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Simple Summary: Both larvae and adults of the Henosepilachna vigintioctopunctata (F.) (Coleoptera:
Coccinellidae) can feed on potato, tomato, and eggplant leaves, though potatoes serve as the most
suitable host for the H. vigintioctopunctata. Owing to the differing planting times of potatoes, tomatoes,
and eggplants, H. vigintioctopunctata adults must migrate to tomato or eggplant leaves for feeding to
ensure continuous food availability. Therefore, under wild field conditions, host transfer between
larvae and adults of the H. vigintioctopunctata is a normal phenomenon. Generally, the feeding experi-
ences of both larval and adult hosts influence the survival and reproduction of the adult ladybird
beetle. To ascertain the impact of larval and adult hosts on the performance and preference of adults,
we allow H. vigintioctopunctata larvae and adults to either continue or change their feeding experience
on potato, tomato, and eggplant leaves. Our results indicate that the adult feeding host dictates the
fecundity and preferences of the adult, independent of the larval feeding experience. While host
switching between larval and adult stages yields fewer benefits for H. vigintioctopunctata performance
compared to a consistent potato leaf diet, it facilitates food access for H. vigintioctopunctata. Hence,
under wild field conditions, we can adjust the planting intervals between eggplants, tomatoes, and
potatoes to prevent host switching between larva and adult H. vigintioctopunctata, thereby ecologically
controlling the populations of H. vigintioctopunctata.

Abstract: Both larvae and adults of the Henosepilachna vigintioctopunctata feed on leaves of potatoes,
tomatoes, and eggplants. Given the variation in planting times of host plants in the Jianghan
Plain, host switching between larvae and adults of H. vigintioctopunctata is inevitable to ensure
continuous food availability. We evaluated the effect of consistent versus diverse larval and adult
host plant feeding experience on growth performance, fecundity, longevity, and feeding preferences
of H. vigintioctopunctata through match-mismatch experiments. Host plant quality significantly
influences larval development and adult reproduction. Potatoes are identified as the optimal host
plant for H. vigintioctopunctata, whereas eggplants significantly negatively affect the adult fecundity.
Adult stage host feeding experience determines the fecundity of H. vigintioctopunctata, irrespective
of the larval feeding experience. The fecundity of H. vigintioctopunctata adults on eggplant leaves
remains significantly lower than that observed on potato leaves. Similarly, adult H. vigintioctopunctata
demonstrate a preference for consuming potato leaves, irrespective of the larval feeding experience.
Although host switching between larval and adult stages offers lesser benefits for the performance of
herbivorous insects compared to a consistent diet with potato leaves, it maintains H. vigintioctopunctata
population continuity amidst shortages of high-quality potato hosts.
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1. Introduction

The nutritional content (proteins, carbohydrates, fats) and secondary metabolites of the
host plant determine the growth, development, and reproduction of herbivorous insects [1,2],
as well as the insects’ immunity and tolerance to biotic (natural enemies, pathogenic
bacteria) [3–5] and abiotic factors [6,7]. However, the nutritional content and secondary
metabolites of host plants is subject to change due to variations in plant varieties [5],
growth phases [8] and environmental condition [9]. Consequently, herbivorous insects
reared on plants of differing quality exhibit significant variations in development time and
life history traits, such as fecundity, and hatchability [10–12]. To mitigate the effects of
environmental heterogeneity on insect growth, development, and reproduction, certain
polyphagous insects strategically optimize nutrient intake by consuming mixed diets or
alternating between host plants, thus minimizing adaptive damage [13]. For instance,
larvae of Grammia incorrupta (Edwards, 1881) (Lepidoptera, Arctiidae) consume various
host plants throughout their development to aids in meeting nutritional requirements and
circumventing excessive intake of defense compounds, thereby enhancing immunity and
resistance to pathogens and parasites [14–16].

However, owing to the restricted mobility of most herbivorous insect larvae, par-
ticularly Diptera and Coleoptera, these larvae are incapable of moving among multiple
hosts [17]. Given that host plant availability and quality vary seasonally, adults may
encounter hosts different from those experienced by their larvae [18]. Therefore, host
switching from larvae to adults is more prevalent among herbivorous insects, particularly
when both life stages feed on the plant [19,20]. However, the decision-making process of
herbivorous insects regarding the feeding on a variety of food sources and the switching of
hosts, either between or within host plants, is influenced by the costs and benefits associ-
ated with such behavior [13]. For instance, the behavioral and physiological adjustments
of herbivorous insects to their original host can influence their successful adaptation to
and utilization of new hosts, which, in turn, impacts their development and reproductive
success [21–23]. At the same time, herbivorous insects are constrained by biological factors
such as predation risk, competition, or parasitism during host switching, thereby reducing
the possibility of host switching between larvae and adults [24]. Generally, the advantages
of host switching between larvae and adults surpass the associated costs. This necessity
arises as most adults require food post-emergence to fulfill their nutritional needs essential
for growth and reproduction, even in the face of external environmental interference.

