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Simple Summary: The mink is a small and valuable fur animal resource. RNA-seq was utilized to
identify key genes associated with the growth and development of mink. Consequently, genes related
to embryonic development (PEG10, IGF2, NRK), cell cycle regulation (CDK6, CDC6, CDC27, CCNA2),
and the FGF family (FGF2, FGF6, FGFR2) exhibited upregulation at 45 days of age in mink. This
suggests their potential involvement in early growth and developmental processes. Conversely, genes
associated with skeletal muscle development (PRVA, TNNI1, TNNI2, MYL3, MUSTN1), a negative
regulator of the cell cycle gene (CDKN2C), and IGFBP6 were found to be upregulated at 90 days of age
in mink, indicating their potential involvement in rapid growth. In summary, our experimental data
establish a foundation for the individual selection of larger-sized mink and elucidate the regulatory
mechanisms underlying their growth and development.

Abstract: Mink is a kind of small and precious fur animal resource. In this study, we employed tran-
scriptomics technology to analyze the gene expression profile of mink pectoral muscle tissue, thereby
elucidating the regulatory mechanisms underlying mink growth and development. Consequently, a
total of 25,954 gene expression profiles were acquired throughout the growth and development stages
of mink at 45, 90, and 120 days. Among these profiles, 2607 genes exhibited significant differential
expression (|log2(fold change)| ≥ 2 and p_adj < 0.05). GO and KEGG enrichment analyses revealed
that the differentially expressed genes were primarily associated with the mitotic cell cycle process,
response to growth factors, muscle organ development, and insulin resistance. Furthermore, GSEA
enrichment analysis demonstrated a significant enrichment of differentially expressed genes in the
p53 signaling pathway at 45 days of age. Subsequent analysis revealed that genes associated with
embryonic development (e.g., PEG10, IGF2, NRK), cell cycle regulation (e.g., CDK6, CDC6, CDC27,
CCNA2), and the FGF family (e.g., FGF2, FGF6, FGFR2) were all found to be upregulated at 45 days
of age in mink, which suggested a potential role for these genes in governing early growth and
developmental processes. Conversely, genes associated with skeletal muscle development (PRVA,
TNNI1, TNNI2, MYL3, MUSTN1), a negative regulator of the cell cycle gene (CDKN2C), and IGFBP6
were found to be up-regulated at 90 days of age, suggesting their potential involvement in the rapid
growth of mink. In summary, our experimental data provide robust support for elucidating the
regulatory mechanisms underlying the growth and development of mink.

Keywords: mink; transcriptomics; muscle development

1. Introduction

The mink (Neovison vison) is a small fur-bearing animal renowned as the “King of
Fur” due to its high-quality fur, exquisite coloration, and soft yet durable skin. After the
introduction of mink in 1956, China has emerged as a leading country for mink breeding,
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achieving a fur harvest of 5.79 million pieces in 2022. However, in the absence of a
comprehensive genetic breeding program, the responsibility of selection has been entrusted
to experienced breeders. The main economic value of mink is their fur, and size is an
important indicator of the grade of the fur. Under the same conditions as other indicators,
the larger the fur, the higher the price, which directly affects the efficiency of the breeding
farm. Furthermore, mink skin size had a strong positive genetic correlation with body
length and body weight [1,2], suggesting that body weight and length measured on live
animals were reliable indicators of dried fur size. Thus, studying the genetic regulatory
mechanisms of mink growth is crucial for the mink breeding industry. In recent years,
with the rapid development of sequencing technology, genomics has been widely used
in the study of molecular regulation mechanisms of animal growth and development,
promoting the process of animal genome selection breeding [3–7]. However, the relevant
research on mink is still lagging behind. It was not until 2017 that the first draft of genome
assembly for American mink was published, with a size of 2.4 GB [8]. The breeding of
mink genomes becomes possible with this advancement. However, due to the lack of
chromosome information, the amount of gene annotation, and other shortcomings, the
study of the genome level of mink is limited. With the deepening of research and the
development of technology, a chromosome-level genome of mink was assembled in 2022,
with a size of 2.68 GB [9], which provides a high-quality reference genome for the study
of mink growth and development mechanisms and will greatly promote the pace of mink
genome selection breeding research.

