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Simple Summary: Traditional cancer treatments have long struggled with issues such as toxicity, drug
resistance, and financial burdens. However, there is growing interest in using natural compounds, like
those found in complementary alternative medicine, due to their ability to influence various molecular
pathways with fewer side effects. In our study, we focused on understanding how active components
of Cordia myxa could potentially treat liver cancer (LC). By employing network pharmacology
techniques, we identified key molecular targets and pathways involved. Through a combination of
data analysis and computational modeling, we found that certain genes, including HSP90AA1, ESR1,
CYP3A4, CDK1, and MMP9, play crucial roles in LC patient survival. Specifically, our findings suggest
that compounds like cosmosiin, rosmarinic acid, quercetin, and rubinin may interact with HSP90AA1,
offering a promising avenue for therapeutic intervention. Molecular dynamics simulations further
validated these interactions, highlighting the stability of the drug–protein complexes. Overall, our
integrated approach underscores the potential of C. myxa in combating LC by modulating cancer-
related signaling pathways.

Abstract: Traditional treatments of cancer have faced various challenges, including toxicity, med-
ication resistance, and financial burdens. On the other hand, bioactive phytochemicals employed
in complementary alternative medicine have recently gained interest due to their ability to control
a wide range of molecular pathways while being less harmful. As a result, we used a network
pharmacology approach to study the possible regulatory mechanisms of active constituents of Cordia
myxa for the treatment of liver cancer (LC). Active constituents were retrieved from the IMPPAT
database and the literature review, and their targets were retrieved from the STITCH and Swiss
Target Prediction databases. LC-related targets were retrieved from expression datasets (GSE39791,
GSE76427, GSE22058, GSE87630, and GSE112790) through gene expression omnibus (GEO). The
DAVID Gene Ontology (GO) database was used to annotate target proteins, while the Kyoto Encyclo-
pedia and Genome Database (KEGG) was used to analyze signaling pathway enrichment. STRING
and Cytoscape were used to create protein–protein interaction networks (PPI), while the degree
scoring algorithm of CytoHubba was used to identify hub genes. The GEPIA2 server was used for
survival analysis, and PyRx was used for molecular docking analysis. Survival and network analysis
revealed that five genes named heat shot protein 90 AA1 (HSP90AA1), estrogen receptor 1 (ESR1),
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cytochrome P450 3A4 (CYP3A4), cyclin-dependent kinase 1 (CDK1), and matrix metalloproteinase-9
(MMP9) are linked with the survival of LC patients. Finally, we conclude that four extremely active
ingredients, namely cosmosiin, rosmarinic acid, quercetin, and rubinin influence the expression of
HSP90AA1, which may serve as a potential therapeutic target for LC. These results were further
validated by molecular dynamics simulation analysis, which predicted the complexes with highly
stable dynamics. The residues of the targeted protein showed a highly stable nature except for the
N-terminal domain without affecting the drug binding. An integrated network pharmacology and
docking study demonstrated that C. myxa had a promising preventative effect on LC by working on
cancer-related signaling pathways.

Keywords: Cordia myxa; network pharmacology; liver cancer; traditional Chinese medicine; survival
analysis; molecular docking; bioinformatics

1. Introduction

Liver cancer (LC) is the fifth most common type of cancer and the third-leading
cause of death globally [1]. According to the global cancer statistics reports, LC caused an
estimated 781,631 deaths worldwide in 2018 [2]. According to the UK Cancer Research
report, liver cancer will likely have one of the fastest rates of growth and will experience
a significant rise in the number of patients by 2035 [3]. Hepatocellular carcinoma (HCC),
the most prevalent type of LC, makes up between 70% and 85% of all LC [4]. HCC
is strongly linked to chronic hepatitis B or C virus infection, consumption of aflatoxin-
contaminated foods, and excessive intake of alcohol [5]. The majority of patients can only
receive palliative care because they are typically given a diagnosis at an advanced stage
and cannot undergo surgical resection. Understanding the molecular mechanisms that
cause HCC and developing alternative therapies with lower toxicity levels is crucial in
order to improve clinical outcomes and reduce treatment side effects [6].