Host selection and host switching can occur concurrently during the feeding phase of
newly emerged adults [25]. The selection of diverse host plants by new emerged adults are
a critical determinant in the host-switching process between larvae and adults. However,
the purported strong correlation between larval experience and the host plant preferences
of eclosion adults remains contentious [26]. For example, Silva (2014) [27] highlight that
feeding experiences during the larval stage may influence adult host selection, resulting in a
tendency for adults to favor familiar hosts over other acceptable or potentially superior host
plants. Additionally, Bernays (1996) [28] and Del Campo (2000) [29] also note that adults
exclusively accept familiar hosts as suitable for colonization. However, Cai (2014) [30]
and Xiao (2023) [31] argue that certain volatile compounds, such as (Z)-3-hexenyl acetate
and monoterpenoids, produced by plants, can influence adults’ selection of new host
plants. Consequently, emerging adults often exhibit an “innate” preference for certain hosts,
despite lacking prior experience with these hosts during the larval stage. Alternatively,
herbivores may preferentially feed on hosts whose nutritional content is more beneficial
to insect development [32–34]. Therefore, examining the impacts of host choice and host
switching on the life history performance (lifespan and reproduction) of adult stages
offers a comprehensive understanding of the ecological and evolutionary determinants of
these behaviors [35]. Match-mismatch experimental designs maintaining the experimental
population in identical environmental conditions or transferring it to varied environmental
conditions after a specified period are frequently utilized to study host selection and host-
switching between larvae and adults [1,36,37]. These designs facilitate the investigation
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of the significance of specific life stages in influencing insect life history performance and
preferences, offering insights into the underlying mechanisms and functions [35].

Henosepilachna vigintioctopunctata (Fabricius) (Coleoptera: Coccinellidae), also known
as the 28-spotted potato lady beetle in China, is an oligophagous insect and one of the most
economically significant pests of eggplant, tomato, potato, and other Solanaceae plants
in the Jianghan Plain [38,39]. Both adults and larvae of H. vigintioctopunctata feed on the
leaves of eggplant, tomato, and potato. The planting period for eggplant and tomato spans
from April to November, whereas the planting time for potatoes typically extends from
November of the previous year to May of the following year in the Jianghan Plain. Although
the planting time differences between eggplant, tomato, and potato prompt a host switch
between the larvae and adults of H. vigintioctopunctata, they also ensure a continuous food
source for this species. Therefore, in this study, we utilized the match-mismatch experiment
to (1) investigate the effects of constant versus changing larval and adult feeding experiences
on the life history of H. vigintioctopunctata; (2) explore the correlation between larval stage
host food and adult stage selection preferences; and (3) analyze the correlation between
the performance and preference of the H. vigintioctopunctata for different hosts and the
nutritional content of the host plants.

2. Materials and Methods
2.1. Host Plant

The major cultivars grown throughout the Jianghan Plain include the potato Solanum
tuberosum, tomato Solanum lycopersicum (L402, Xi’an Hejia Seed Co., Ltd., Xi’an, China), and
eggplant Solanum melongena (Eyou, Wuhan Hongda Seed Co., Ltd., Wuhan, China), which
were cultivated in the greenhouse at 25 ± 2 ◦C under a 16:8 h light-dark regime. Plants
were grown in plastic pots (20 cm in diameter and 16 cm in height, filled with sandy loam)
without the use of pesticides in the same greenhouse.

2.2. Insect Material

Ten pairs of H. vigintioctopunctata adults were collected from host plants of potato
in Jingzhou city, China (112◦18′ S, 30◦35′ E). A stock colony of H. vigintioctopunctata was
reared on potato and maintained in Petri dishes (140 mm in diameter) in an incubator
(GZX-400BS-III, Shanghai Xin-Miao Medical Equipment Manufacturing Co., Ltd., Shanghai,
China), set at 26 ± 1 ◦C, with a 16:8 (L:D) photoperiod and 75 ± 10% humidity. All of
the eggs used in this study were collected from second-generation, laboratory-reared
H. vigintioctopunctata adults.