Transcriptomics plays a pivotal role in functional genomics, facilitating a compre-
hensive understanding of gene regulation at the transcriptional level, and serving as an
efficacious approach to investigate intricate biological phenomena. Currently, numerous
scholars have employed transcriptome technology to investigate the growth performance
of animals. Shang performed a comparative transcriptome analysis on pigs exhibiting
different phenotypes and discovered that 20 genes involved in myoblast differentiation and
muscle fiber formation potentially contribute to the postnatal growth rate and body weight
of pigs [10]. Wang identified seven growth-related genes through the comparative tran-
scriptome analysis of Muscovy duck ileum tissue, providing a theoretical foundation for
investigating the impact of the ileum on duck growth and metabolism [11]. Tang identified
290 and 87 differentially expressed genes associated with growth traits in the compara-
tive transcriptome analysis of pituitary and muscle tissues from large and small geese,
respectively [12,13]. Wen performed a comparative transcriptome analysis on muscle tissue
from Tibetan sheep at four different growth stages, revealing that the LIPE, LEP, ADIPOQ,
SCD, and FASN genes may modulate muscle fiber type transformation through the AMPK
signaling pathway, consequently impacting meat quality [14]. Identifying these key genes
related to economic traits will help uncover the molecular mechanisms governing growth
and development, facilitating genome-based selective breeding strategies for animals.

In the preliminary study, we generated growth curves for mink, encompassing weight
and body length as phenotypic traits. The results showed that the growth rates of weight
and body length were relatively fast during the period from 45 to 120 days of age, especially
from 45 to 90 days of age [15]. Therefore, in this study, the muscle tissues of silver-blue
mink at three different growth stages (45 days, 90 days, and 120 days of age) were used
as samples. Transcriptome sequencing technology was employed to identify key genes
and signaling pathways related to muscle growth and development in mink, aiming to
establish a foundation for the individual selection of larger-sized mink and to elucidate the
regulatory mechanisms underlying their growth and development.

2. Materials and Methods
2.1. Samples Selection and Preparation

The silver-blue mink utilized in this study were all provided by Dalian Mingwei
Marten Industry Co., Ltd. (Dalian, China). A total of nine male silver-blue mink in
three litters with good body condition and a consistent feeding environment were selected
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as experimental animals. Each mink was individually housed in a spacious, ventilated
cage within a semi-open facility, ensuring optimal comfort and minimal stress. At the
ages of 45 days, 90 days, and 120 days, respectively, three male silver-blue mink were
chosen from each litter. Euthanasia was performed using carbon monoxide gas following
approved protocols to ensure swift and humane death. Immediately after euthanasia,
breast muscle was taken using sterile scalpels, cut into small pieces, placed into frozen
tubes for rapid freezing with liquid nitrogen, and brought back to the laboratory for storage
at −80 ◦C. The experiment was conducted in accordance with the ARRIVE guidelines, and
all animal experimental protocols were approved and authorized by the Animal Care and
Use Committee of the Institute of Special Animal and Plant Sciences, Chinese Academy of
Agricultural Sciences (permit no. ISAPSAEC-2023-032).

2.2. RNA Extraction and Quality Control

Total RNA was extracted from the nine samples using the TRIzol reagent (Invitrogen,
Carlsbad, CA, USA) according to the manufacturer’s instructions. Subsequently, 1% agarose
gels were utilized to monitor RNA degradation and contamination levels. The purity,
concentration, and integrity of the isolated RNA were assessed using the NanoPhotometer
spectrophotometer (IMPLEN, Westlake Village, CA, USA), Qubit 2.0 Fluorimeter (Life
Technologies, Carlsbad, CA, USA) the and Bioanalyzer 2100 system (Agilent Technologies,
Santa Clara, CA, USA). Only high-quality RNA samples were utilized for transcriptome
library construction.