Cordia myxa is a medicinal plant often known as “Assyrian plum and Lasura” and
is a member of the “Boraginaceae” family. It is found in eastern India, tropical Africa,
tropical Asia, Australia, and America [7]. Fruit extract from C. myxa was found to con-
tain oil, saponins, flavonoids, glycosides, sterols, terpenoids, phenolic acids, alkaloids,
coumarins, resins, gums, tannins, and mucilage [8]. It has anti-cancer, anti-bacterial, an-
tibiotic, anti-inflammatory, hepatoprotective, anti-fungal, anti-hypertensive, anti-diabetic,
anti-mitotic, and anti-oxidant properties. C. myxa leaves and fruit pulp have been used
for centuries to treat coughs, respiratory infections, sore throats, rheumatic pain, wounds,
ulcers, trypanosomiasis, skin diseases, and colic [9].

Network pharmacology (NP) in traditional Chinese medicine (TCM) is a technology
that combines various fields, including computer science, systems biology, and pharmacol-
ogy, which offers a unique network mode comprising “multiple targets, multiple effects,
and complicated diseases” [10]. It associates drugs and diseases in a broader sense, and
it provides different approaches for investigating the mechanisms of traditional Chinese
medicine by introducing and developing new drugs [11]. Bioinformatics is an innovative
field that integrates molecular biology with mathematics, statistics, computer science, and
other disciplines. It can be used to examine the relationships and laws that govern biologi-
cal genes and diseases. Furthermore, it has rapidly evolved into the most appealing frontier
of life sciences nowadays [12]. Batool et al. [13] employed both bioinformatics and network
pharmacology to elucidate the anti-cancer effect of Fumaria indica to treat liver cancer.
Sadaqat et al. [14] implemented an advanced network-pharmacology-based approach to
examine the active components of Bacopa monnieri for the treatment of liver cancer.

The present study utilized a network pharmacology approach to investigate the active
ingredients and potential targets of C. myxa for liver cancer treatment. This approach con-
structs models that consider multiple components and targets, providing a comprehensive
understanding of the complex interactions between active compounds and target proteins.
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In addition, survival analysis and molecular docking studies were conducted to validate
the results. Furthermore, the obtained results were supplemented by all-atom molecular
dynamics (MD) simulation for 100 ns, followed by MMGBA/PBSA analysis to examine
the conformational changes, stability, and interaction mechanism of target proteins when
bound to the proposed compounds. This study is the first to explore the efficacy and
mechanism of C. myxa in liver cancer treatment, offering theoretical support and guidance
for future research. It provides valuable insights into the molecular mechanisms underlying
the anti-liver-cancer activity of C. myxa and accelerates the drug discovery process. How-
ever, further wet lab experiments are required to analyze the pharmacological potential of
C. myxa-related compounds.

2. Materials and Methods
2.1. Collection and Screening of Active Constituents and Corresponding Targets

Active compounds of C. myxa were obtained from the review of the literature and
the Indian Medicinal Plants, Phytochemistry, and Therapeutics database (IMPPAT; https:
//cb.imsc.res.in/imppat/, accessed on 29 December 2022) [15]. Using canonical smiles, the
bioactive compounds were obtained using the oral bioavailability (OB) ≥ 30% and drug-
likeness (DL) ≥ 0.18 retrieval filters through SwissADME (http://www.swissadme.ch/,
accessed on 1 January 2023) [16] and Molsoft (https://molsoft.com/mprop/, accessed
on 1 January 2023) [17], respectively. The amount and pace at which oral medicine is ab-
sorbed into the systemic circulation are referred to as OB [18]. DL is a chemical qualitative
characteristic that is commonly used during the early phases of drug discovery [19]. The
compound ID, canonical smiles, and molecular weight (MW) were retrieved from the Pub-
Chem (https://pubchem.ncbi.nlm.nih.gov/, accessed on 2 January 2023) database [20]. The
2D structures of active constituents were drawn through the RDKit package of Python [21].