2.3. Match-Mismatch Experimental Design

To investigate the impact of consistent and variable host plant availability on the life
history performance of H. vigintioctopunctata, nine different match-mismatch experimental
designs were established. We selected 900 larvae that hatched on the same day to constitute
our experimental population. Subsequently, we divided these 900 larvae into three equal
groups, with each group consisting of 300 larvae. Each group was then raised on a
different host of leaf: potato, eggplant, or tomato, until all larvae reached pupation. We
placed 10 H. vigintioctopunctata larvae in petri dishes with filter paper and established
30 replicates to compare the effects of potato leaves, tomato leaves, and eggplant leaves on
the development and survival of H. vigintioctopunctata larvae. The development period and
survival rate of H. vigintioctopunctata larvae on eggplant, potato, and tomato were recorded
daily, and the weight of 30 H. vigintioctopunctata pupae on different hosts was measured
using an Ohaus balance (Model AX2242H/E, Ohaus, Parsippany, NJ, USA). Subsequently,
we divided the emerging adults that larvae fed on the same host plants into three equal
parts for match-mismatch experiments. H. vigintioctopunctata larvae were initially fed potato
leaves, with one-third of the newly emerged adults subsequently fed potato leaves (Potato-
Potato, PP), while the remaining two groups were fed eggplant leaves (Potato-Eggplant, PE)
and tomato leaves (Potato-Tomato, PT), respectively. Similarly, H. vigintioctopunctata larvae
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were initially fed on eggplant leaves, and then one-third of the newly emerged adults were
fed eggplant (Eggplant-Eggplant, EE), potato (Eggplant-Potato, EP), or tomato (Eggplant-
Tomato, ET) leaves, respectively. In a similar vein, H. vigintioctopunctata larvae fed on tomato
leaves, and then one-third of the newly emerged adults were fed tomato (Tomato-Tomato,
TT), potato (Tomato-Potato, TP), or eggplant (Tomato-Eggplant, TE) leaves, respectively
(Figure 1). The preoviposition period, oviposition period, fecundity, and the longevity of
both female and male adults across these nine treatments was documented until all adults
died. At the same time, the preadults survival rate of H. vigintioctopunctata on eggplant,
tomato and potato dictated the number of replicates in the match-mismatch experiments.
We adopted the two-sex life table to solve the condition that the male-to-female ratio
during the experiment was not 1:1 [40]. When the number of females exceeded that of
males, we arranged for mating between the surplus females and males not involved in the
experiment, subsequently tracking the fecundity and longevity of H. vigintioctopunctata
female. Conversely, when males outnumbered females, we maintained the males separately,
monitoring their longevity under each treatment until death. The numbers of female and
male replicates across different treatments are shown in Table S1.
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Figure 1. Each group, consisting of 300 H. vigintioctopunctata larvae, was raised on a different host
plant leaf: potato, eggplant, or tomato, until all larvae reached pupation. Subsequently, we divided the
emerging adults from the same host plants into three equal groups for match-mismatch experiments.
H. vigintioctopunctata larvae were initially fed potato leaves, with one-third of the newly emerged
adults subsequently fed potato leaves (Potato-Potato, PP), while the remaining two groups were fed
egg-plant leaves (Potato-Eggplant, PE) and tomato leaves (Potato-Tomato, PT), respectively. Similarly,
H. vigintioctopunctata larvae were initially fed on eggplant leaves, and then one-third of the newly
emerged adults were fed eggplant (Eggplant-Eggplant, EE), potato (Eggplant-Potato, EP), and tomato
(Eggplant-Tomato, ET) leaves, respectively. In a similar vein, larvae fed on tomato leaves, and then
one-third of the newly emerged adults were fed tomato (Tomato-Tomato, TT), potato (Tomato-Potato,
TP), and eggplant (Tomato-Eggplant, TE) leaves, respectively.