2.3. Transcriptome Library Construction and Sequencing

The RNA libraries of the mink were generated using the NEBNext Ultra RNA Library
Prep Kit for Illumina following the manufacturer’s recommendations. Briefly, The poly-A
mRNA was isolated using magnetic beads with attached Oligo (dT). First strand cDNA was
synthesized using a random hexamer primer and M-MuLV Reverse Transcriptase (RNase
H-). Subsequently, second strand cDNA synthesis was performed using DNA Polymerase
I and RNase H. To select cDNA fragments of 370~420 bp in length, the library fragments
were purified with the AMPure XP system. The index-coded samples were clustered on a
cBot Cluster Generation System using TruSeq PE Cluster Kit v3-cBot-HS (Illumia) according
to the manufacturer’s instructions. The sequencing of the libraries was performed using
an Illumina HISeq platform (Illumina, San Diego, CA, USA), and 150 bp paried-end reads
were generated.

2.4. Reads Mapping to the Reference Genome

The raw data in fastq format was initially processed using the fastp software v0.23.2,
and the clean data were obtained by filtering the reads with adapter, reads containing
poly-N, and low-quality reads from raw data. The calculations of Q20, Q30, and GC content
were performed simultaneously on the clean data. All subsequent analyses were conducted
exclusively using the high-quality clean data. The paired-end clean reads were aligned
to the Neovison vison reference genome using the HISAT2 software (version: 2.0.5). The
mapped reads of each sample were assembled by StringTie in a reference-based approach
for the prediction of novel genes.

2.5. Gene Expression Analysis

In addition, the number of reads mapped to each gene was calculated using the HTSeq
software v2.0.5, where the fragments per kilo base million (FPKM) of each gene were
measured based on the length of the gene and read count that was mapped to the gene.
The DESeq software (version: 1.20.0) was used to screen the differentially expressed genes
(DEGs) using the read count data. An adjusted p value (q value) was calculated using
Benjamini and Hochberg’s approach for controlling the false discovery rate, where genes
with |log2(fold change)| ≥ 2 and q < 0.05 were considered as DEGs. The enrichment
analysis of GO and KEGG pathways was performed with the clusterProfiler package
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(version: 3.8.1) in the R software. The local version of the Gene Set Enrichment Analysis
(GSEA) analysis tool (version: 3.0) was used to perform GSEA analysis on the GO and
KEGG datasets, respectively.

2.6. Quantitative RT-PCR Analysis

The SYBR® Premix Ex Taq™ kit (TaKaRa, Osaka, Japan) was utilized for the perfor-
mance of a Quantitative RT-PCR (qRT-PCR) assay on a Roche LightCycler480 instrument.
The GAPDH gene served as an internal control. Primer sequences used in the experiment
are provided in Table 1. The relative mRNA expression level was determined using the
2−∆∆CT method, and the figure was generated using OriginPro 2018.

Table 1. Primers for quantitative real-time PCR.

Gene Gene Description Primers Sequence (from 5′ to 3′)

CDC27 Cell division cycle 27 F: TCTCCACAATCACACCTCAGATCC
R: TTCACGAAGAAGGCTCATCAAACC

IGF2 Insulin like growth factor 2 F: GCCCTTCTGGAGACCTACTGTG
R: AGGTGTCGTATTGGAAGAACTTGC

MEGF10 Multiple EGF like domains 10 F: TTCCGAGGCACCACTTGTCAG
R: CCAGGCAGGCAGTCACAGAG

MUSTN1 Musculoskeletal F: GCCAAGAACCAGGAGATCAAGTC
R: TCGGCTGCCACTGAACACC

PEG10 Paternally expressed 10 F: GATGGACATGGACGATCACTCTATG
R: TGCGGCGGCGGATACTG

TNNI1 Troponin I1, slow skeletal type F: GTGGAGGTGGTGGATGAGGAG
R: CCCGACGCAGTGGTGGAC