The potential targets related to active constituents of C. myxa were investigated
and evaluated using public databases such as the Swiss Target Prediction (http://www.
swisstargetprediction.ch/, accessed on 5 January 2023) [22] and STITCH (http://stitch.embl.
de/, accessed on 5 January 2023) databases [23]. Once the target was predicted, the species
in each of these databases was confined to Homo Sapiens. The active constituent–target
network was constructed using Cytoscape version 3.9.1 [24].

2.2. Identification of Critical Genes in LC from Expression Datasets

Five microarray datasets (GSE39791, GSE76427, GSE22058, GSE87630, and GSE112790)
were selected for the identification of differentially expressed genes (DEGs) in LC. The NCBI-
GEO database (https://www.ncbi.nlm.nih.gov/geo/, accessed on 6 January 2023) [25]
was used to retrieve these datasets. GSE39791, GSE76427, GSE22058, GSE87630, and
GSE112790 consisted of 144 (72 normal and 72 affected), 167 (52 normal and 115 affected),
197 (97 normal and 100 affected), 94 (30 normal and 64 affected), and 198 (15 normal and
183 affected) tissue samples. Limma v.3.26.8 package of R language was used for the
normalization of datasets from which data redundancy is eliminated, and data alteration
errors are minimized [26]. The genes having adjusted p-value < 0.05, log (FC) < −1, and log
(FC) > 1 were considered significant DEGs and defined as LC-specific genes. To illustrate
major up-regulated and down-regulated genes, volcano plots were created for the LC
vs. normal comparison. The DEGs acquired from the preceding technique were used for
further analysis. Targets from the compound target databases and GEO datasets (non-
redundant) were combined, and a Venn diagram was constructed to highlight the genes
shared by C. myxa and LC targets.

2.3. Pathways and Gene Ontology (GO) Enrichment Analysis of Potential Targets

Gene Ontology (GO) analysis is currently a popular way to analyze genomic data, par-
ticularly large-scale transcriptome data. Potential targets were analyzed for GO functional
enrichment in 3 groups: biological process (BP), cellular component (CC), and molecular
function (MF). The DAVID database (https://david.ncifcrf.gov/home.jsp/, accessed on

https://cb.imsc.res.in/imppat/
https://cb.imsc.res.in/imppat/
http://www.swissadme.ch/
https://molsoft.com/mprop/
https://pubchem.ncbi.nlm.nih.gov/
http://www.swisstargetprediction.ch/
http://www.swisstargetprediction.ch/
http://stitch.embl.de/
http://stitch.embl.de/
https://www.ncbi.nlm.nih.gov/geo/
https://david.ncifcrf.gov/home.jsp/
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8 January 2023) [27] was used to perform GO functional and KEGG pathway enrichment
analyses on target genes. The enriched GO keywords and pathways with p-values less than
0.05 were chosen for visualization. A package of R “ggplot2” was used to create a bubble
graph of the top 20 significant pathways and GO terms (BP, CC, and MF) [28].

2.4. Protein–Protein Interactions (PPIs) and Network Analyses

PPI is the process through which two or more protein molecules form protein com-
plexes via noncovalent bonding. The STRING database (https://string-db.org/, accessed
on 9 January 2023) [29] was used to assess the relationship between LC therapeutic targets.
Homo sapiens was selected as the reference organism, and the total score was set to 0.5 or
higher. The PPI network was visualized using Cytoscape, and the CytoHubba plugin was
utilized to find hub genes based on the degree method and higher-degree nodes [30].

A network of active constituents–targets–pathways was generated using Cytoscape
software, version 3.9.1, to characterize the therapeutic mechanisms of C. myxa for LC. The
nodes with different colors and geometries in the network represent active constituents, tar-
get genes, and pathways, respectively, and an “edge” represents a link between the nodes.

2.5. Survival Analysis

To investigate the impact of the hub targets on the overall survival (OS) of LC, a
cancer genomics server called GEPIA 2 (http://gepia2.cancer-pku.cn/#index, accessed on
12 January 2023) [31] was used to quantify the prognostic importance of each hub gene. A
Kaplan–Meier survival plot was used to compare the two groups of LC patients who were
classified into high- and low-expression groups [32]. Hazard ratios (HRs; 95% confidence
intervals) and logrank p values were determined for survival, with logrank p < 0.05 serving
as the statistical significance threshold [33].