2.4. Adult Feeding Preference Experience

Newly hatched H. vigintioctopunctata larvae were fed on potato, tomato, or eggplant
leaves until pupation. For each host plant, 50 H. vigintioctopunctata female that emerged
on the same day were selected for feeding preference experiments. One potato, tomato,
and eggplant plant were placed in three corners of a net chamber (40 cm high, 90 cm
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long, 50 cm wide). We then placed ten newly emerged H. vigintioctopunctata females,
previously fed on the same host plant (potato, tomato, or eggplant), in the center of the
net chamber to ensure that they were equidistant from the three host plants, allowing free
choice. After 24 and 48 h, the number of H. vigintioctopunctata adults on each plant was
recorded. Simultaneously, after 48 h, all potato, tomato and eggplant leaves damaged
by the H. vigintioctopunctata adults were removed from the net chamber, scanned with a
flatbed scanner, and the consumed area was estimated using ImageJ (https://ij.imjoy.io/,
accessed on 3 May 2023). The consumed mass by H. vigintioctopunctata adults on different
host plants was calculated based on the mass of known areas of each plant. We established
the linear correlation between the weight and area of host plant leaves. Subsequently, we
calculated the feeding weight of H. vigintioctopunctata on various host plants based on the
feeding area. The preference experiment for H. vigintioctopunctata adults in each host plant
treatment was conducted in five replicates.

2.5. Nutrient Components of Host Plant Leaves

The water content, crude fat, total protein, total carbohydrate and total amino acid
contents in young potato, tomato and eggplant leaves were measured. (1) Water content:
0.1 g of fresh leaves was placed into a 1.5 mL centrifuge tube. The total weight (W1) of
the leaves and centrifuge tube was measured, and then the centrifuge tube containing
the fresh leaves was placed in an oven set at 60 ◦C for 24 h, followed by cooling for 2 h,
before weighing the centrifuge tube and leaves again (W2). Water content = W1 − W2;
(2) crude fat: 2 mL of a chloroform and methanol mixture (chloroform: methanol = 2:1,
v/v) was added to the centrifuge tube containing the dry leaves, and then the dry leaves
were ground into a homogenate. We removed the supernatant after the centrifuge tube
was centrifuged at 12,000 rpm for 10 min. Subsequently, we added 2 mL of the mixture to
the centrifuge tube and repeated the centrifugation once. The centrifuge tube residue (W3)
was weighed after being placed in an oven at 60 ◦C for 72 h. Crude fat content is calculated
as W2 − W3. (3) Total protein, carbohydrate and total amino acid content: A plant protein
quantification kit (Coomassie Brilliant Blue method), total amino acid determination kit,
and soluble sugar content test kit (colorimetric method) (Nanjing Jiancheng Bioengineering
Institute) were utilized to measure the total protein, total soluble sugar, and total amino
acid content in host plant leaves, respectively.

2.6. Data Analyses

Univariate ANOVAs were conducted to assess the impact of the host plant on lar-
val and pupal development times, survival rates, and the pupal dimensions (weight,
length, and width) of H. vigintioctopunctata. Similarly, in the feeding preference experiment,
ANOVAs were conducted to assess the weight of consumed by H. vigintioctopunctata on
different host plants. Generalized linear mixed-effects models (GLMMs) were utilized to an-
alyze the effects of larval and adult feeding experiences on the performance and preference
of adult ladybirds. For the statistical outputs analyzed with GLMMs, tables of variance
analysis displaying F- and p-values are presented. Post-hoc analyses based on the GLMMs
were employed to compare significant differences in the preoviposition and oviposition
periods, as well as the longevity (female and male) and fecundity of H. vigintioctopunctata
adults, across nine treatments.

3. Results
3.1. Effects of Host Plants on the Development of Larvae and Pupae of H. vigintioctopunctata

No significant difference was observed in the mean development times (d) of the first
instar (L1) and pupa, as well as in the pupal length (mm) of H. vigintioctopunctata reared
on potato, tomato, and eggplant. The development period of the second instar (L2) of
H. vigintioctopunctata reared on tomato (2.62 d) was significantly shorter than that on potato
(2.88 d) and eggplant (3.17 d). No significant difference was found in the development
period of the third instar (L3) of H. vigintioctopunctata reared on tomatoes (2.82 d) and

https://ij.imjoy.io/
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potatoes (2.85 d), yet this period was significantly shorter than on eggplant (3.75 d). The
development time of the fourth instar (L4) of H. vigintioctopunctata fed on potato leaves
(5.18 d) was significantly shorter than that on tomatoes (5.63 d) and eggplant (6.0 d).
Although the total larval stage of H. vigintioctopunctata reared on potato (14.28 d) was
significantly shorter than on tomato (15.11 d) and eggplant (16.61 d), the larval survival rate
reared on potato (68%) was significantly lower than on tomato (91%) (Table 1). The pupal
weight and width of H. vigintioctopunctata reared on eggplant (15.62 mg and 6.69 mm) was
significantly lower than those reared on potato (21.14 mg and 6.89 mm) (Figure 2).