MYH3 Myosin heavy chain 3 F: CGTCCTGGATGATCTACACCTACTC
R: TTCTTGCCTCGGTAGCCTTCC

3. Results
3.1. Overview of the Mink Transcriptome

To systematically identify the expressed mRNA and their spatiotemporal expression
profiles during muscle growth and development in mink, cDNA libraries were constructed
from breast muscle samples of nine silver-blue mink (Y45_1, Y45_2, Y45_3, Y90_1, Y90_2,
Y90_3, Y120_1, Y120_2, Y120_3). A total of 447,484,956 raw reads were generated from
nine cDNA libraries. After filtering, approximately 65.66 Gb of high-quality clean bases
were obtained (Table 2). Of these, 88.81% of the clean reads were mapped to the Neovison
vison reference genome, with 85.76% that were uniquely mapped. Ultimately, a total of
25,954 genes were identified, including 1404 novel genes.

Table 2. Summary of the sequencing data of the nine silver-blue mink.

Samples Raw Reads Clean Reads Clean Bases
(Gb)

Total
Mapped

Uniquely
Mapped

Y45_1 46,417,512 45,271,560 6.79 87.79% 84.94%
Y45_2 55,331,762 54,289,360 8.14 90.09% 87.11%
Y45_3 50,207,396 49,355,610 7.4 89.09% 86.20%
Y90_1 50,046,636 49,083,374 7.36 88.26% 84.96%
Y90_2 48,711,358 47,736,736 7.16 88.75% 85.48%
Y90_3 50,268,714 48,472,740 7.27 87.95% 85.02%

Y120_1 48,166,278 47,430,618 7.11 90.19% 87.36%
Y120_2 48,847,066 47,665,894 7.15 87.26% 83.75%
Y120_3 49,488,234 48,537,954 7.28 89.67% 86.8%

The PCA analysis revealed a clear separation among the nine samples, indicating
well-defined clusters corresponding to three different time periods (Figure 1A). The squares
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of Pearson’s correlation coefficient (R2) were all greater than 0.92, implying that the samples
had a good biological repetition (Figure 1B).
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3.2. Gene Functional Annotation

The gene functional annotation was performed on 25,954 genes, of which 19,992 were
successfully annotated into the Gene Ontology (GO) database (Figure 2A). The GO terms
primarily encompassed biological processes, such as metabolic processes, biological regula-
tion, and response to stimulus; cellular components, including cell, organelle, organelle
part, and macromolecular complex; and molecular functions, such as binding, catalytic
activity, and molecular transducer activity.
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Among the identified genes, 8120 were successfully annotated into the KEGG Path-
way database (Figure 2B), mainly including metabolic pathways, olfactory transmission,
pathways in cancer, PI3K-Akt signaling pathway, neuroactive ligand-receptor interaction,
MAPK signaling pathway, and Cytokine-cytokine receptor interaction.

3.3. Identifying the Differentially Expressed Genes

Through pairwise comparisons of muscle samples from three developmental stages, a
total of 2607 genes were identified in terms of |log2(fold change)| ≥ 2 and p_adj < 0.05.
Specifically, there were 1570 DEGs between Y90 and Y45, 483 DEGs between Y120 and Y45,
and 1821 DEGs between Y120 and Y90 (Figure 3A–C, Table S1). The volcano plot revealed
a significant up-regulation of PEG10, ARHGAP36, IGF2, NRK, and MYH3 with higher fold
changes observed at 45 days of age, whereas PRVA, RIT2, and SLC29A2 exhibited decreased
expression levels at the same time point. The expression level of NFAT5 at 90 days of age
was observed to be lower compared to that at 45 and 120 days of age, indicating a significant
temporal variation in its expression; in contrast, MUSTN1, a regulator of bone growth
and development, showed the inverse pattern. Subsequently, a Venn diagram analysis
was conducted on the DEGs. The intersection of DEGs yielded 14 key genes, including
DLK1, FBN2, MUSTN1, NRK, PEG10, SLC29A2, TFRC, TCAL7, ENSNVIG00000007639, EN-
SNVIG00000009406, ENSNVIG00000009488, ENSNVIG00000009493, ENSNVIG00000020113,
novel.942 (Figure 3D).
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3.4. Functional Analysis of the Differentially Expressed Genes