2.6. Molecular Docking

The Protein Data Bank (PDB; https://www.rcsb.org/, accessed on 13 January 2023) [34]
was used to search and download the target protein structure predicted by the X-ray crys-
tallography method. UCSF Chimera was used for the removal of non-standard atoms,
solvents, and energy minimization [35]. The online tool Computed Atlas of Surface To-
pography of Protein (CASTp; http://sts.bioe.uic.edu/castp/index.html?2cpk, accessed
on 13 January 2023) [36] was used to predict binding pockets of target protein. The Pub-
Chem database (https://pubchem.ncbi.nlm.nih.gov/, accessed on 2 January 2023) [20]
was used to download 3D structures of compounds. PyRx software v0.8 was used for
virtual screening and molecular docking of target protein with drug molecules [37]. Two-
and three-dimensional interactions of docking complexes were visualized using Discovery
Studio [38] and ChimeraX [39], respectively.

2.7. Analysis of Molecular Dynamic Simulation

The molecular dynamic simulation was performed using the AMBER22 program [40].
An in silico simulation method called molecular dynamic simulations (MDs) is mostly used
to understand intermolecular dynamics along the simulation time [41]. In a molecular
dynamic simulation pipeline, the atom and molecular trajectories are generated by solving
Newton’s equations of motion, and a macromolecule is permitted to exhibit dynamic
behavior for a predetermined period of time [42]. In this study, a 100 ns computer simulation
was utilized to assess the drugs’ dynamic behavior using the AMBER22 program [43]. The
antechamber program was used to prepare the systems, and GAFF2 and FF19Sb were
employed as force fields for parameterizing the complexes. This was done to read how the
ligands’ drug affinities for the receptor gene changed over time. To attain charge neutrality,
the right number of counter ions was added to the system [44]. A cubic box of OPC
with a size of eight angstroms was considered sufficient to solvate the complexes. Energy
minimization of the complexes was carried out through steepest descent and conjugate
gradient. The complexes were heated to 310 K for 500 ps, followed by equilibration

https://string-db.org/
http://gepia2.cancer-pku.cn/#index
https://www.rcsb.org/
http://sts.bioe.uic.edu/castp/index.html?2cpk
https://pubchem.ncbi.nlm.nih.gov/
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and production run for 100 ns [45]. The temperature during the production run was
maintained through the Langevin dynamics algorithm, while the hydrogen bonded atoms
were constrained via SHAKE algorithm. The generated trajectories were structurally
investigated via the CCPTRAJ module [46].

2.8. MMPB/GBSA Analysis

MMPB/GBSA analysis was used to predict the binding free energies of docked lig-
ands with the HSP90AA1 gene [47,48]. A script from the AMBER v22 program named
MMPBSA.py was used to accomplish this [49]. The script took into account 5000 frames
from the paths that were chosen at regular intervals. The MMPB/GBSA energy formula is
as follows:

∆Gbinding = Gcomplex − (Gprotein − ∆Gligand).

The free ligand energy is represented by ∆Gligand, the free energy of the receptor
protein by ∆Greceptor, the complex free energy by ∆Gcomplex, and the overall binding
free energy by ∆Gbind. To determine the distinct free energies of a complex, protein, and
ligand, utilize the following formula. The results show that the MM/PBSA and MM/GBSA
methods function similarly. The MM/GBSA uses the Generalized Born equation, which
is thought to be quicker to solve the previous equation, for determining the electrostatic
energy contribution to the free energy, whereas the MM/PBSA uses the Poisson–Boltzmann
equation [40]. Figure 1 illustrates the whole methodology used in this study.
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3. Results
3.1. Identification and Filtration of Active Constituents of C. myxa

After searching, identification, screening, and removal of duplications, a total of
10 putative compounds including allantoin, beta-sitosterol, cosmosiin, catechin, gentisic
acid, kaempferol, quercetin, rosmarinic acid, rubinin, and stigmastanol with OB ≥ 30% and
DL ≥ 0.18 were selected as novel compounds (Table 1) [50].