Table 1. Mean (±SE) of developmental time (d) and survival rate (%) of H. vigintioctopunctata reared
on potato, tomato and eggplant.

Stage
Host Plant

Potato Tomato Eggplant

L1 (d) 3.47 ± 0.09 a 3.65 ± 0.09 a 3.73 ± 0.09 a
L2 (d) 2.88 ± 0.09 b 2.62 ± 0.06 c 3.17 ± 0.10 a
L3 (d) 2.85 ± 0.10 b 2.82 ± 0.07 b 3.75 ± 0.08 a
L4 (d) 5.18 ± 0.13 c 5.63 ± 0.06 b 6.00 ± 0.09 a

Pupa (d) 3.78 ± 0.06 a 3.73 ± 0.05 a 3.72 ± 0.05 a
Total larval stage (d) 14.28 ± 0.19 a 15.11 ± 0.09 b 16.61 ± 0.19 a

Larval survival rate (%) 68.0 ± 5.5 b 91.0 ± 3.4 a 74.9 ± 7.7 ab
The means followed by different letters in the same row are significantly different between different host plant at
5% significance level. L1 (the first instar); L2 (the second instar); L3 (the third instar); L4 (the fourth instar) and
d (days).
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“ns” indicates no significant difference in the pupal length of H. vigintioctopunctata when fed on
tomato, eggplant, and potato. “*” means significant difference in the pupal weight and pupal width
of H. vigintioctopunctata when fed on tomato, eggplant, and potato.

3.2. Effect of the Larval and Adult Host Plant Experience and Their Interaction on
H. vigintioctopunctata Adult Performance

Larval host feeding experience did not significantly influence the performance of
H. vigintioctopunctata adult. Adult host experience and the interaction of larva * adult
host experience did not significantly affect the preoviposition period, female and male
longevity of H. vigintioctopunctata adult. The adult host experience significantly affects the
oviposition period and fecundity of H. vigintioctopunctata adult. The interaction of larva
* adult host experience significantly affects the fecundity of H. vigintioctopunctata adult
(Table 2). The oviposition period of the adult on treatment of EE (both larval are adult
host experience are eggplant) is significantly shorter than on EP (88.75 d), PP (76.68 d), ET
(76.29 d) and PT (89.20 d) (Figure 3A). The fecundity of the H. vigintioctopunctata adults on
treatment of EE (85.83 egg/female), TE (114.46 egg/female) and PE (102.21 egg/female)
were significantly smaller than that on EP (441.84 egg/female) and PP (625.57 egg/female),
TP (596.63 egg/female) and ET (478.71 egg/female) (Figure 3B). This finding indicates that
regardless of whether the larvae consume potato, tomato, or eggplant leaves, if the adults
consume eggplant leaves, their reproduction will be significantly lower compared to when
they feed on potato leaves.
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Table 2. Influence of the larval and adult host experience as well as their interaction on life history
performance of H. vigintioctopunctata adult.

Stage Factor F Value p Value

Preoviposition period (d)
Larval host 0.600 0.549
Adult host 1.073 0.344

Larval * adult host 0.883 0.475

Oviposition days (d)
Larval host 0.467 0.627
Adult host 15.839 <0.0001 *

Larval * adult host 0.786 0.536

Female adult (d)
Larval host 2.585 0.0780
Adult host 2.457 0.0883

Larval * adult host 1.229 0.299

Male adult (d)
Larval host 0.251 0.778
Adult host 0.575 0.564

Larval * adult host 1.722 0.148

Fecundity (eggs)
Larval host 1.410 0.322
Adult host 37.289 <0.0001 *

Larval * adult host 5.557 <0.0001 *
The F-value and p-value were calculated using a generalized linear mixed-effects model (GLMM). An asterisk (*)
indicates a significant difference at the 0.05 level.
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Figure 3. The effect of larval and adult host plant experiences on the oviposition period (A) and
fecundity (B) of H. vigintioctopunctata adults. Post-hoc analyses based on the GLMM were used to
compare significant differences in the oviposition period and fecundity of H. vigintioctopunctata adults
across different treatments. H. vigintioctopunctata were reared either continuously as larvae and adults
on potato (PP), tomato (TT), or eggplant (EE), or as larvae on potato and then as adults on tomato
(PT) and eggplant (PE), as larvae on tomato and then as adults on potato (TP) and eggplant (TE), or
as larvae on eggplant and then as adults on potato (EP) and tomato (ET). The box plots display the
mean with whiskers extending from the minimum to the maximum value.