The function of DEGs was explored using GO enrichment analysis (Table S2, Figure 4A). For
the BP category, the top significance terms were mitotic cell cycle process (p_adj = 4.53× 10−07),
response to growth factor (p_adj = 4.53× 10−07), muscle organ development (p_adj = 0.00087). In
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the case of the CC category, the most abundant GO terms were cell junction (p_adj = 6.97× 10−05),
mitotic spindle (p_adj = 6.97× 10−05), transporter complex (p_adj = 0.0012); in the MF category,
the DEGs mainly involved protein serine/threonine kinase activity (p_adj = 2.63× 10−09), tubulin
binding (p_adj = 9.26 × 10−06), motor activity (p_adj = 0.00013), and growth factor binding
(p_adj = 0.00095).
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The KEGG pathways with significant enrichment are presented in Figure 4B, includ-
ing axon guidance (p_adj = 3.21 × 10−06), FoxO signaling pathway (p_adj = 8.12 × 10−06),
cGMP-PKG signaling pathway (p_adj = 1.13 × 10−05), Cell cycle (p_adj = 2.40 × 10−05), reg-
ulation of actin cytoskeleton (p_adj = 3.59 × 10−05), motor proteins (p_adj = 6.95 × 10−05),
PI3K-Akt signaling pathway (p_adj = 7.36 × 10−05), and insulin resistance (p_adj = 0.00028)
(Table S3).

In addition to the GO and KEGG enrichment analysis of DEGs, we also performed
GSEA-GO and GSEA-KEGG enrichment analysis on all quantitative genes. This compre-
hensive analysis enabled us to identify the most significantly enriched gene sets in the
dataset, providing valuable insights into the cellular processes and pathways most actively
involved in the observed cellular functions. The results revealed that the mitotic cell cycle
and p53 signaling pathway exhibited enrichment at 45 days of age, while musculoskeletal
movement and the ATP metabolic process showed enrichment at 90 days of age. Addition-
ally, the glucagon signaling pathway and autophagy were found to be enriched at 120 days
of age (Figure 5, Tables S4 and S5).

3.5. qRT-PCR Validation of DEGs

To further validate the results of RNA-seq, seven DEGs, including cell division cycle
27 (CDC27), insulin like growth factor 2 (IGF2), multiple EGF like domains 10 (MEGF10),
musculoskeletal (MUSTN1), paternally expressed 10 (PEG10), troponin I1, slow skeletal
type (TNNI1), and myosin heavy chain 3 (MYH3) were selected to perform qRT-PCR.
MUSTN1 and TNNI1 had higher FPKM in Y90, while IGF2, MEGF10, PEG10, and MYH3
had higher FPKM in Y45. The relative expression levels of the genes obtained by qRT-PCR,
as depicted in Figure 6, exhibited a high degree of concordance with the FPKM values
derived from Illumina RNA-seq analysis, thereby confirming the robustness and reliability
of the sequencing data.
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4. Discussion

This study conducted RNA extraction from breast muscle samples collected from silver-
blue mink at 45, 90, and 120 days of age during their rapid growth phase. Subsequently, a
comprehensive transcriptome database was established to elucidate the genetic regulation
of mink’s growth and development.