3.2. Identification and Screening of Potential Targets for C. myxa and LC

From these 10 active constituents, 515 potential target genes were retrieved from the
Swiss Target Prediction and STITCH databases. An active constituent–target network was
constructed using Cytoscape version 3.9.1. There were 525 nodes and 1057 edges in the
network (Figure 2). The dark-cyan nodes represent active compounds, while the orange
nodes represent targets. The CytoHubba plugin of Cytoscape was used to calculate the
degree and other parameters (MNC, MCC, closeness, betweenness) of active constituents
(Table 2).
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Table 1. Active constituents, their properties, and 2D structures.

Compound MW DL OB 2D Structure CID

Allantoin 158.12 0.88 0.55
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Table 1. Cont.

Compound MW DL OB 2D Structure CID

Cosmosiin 432.4 0.59 0.55
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Table 1. Cont.

Compound MW DL OB 2D Structure CID

Quercetin 302.23 0.52 0.55
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Table 1. Cont.

Compound MW DL OB 2D Structure CID

Stigmastanol 416.7 0.29 0.55
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Table 2. Active constituents, their class, and CytoHubba’s different scoring algorithms.

Compound Class Degree MNC MCC Closeness Betweenness

Allantoin Azoles 128 1 110 249.5 61,187.7

Beta-sitosterol Steroids 134 1 109 248.833 57,693.4

Cosmosiin Flavonoids 103 1 102 244.167 45,039

Catechin Flavonoids 30 1 10 175.133 8527.81

Gentisic acid Benzenoids 106 1 105 246.167 53,199

Kaempferol Flavonoids 129 1 107 247.5 32,115.4

Quercetin Flavonoids 113 1 108 246.85 33,069.9

Rosmarinic acid Cinnamic acids 110 1 106 245.517 58,365.3

Rubinin Flavonoids 100 1 100 242.833 56,869.3

Stigmastanol Steroids 104 1 103 244.833 53,677.2

On the other hand, from five GEO expression datasets, collectively 3580 DEGs related
to LC were identified between LC and normal tissues. The volcano plots were generated
using the DEGs from all five datasets (Figure 3A–E). Both compound-related and LC-related
target genes were submitted to find overlapped/mutual genes through the Venn diagram,
and 173 mutual targets were obtained (Figure 3F). These targets were assumed as key
targets and proceeded for further analysis.

3.3. Pathways and GO Enrichment Analysis

The DAVID database provided a total of 204 significant biological processes, 49 cellular
components, 92 molecular functions, and 46 KEGG pathways terms. According to the
biological processes (BPs), the target genes are mainly involved in response to the drug,
inflammatory response, response to ethanol, and so forth (Figure 4A). Cellular components
(CCs) indicate that most of the genes are present in the plasma membrane, extracellular
exome, cytosol, and so forth (Figure 4B). Molecular functions revealed that genes are
involved in protein, ATP, zinc ion binding, and so forth (Figure 4C). KEGG pathway
analysis showed that genes are mainly involved in metabolic pathways, pathways in cancer,
steroid hormone biosynthesis, and so forth (Figure 4D).

3.4. Interaction of Protein with Other Proteins (PPI)

Using STRING version 11.5, the 173 potential genes were linked to form an initial
PPI network. The output file was downloaded in tsv format, and a filter on a combined
score ≥ 0.5 was applied. The file was taken as input into the Cytoscape version 3.9.1 to con-
struct and check the significant interactions among proteins in a pharmacological network.
There were 161 nodes and 725 edges in the network. The degree scoring algorithm of Cyto-
Hubba was applied to the network to find the top 10 hub genes (Figure 5A,B). ALB (51), IL6
(43), HSP90AA1 (31), ESR1 (30), CYP3A4 (29), PTGS2 (24), TLR4 (23), CDK1 (23), MMP9 (22),
and CYP1A1 (22) have the higher degree and proceed further for drug–target–pathways
network and survival analysis. Figure 5C shows the co-expression relationships of hub
genes among each other. The dark color indicates high confidence in relationships [51].
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3.5. Construction of the Drug–Target–Pathways Network