3.3. Effects of Larval Host Experience on Adult Preference and Feeding of H. vigintioctopunctata

In the selective experiment, the feeding preference of H. vigintioctopunctata adults
for potatoes, tomatoes, and eggplants was not influenced by larval host experience, but
was primarily determined by the adults’ preference for host plants (Figure 4). In our
experiment, irrespective of whether the larvae consumed potato leaves, tomato leaves, or
eggplant leaves, the selection rate of newly emerged adults for potato leaves (60–74%) was
higher than that for tomatoes (6–10%) and eggplant (6–16%) leaves (Figure 4). Additionally,
H. vigintioctopunctata adults make a choice regarding the host plant within 24 h, with no
significant difference in host preference observed at 48 h. The amount of food consumed
by H. vigintioctopunctata adults on potatoes (3.5 g) is 2.8- and 1.8-fold greater than that on
eggplants (1.25 g) and tomatoes (1.9 g), respectively (Figure 5).
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Figure 4. The selection ratio of H. vigintioctopunctata adults with different larval host experience.
The upper x-axis represents the larval host feeding experience. Yellow, purple, green, and orange
indicate the selection ratio for potato, tomato, eggplant, and nochoice within 24 h and 48 h, respec-
tively. NoChoice indicates that the H. vigintioctopunctata adults were not found on the host plants
but elsewhere.
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Figure 5. The weight consumed by H. vigintioctopunctata adult on different host plants in the
preference experiment. * Indicates a significant difference at 0.05 level.

3.4. The Water and Nutritional Content of Host Plants

The water and nutrient contents in potato, tomato, and eggplant leaves are depicted in
Figure 6. The water content of potato leaves (848 mg/g) was the highest, significantly higher
than that of tomato leaves (782 mg/g) and eggplant leaves (700 mg/g). The crude fat content
in tomato leaves (49 mg/g) was significantly higher than in eggplant leaves (30 mg/g)
and potato leaves (31 mg/g). Proteins and carbohydrates are the most important nutrients
found in plant leaves. The protein content in potato leaves (48 mg/g) is significantly
lower than in tomato leaves (67 mg/g) and eggplant leaves (68 mg/g). The carbohydrate
content in tomato leaves was significantly higher than in potato leaves and eggplant leaves.
The total amino acid content in potato leaves (1.0 mg/g) was significantly higher than in
tomato leaves (0.78 mg/g), but not significantly different from eggplant leaves (0.88 mg/g)
(Figure 6).
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4. Discussion
4.1. Effects of Host Plant Nutritional Differences on the Performace H. vigintioctopunctata

Plant nutrients are crucial factors affecting insect growth, development, reproduction,
and population dynamics [1]. Larvae require nutrients for growth and to progress to
the next stage [41], while adults need them for ovary development and fecundity [42,43].
Therefore, for herbivorous insects, especially both larvae and adults consume the same
plants, the identical diet may not satisfy the distinct nutritional needs of H. vigintioctop-
unctata larvae and adults. For instance, in 2018, our research team successfully raised
H. vigintioctopunctata from larvae to adults using pure artificial feed (without any plant
ingredients), achieving a larval survival rate as high as 72%, which was not significantly
different from that observed with the natural host plant. However, this artificial feed
can sustain the survival of H. vigintioctopunctata adult but fails to fulfill the nutritional
requirements for fecundity [44]. Similarly, Kawazu (2014) [45] reported that larvae could be
raised on artificial feed, but adults required plant leaves to meet their nutritional needs for
reproduction. In our experimental results, the development period of H. vigintioctopunctata
larvae on eggplant leaves was significantly longer by 14.1% (2.33 d) compared to those
continuously fed on potato leaves, while the fecundity of adults on eggplants dropped sig-
nificantly by 86.3% (539.3 eggs/female). Therefore, compared with the nutrients required
by H. vigintioctopunctata larvae, the adult beetles have more stringent requirements on the
nutritional content of host plants.