The expression of 2607 genes showed significant differential regulation, with PEG10,
ARHGAP36, IGF2, NRK, and MYH3 exhibiting high foldchange and up-regulation at
45 days of age. Previous studies have demonstrated the crucial roles of PEG10, IGF2,
and NRK in embryonic development regulation, characterized by elevated expression
levels during the embryonic stage compared to adult individuals [16–20]. This finding
enhances our understanding of the up-regulation mechanism of these genes during early
mink development. The pivotal role of IGF2 as a regulator of myogenesis has been widely
acknowledged, with its depletion impeding this process [21]. Furthermore, in vitro ex-
periments have demonstrated that a deficiency of IGF2 within primary skeletal muscle
cell-derived myotubes leads to impaired mitochondrial function. However, at 90 days of
age, there was a significant increase in the expression levels of MUSTN1 and PRVA, which
are crucial genes involved in bone growth and development [22,23]. Therefore, PEG10,
IGF2, and NRK are more likely to exert regulatory control over myogenesis during the early
postnatal period of mink, while MUSTN1 is responsible for regulating the proliferation and
differentiation of skeletal muscle satellite cells (SMSCs), thereby facilitating skeletal muscle
growth. In addition, DLK1 and FBN2 were included in a list of 14 shared differentially
expressed genes. Furthermore, DLK1 is an imprinted paternal gene involved in regulating
cell growth through encoding a transmembrane protein with multiple epidermal growth
factor repeats [24]. It plays a crucial role as a key regulator of mammalian growth and
development. Fibrillin-2 (FBN2) is a component of connective tissue microfibrils and may
be involved in elastic fiber assembly. Its mutations can lead to genetic diseases such as
myopathy [25]. The FBN2 gene has been reported to be associated with height percentile in
children and is also a key determinant for skeletal muscle development in Kazakh sheep.

The determination of skeletal muscle fiber numbers primarily occurs during embryonic
development, while postnatal changes mainly result from the fusion of muscle satellite
cells with fibers, leading to hypertrophy [26]. In the study, 51 DEGs associated with
muscle development were identified during the growth and development stages of mink.
Notably, IGF2, MYOG, MEGF10, MYMX, MYMK, SOX8, and PITX1 exhibited upregulated
expression at 45 days, with stronger expression in skeletal muscle satellite cells where
they play crucial roles in muscle regeneration [7,27,28]. Furthermore, it has been observed
that certain genes exhibit a requirement for cooperative interactions in order to ensure
their proper functionality. MYOG exhibits a similar expression pattern with MEGF10
and positively regulates MEGF10 transcription during muscle regeneration; Knockout
experiments underscored the indispensable collaboration between MYMX and MYMK
in muscle fiber formation during both embryonic development and adulthood [29,30].
Conversely, TNNI1, TNNI2, MYL3, and MUSTN1 were up-regulated at day 90, a stage
characterized by higher growth rates. It has been demonstrated that MUSTN1 exhibits the
highest expression level during the phase of duck muscle development associated with the
maximum relative growth rate [31]. MYL3, TNNI1, and TNNI2 have been identified as key
regulators of muscle contraction [32,33]. Consequently, these genes are expected to exhibit
a positive correlation with the development of breast muscle in mink.

In muscle growth and development, the body precisely regulates the number of cells
by regulating key processes such as cell cycle and apoptosis [26]. Cell cycle progression
is driven by the dimeric complexes of Cyclin and Cyclin-dependent kinases (CDKs). It
is found that at 90 days of age, the genes ATRX, BUB1, BUB1B, CDK6, CDC6, CDC27,
CCNA2, E2F2, MCM4, KNL1, RAD21, and PPP2R5E that positively regulate the cell cycle
were significantly down-regulated, while CDKN2C was up-regulated at this age [34]. It is
known that CDKN2C is involved in the inhibition of the cell cycle during cell proliferation.
Furthermore, we conducted GSEA analysis [35], which primarily focuses on the overall
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expression pattern of gene sets rather than being limited to DEGs. It theoretically facilitates
the identification of genes that may not exhibit significant differential expression but possess
crucial biological significance. The results showed that the p53 signaling pathway was
significantly enriched in the tissues of 45-day-old minks. In addition to genes involved
in cell cycle regulation, genes involved in apoptosis (BCL2, TP53, TP73, CDKN1A, PERP,
STEAP3, PTEN, ZMAT3, and MDM2) were significantly associated with this pathway.
Although there was no significant difference in the expression of these genes, they may still
play an important role in the development of the pectoral muscle tissues of minks.