To understand the multi-target effect of C. myxa in LC, two networks, the “drug–
target network” and “target–pathways network” were constructed separately in Cytoscape
version 3.9.1. In the drug–target network, there were 20 nodes and 30 edges, and in the
target–pathways network, there were 27 nodes and 43 edges. Later, these two networks
were merged to construct a drug–target–pathways network, and there were 37 nodes and
72 edges in the merged network (Figure 6).
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3.6. Survival Analysis

The Kaplan–Meier survival plot was used to examine the disease-free survival of
the hub genes in LC to further investigate if hub genes contributed to the prognosis in
patients [52]. From 10 hub genes, HSP90AA1, ESR1, CYP3A4, CDK1, and MMP9 were
linked to overall survival in all LC patients (logrank p < 0.05), suggesting that they may
prevent LC development. There was no statistical significance (logrank p < 0.05) in the
overall survival analysis of the remaining five core genes with high and low expression
(Figure 7). One hub gene (HSP90AA1) having a higher degree and significance in survival
was proceeded further for molecular docking analysis.
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3.7. Molecular Docking

Ten compounds were docked with the HSP90AA1 (PDB ID: 4BQG) target protein in
this experiment. All compounds demonstrated good binding and a high degree of matching
with the target protein. Moreover, alvespimycin [53,54] was identified as a positive control
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drug of HSP90AA1. The results demonstrated that HSP90AA1 has a higher binding affinity
with cosmosiin (−7.3 kJ mol), rosmarinic acid (−7.2 kJ/mol), quercetin (−6.7 kJ /mol), and
rubinin (−6.7 kJ/mol) compared to alvespimycin (−6.0 kJ/mol). Cosmosiin and rosmarinic
acid side chains form hydrogen bonds with ARG A:46, ASN A:51, and ASP A:54 and with
LYA A:58, GLY A:97, MET A:98, and GLY A:137, respectively, while quercetin side chains
form hydrogen bonds with ASN A:51, GLY A:97, NET A:98, LEU A:107, and HIS A:154.
Rubinin side chains also form stable bonds with ASN A:51, ALA A:55, LYS A:58, MET,
and A:98 residues. As a result, these findings suggest that active C. myxa components
bind stably to the HSP90AA1 target protein and serve as an LC repressor. Additionally,
subsequent research will concentrate on the active ingredients binding pockets with the core
protein (Figure 8; Table 3). In comparison with control drug, all compounds show stable
binding with ASN A:51 residue except rosmarinic acid. The RMSD of cosmosiin (1.183 Å),
rosmarinic acid (2.552 Å), and quercetin (1.136 Å) is lower compared to alvespimycin
(2.631 Å) suggesting these have potential to effectively bind with the binding pocket of the
target protein.

Biology 2024, 13, x FOR PEER REVIEW 18 of 27 
 

 

 
Figure 8. Docking position and interactions of 3 highly bounded compounds with HSP90AA1. 

3.8. Molecular Dynamic Simulation 
Molecular dynamic simulation studies essentially validate the dynamic behavior of 

macromolecules. Radius of gyration (RoG), root mean square fluctuation (RMSF), and 
root mean square deviation (RMSD) are all included in the simulations analysis. The car-
bon alpha atom of the complexes served as the basis for all of these investigations. These 
studies sought to determine whether interactions between the ligand and receptor per-
sisted during the simulation period and whether the binding was stable. Ensuring that the 
ligand is correctly delivered to the HSP90AA1 target protein is dependent on stable re-
ceptor–ligand interaction. There were no obvious structural alterations at first, as seen by 
the systems’ uniform RMSD plot. 

While the greatest values of the systems’ root mean square deviation (RMSD) ranged 
<3 Å, the mean values of HSP90AA1_Cosmosiin, HSP90AA1_Quercetin, 

Figure 8. Docking position and interactions of 3 highly bounded compounds with HSP90AA1.



Biology 2024, 13, 315 18 of 26

Table 3. Docking results of 10 active ingredients and one control drug with HSP90AA1.