The performance in terms of larval development period and adult fecundity of H. vig-
intioctopunctata on potato leaves surpasses that observed on tomato and eggplant leaves,
indicating that potatoes serve as the most suitable hosts for H. vigintioctopunctata. A higher
water content and an optimal ratio of protein to carbohydrates may contribute to the
superior performance of larvae and adults of H. vigintioctopunctata on potato leaves. For
phytophagous insects, leaves of plants with high water content tend to be more tender
and easier to consume, facilitating easier digestion and absorption, thereby promoting
rapid growth of the insects [46]. Furthermore, despite the lower protein and carbohydrate
content in potato leaves compared to tomatoes, an optimal ratio of protein to carbohydrates
often proves beneficial for the growth, development, and reproduction of herbivorous
insects [47,48]. Numerous researchers utilizing the Geometric Framework for Nutrition
(GFN) model have demonstrated that an optimal ratio of protein to carbohydrates enables
insects to achieve superior growth, development, and reproductive performance. High
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protein and low carbohydrate diets, or conversely, low protein and high carbohydrate
diets, adversely affect the growth, development, and reproduction of insects [49–52]. For
example, Lee (2008) [51] and Fanson (2009) [53] found that when Drosophila melanogaster
and Bactrocera tryoni were fed diets with a lower protein-to-carbohydrate ratio (p:c = 1:16),
they exhibited the longest adult lifespans but the lowest fecundity. With an increasing
protein proportion in their diet, adult longevity decreases while fecundity increases. At a
protein-to-carbohydrate ratio of 1:4, the fecundity of Drosophila melanogaster and Bactrocera
tryoni peaks. However, to date, no researchers have employed the GFN model to confirm
whether the optimal protein and carbohydrate ratio for H. vigintioctopunctata adults closely
matches that found in potato leaves. Although our research group has determined the
most suitable protein and carbohydrate ratio for the larvae of H. vigintioctopunctata through
the GFN model, it has proven impossible to ascertain the most suitable protein and carbo-
hydrate ratio for H. vigintioctopunctata adults due to the ineffectiveness of pure artificial
feed [44,54]. This limitation underscores the need for further research and breakthroughs.

Indeed, the secondary metabolites in eggplant leaves may also contribute to the de-
cline in fecundity of H. vigintioctopunctata females. Glycoalkaloids, which are predominant
among the plant secondary metabolites in eggplant, tomato, and potato, aid in these plants’
resistance to insect and pathogen damage [55]. Among different Solanaceae species, the
types and concentrations of glycoalkaloids significantly vary. For example, tomato plants
primarily contain tomatine and dehydrotomatine as glycoalkaloids, while α-solanine and
α-chaconine are predominant in potato and eggplant leaves [56]. In eggplant leaves, 95%
of the glycoalkaloids consist of α-solanine [57]. The α-solanine content in eggplant leaves
(600 µg/g) exceeds that in potato leaves (83.5 µg/g) [58,59]. Various research studies have
demonstrated that α-solanine significantly decreases the survival rates of larvae and pupae,
as well as adult fecundity [60,61]. Simultaneously, Devanand (2011) [62] extracted a gly-
coalkaloid mixture from eggplant that significantly interferes with insect molting, thereby
reducing larval survival rates. Additionally, eggplant leaves are enriched with a diverse
array of secondary metabolites, including caffeoylquinic acid derivatives, flavonoids, and
saponins [63], which also aid eggplants in defending against damage by herbivores. For
instance, when eggplant and tomato are subjected to Tuta absoluta infestations, eggplant
leaves produce a significant quantity of volatile organic compounds and terpene-based
primary/secondary metabolites to defend against Tuta absoluta infestations, in contrast
to tomatoes, which produce minimal or none [64]. Concurrently, our metabolomic and
transcriptomic analyses indicated that secondary metabolites in eggplant leaves cause a reduc-
tion in ecdysone levels within the steroid metabolism pathway in the hemolymph, resulting
in decreased expression of downstream vitellogenin genes, which in turn impairs ovarian
development and ultimately reduces fecundity in H. vigintioctopunctata (unpublishing).