Many growth factors and cytokines can affect the proliferation and differentiation of
satellite cells. It is widely acknowledged that insulin plays an important role in skeletal
muscle growth by regulating muscle hypertrophy, protein accumulation, and cell activity.
INSR is a tyrosine kinase-like insulin receptor that acts as a molecular switch in insulin
signaling [36], and the knockdown of INSR induces G1/G0 cell cycle arrest and inhibits cell
proliferation [37]. IGF2, IGF2R, IGF2BP2, IGF2BP3, and IGFBP6 have also demonstrated sig-
nificant influence on animal growth and muscle development [38]. Takashi Saito observed
a sharp decline in the expression levels of IGF1, IGF2, IGFR1, IGFR2, IGFBP3, and IGFBP5
mRNA in masseter muscle between 14 and 19 days postpartum [39]. A transcriptomic
analysis of chicken leg muscle showed that the expression levels of IGFBP3, IGFBP5, and
IGFBP7 decreased at 16 weeks of age [40]; The aforementioned trend is also evident in the
findings of our experiments. IGFBPs, a family of six or more related proteins that bind IGF
with high affinity, could sequester IGF to decrease protein synthesis and inhibit muscle
cell differentiation. The affinity of IGFBP6 towards IGF2 surpasses that of other IGFBPs,
and the expression level of IGFBP6 mRNA is highest in muscle tissue [41]. Additionally, it
could enhance the muscle differentiation process by triggering predominantly the MAPK
pathway in the absence of IGF2 [42]. Therefore, it is speculated that IGFBP6 regulates the
growth of breast muscle independently of IGF2 during the growth and development of
mink. The DEGs also included members of the FGF family, such as FGF2, FGF6, and FGFR2.
Notably, FGF6 is a developmental regulatory gene with highly restricted expression in
adulthood that promotes satellite cell proliferation by inducing their entry into the cell
cycle [43,44]. The FGFR2 protein belongs to the fibroblast growth factor receptor family.
Its extracellular domain interacts with fibroblast growth factors, initiating a cascade of
downstream signals that ultimately regulate mitogenesis and differentiation. Hence, similar
to IGF2, FGFs also tend to play a more important regulatory role in the early growth and
development of mink.

5. Conclusions

This study utilized RNA-seq technology and bioinformatics methods to characterize
the gene expression profile of silver-blue mink muscle tissue. The results indicate that a
total of 25,954 gene expression profiles were obtained during the growth and development
stages of mink at 45, 90, and 120 days, with 2607 genes showing significant differential
expression. Most differentially expressed genes (DEGs) were associated with the mitotic
cell cycle, response to growth factors, muscle organ development, and insulin resistance.
Subsequent analysis revealed the upregulation of genes related to embryonic development,
cell cycle regulation, and the FGF family at 45 days in mink. Conversely, genes involved
in skeletal muscle development and the negative regulation of the cell cycle were found
to be upregulated at 90 days. These findings provide valuable insights into the regulatory
mechanisms underlying mink growth and development.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology13050283/s1, Table S1: List of the identified differentially
expressed genes (DEGs); Table S2: GO functional enrichment analysis of differentially expressed
genes (DEGs); Table S3: KEGG functional enrichment analysis of differentially expressed genes
(DEGs); Table S4: The P53 signaling pathway in Y90_vs_Y45 for GSEA-KEGG analysis; Table S5: The
P53 signaling pathway in Y120_vs_Y45 for GSEA-KEGG analysis.
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