Protein Compound Binding Affinity
(kJ/mol)

RMSD
(Å) Interacting Residues

HSP90AA1

Cosmosiin −7.3 1.183 ARG A:46, ASN A:51, ASP A:54

Rosmarinic acid −7.2 2.552 LYA A:58, GLY A:97, MET A:98, GLY A:137

Quercetin −6.7 1.136 ASN A:51, GLY A:97, NET A:98, LEU A:107, HIS A:154

Rubinin −6.7 2.778 ASN A:51, ALA A:55, LYS A:58, MET A:98

(+)-Catechin −6.6 2.775 LEU A:107, ILE A:110, ALA A:111, VAL A:136

Kaempferol −6.5 1.485 GLU A:47, SER A:50, ASP A:54, GLY A:132

Stigmastanol −6.4 1.368 ALA A:55, MET A:98, LEU A:107

Beta-sitosterol −6.4 1.477 ALA A:55, LYS A:58, MET A:98, LEU A:107

Alvespimycin −6.0 2.631 ASN A:51, ASP A:102, HIS A:154

Allantoin −5.5 2.967 ASN A:51, ASP A:54, THR A:184

Gentisic acid −4.8 0.884 LEU A:107, ALA A:111, VAL A:136, PHE A:138

3.8. Molecular Dynamic Simulation

Molecular dynamic simulation studies essentially validate the dynamic behavior of
macromolecules. Radius of gyration (RoG), root mean square fluctuation (RMSF), and root
mean square deviation (RMSD) are all included in the simulations analysis. The carbon
alpha atom of the complexes served as the basis for all of these investigations. These studies
sought to determine whether interactions between the ligand and receptor persisted during
the simulation period and whether the binding was stable. Ensuring that the ligand is
correctly delivered to the HSP90AA1 target protein is dependent on stable receptor–ligand
interaction. There were no obvious structural alterations at first, as seen by the systems’
uniform RMSD plot.

While the greatest values of the systems’ root mean square deviation (RMSD) ranged
<3 Å, the mean values of HSP90AA1_Cosmosiin, HSP90AA1_Quercetin, HSP90AA1_
Rosmarinic acid, HSP90AA1_ Rubinin, and HSP90AA1_Alvespimycin were determined
to be 1.71 Å, 2.02 Å, 2.08 Å,1.49 Å, and 1.81 Å, respectively (Figure 9A). Secondly, the
RMSF was computed to disclose details regarding the adaptability of the receptor residues
when the ligand molecule is present (Figure 9B). The majority of system residues fell
under the average stability range (<5 Å). The root mean square fluctuation (RMSF) for
HSP90AA1_Cosmosiin, HSP90AA1_Quercetin, HSP90AA1_Rosmarinic acid, HSP90AA1_
Rubinin, and HSP90AA1_Alvespimycin was 3.48Å, 6.54Å, 3.55 Å, 9.12 Å, and 5.87 Å
at the maximum; 0.80Å, 0.84 Å, 0.86 Å, 0.67 Å, and 0.60 Å at the mean; and 0.40 Å,
0.40 Å, 0.43 Å, 0.31 Å, and 0.39 Å at the lowest value. It was demonstrated that the
loop pressure within the system was the cause of the greater degree of flexibility ob-
served in certain of the residues. Using the RoG analysis, the system’s compactness
was examined over time. These differences did not impact the manner in which lig-
ands bound to the receptors, however. The RoG maximum values of 17.36 Å, 17.21 Å,
17.41 Å, 17.31 Å, and 17.27 Å; mean values of 17.09 Å, 16.90 Å, 17.09 Å, 17.08 Å, and
16.99 Å; and minimum values of 16.75 Å, 16.59 Å, 16.82 Å, 16.88 Å, and 16.71 Å were
observed for HSP90AA1_Cosmosiin, HSP90AA1_Quercetin, HSP90AA1_Rosmarinic acid,
HSP90AA1_ Rubinin, and HSP90AA1_Alvespimycin, respectively (Figure 9C). By the end
of the simulation, RMSD showed that every system was compact and had not undergone
any significant changes. The following findings were obtained from the Beta Factor study:
According to Figure 9D, the mean values of HSP90AA1_Cosmosiin, HSP90AA1_Quercetin,
HSP90AA1_Rosmarinic acid, HSP90AA1_Rubinin, and HSP90AA1_Alvespimycin were
23.02 Å, 28.05 Å, 24.58 Å, 35.53 Å, and 23.19 Å; the lowest values were 4.24 Å, 4.27 Å, 4.94 Å,
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4.21 Å, and 3.95 Å; and the maximum values were 320.20 Å, 1128.2 Å, and 33.3 Å, 2239.78 Å,
and 776.08 Å.
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Figure 9. (A) RMSD, (B) RMSF, (C) RoG, and (D) Beta Factor plots for the complexes.