4.2. Effect of Larval and Adult Feeding Experience on the Fecundity of
H. vigintioctopunctata Adult

The silver spoon effect suggests that the nutrients obtained by larvae can confer
lasting growth and reproductive advantages to adults. In other words, the quality of larval
nutrition directly influences the life-history traits of adults [65]. Generally, when larvae are
provided with optimal nutritional conditions, the resulting adults tend to be larger and
more competitive [66,67]. In our experiments, the pupal weight of H. vigintioctopunctata on
potato was significantly higher than that on eggplant leaves (Table 1), indicating that adults
emerging from larvae that fed on potato leaves are larger than those emerging from larvae
that fed on eggplant leaves. However, even with larvae that have experienced feeding
on potatoes, the fecundity of adults subsequently fed on eggplant leaves (PE) remains
significantly lower than that of adults on potato leaves and whose larvae stage involved
feeding on eggplant leaves (EP) (Figure 3). In contrast, the environmental matching
hypothesis suggests that this silver spoon effect depends on continued favorable conditions
during the adult stage [65]. Due to compensatory abilities in the adult stage, the host plant
during the larval stage does not significantly impact adult fecundity and survival, which
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suggests that host plant in the adult stage plays a decisive role in the adaptability of the
adult [68,69]. Therefore, for H. vigintioctopunctata, the environmental matching hypothesis
more aptly explains the variation in larval and adult feeding experiences and their influence
on adult reproductive performance. Simultaneously, by analyzing egg or embryo initiation
and maturation processes, we can effectively elucidate the distinctions between the silver
spoon effect and the environmental matching hypothesis. In Lepidoptera, all eggs are
present in the ovarioles upon adult eclosion [70]. Thus, the nutrient levels received by
larvae dictate the adult’s fecundity [19]. However, in Coleoptera [17] and aphids [71],
egg or embryo initiation and maturation can persist throughout the adult’s reproductive
lifespan. Therefore, nutrients acquired during the adult stage are crucial in determining
achieved fecundity.

4.3. The Advantage of Host Switch between Larva and Adult for H. vigintioctopunctata

Host switching between larval and adult stages offers lesser benefits for the perfor-
mance of herbivorous insects compared to a consistent diet with an optimal food, particu-
larly when the alternative host exhibits potent chemical defenses against herbivores [16].
Consequently, it is recommended that both larval and adult stages of H. vigintioctopunctata
consume potato leaves to optimize population expansion in ideal conditions. However, the
varied planting time of potatoes, tomatoes, and eggplants in the Jianghan Plain necessitate
host switching between the larval and adult stages of H. vigintioctopunctata to ensure a
continuous food supply. As previously mentioned in introduction, host switching between
larvae and adults involves a trade-off between benefits and drawbacks. Early field investi-
gations by our research team in the Jianghan Plain revealed that following potato harvests,
the presence of eggs and larvae of H. vigintioctopunctata on eggplant leaves surged, which
means that the scarcity of potato leaves prompts the H. vigintioctopunctata to lay eggs on
tomato or eggplant leaves [39]. Our experiments demonstrate that, compared to scenarios
where both larvae and adults consume potato leaves, adult fecundity declines by 83.7%
when larvae are fed potatoes and adults are subsequently fed eggplants. However, after
larvae consumed eggplant leaves, adults feeding on potatoes and tomatoes exhibited a
significant increase in egg-laying, by 518% and 562%, respectively. This resulted in an
increase in the population size of the H. vigintioctopunctata. Therefore, host switching
between larvae and adults not only helps the ladybug adeptly navigate the challenges of
losing its preferred host but also maintains population density.

5. Conclusions

The variation in planting times for potatoes, tomatoes, and eggplants in the Jianghan
Plain results in inevitable host shifts between the larvae and adults of H. vigintioctopunctata.
Through match-mismatch experiments, it was found that the fecundity and preference
of H. vigintioctopunctata adults are not influenced by larval feeding experiences. In other
words, the adult stage host plant determines the fecundity and feeding preference of H. vig-
intioctopunctata adults. Variations in water content and nutritional components (proteins,
carbohydrates, crude fat, and total amino acids) in the leaves of potatoes, tomatoes, and egg-
plants result in significant differences in the development time, survival rate, and fecundity
of H. vigintioctopunctata. Regardless of the larvae’s host plant feeding experience, adults
feeding on eggplant leaves resulted in a significant decrease in fecundity. Similarly, regard-
less of the larvae’s host plant, adults displayed a preference for potato leaves. Although
host switching between larval and adult stages offers lesser benefits for the performance of
herbivorous insects compared to a consistent diet with potato leaves, it maintains H. viginti-
octopunctata population continuity amidst shortages of high-quality potato hosts. Hence,
under wild field conditions, we can adjust the planting intervals between eggplants, toma-
toes, and potatoes to prevent host switching between larva and adult H. vigintioctopunctata,
thereby ecologically controlling the populations of H. vigintioctopunctata.
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