fitness val-
leys—remain unexplored within our current model. Future research, potentially employing
models with temporally evolving landscapes, will be essential to unravel the role of muta-
tional robustness in evolutionary adaptation fully.
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