3.9. Solvent-Accessible Surface Area Analysis

Solvent-accessible surface area (SASA) study was carried out for the ligands in order
to find out more about the surface area of the HSP90AA1 that interacts with the solvent
molecules. The average values for the systems are HSP90AA1_Cosmosiin (10,096.2 Å2),
HSP90AA1_Quercetin (10,143.4 Å2), HSP90AA1_Rosmarinic acid (10,249.5 Å2), HSP90AA1_
Rubinin (10,135.2 Å2), and HSP90AA1_Alvespimycin (10,357.6 Å2). The lowest SASA
values for HSP90AA1_Cosmosiin, HSP90AA1_Quercetin, HSP90AA1_Rosmarinic acid,
HSP90AA1_ Rubinin, and HSP90AA1_Alvespimycin were 9221.03 Å2, 9107.7 Å2, 9397.7 Å2,
9358.71 Å2, and 9576.98 Å2, as shown in Figure 10. The highest values recorded were
11,016 Å2, 11,103.4 Å2, 11,218.4 Å2, 11,068 Å2, and 11,208 Å2 in that order. Plots display the
notable differences that are seen upon ligand binding.



Biology 2024, 13, 315 20 of 26

Biology 2024, 13, x FOR PEER REVIEW 20 of 27 
 

 

Figure 9. (A) RMSD, (B) RMSF, (C) RoG, and (D) Beta Factor plots for the complexes. 

3.9. Solvent-Accessible Surface Area Analysis 
Solvent-accessible surface area (SASA) study was carried out for the ligands in order 

to find out more about the surface area of the HSP90AA1 that interacts with the solvent 
molecules. The average values for the systems are HSP90AA1_Cosmosiin (10,096.2 Å2), 
HSP90AA1_Quercetin (10,143.4 Å2), HSP90AA1_Rosmarinic acid (10,249.5 Å2), 
HSP90AA1_ Rubinin (10,135.2 Å2), and HSP90AA1_Alvespimycin (10,357.6 Å2). The low-
est SASA values for HSP90AA1_Cosmosiin, HSP90AA1_Quercetin, HSP90AA1_Rosma-
rinic acid, HSP90AA1_ Rubinin, and HSP90AA1_Alvespimycin were 9221.03 Å2, 9107.7 
Å2, 9397.7 Å2, 9358.71 Å2, and 9576.98 Å2, as shown in Figure 10. The highest values rec-
orded were 11,016 Å2, 11,103.4 Å2, 11,218.4 Å2, 11,068 Å2, and 11,208 Å2 in that order. Plots 
display the notable differences that are seen upon ligand binding. 

 
Figure 10. SASA analysis for the studied complexes. 

3.10. MMPB/GBSA Analysis 
The docked complexes that were selected underwent an investigation using the 

MMPB/GBSA method. These techniques are considered more successful in determining 
the binding affinity between the docked ligand and the receptor protein. The formation of 
strong intermolecular systems and stable complexes is evident from the highly negative 
net binding energies observed in all the docked and control complexes. The dominant 
force responsible for the stability of the complexes is the van der Waals force, which en-
sures the docking of the ligands at the designated site and stabilizes the systems. Specifi-
cally, the net van der Waals energies of HSP90AA1_Cosmosiin, HSP90AA1_Quercetin, 
HSP90AA1_Rosmarinic acid, HSP90AA1_ Rubinin, and HSP90AA1_Alvespimycin were 

Figure 10. SASA analysis for the studied complexes.

3.10. MMPB/GBSA Analysis

The docked complexes that were selected underwent an investigation using the
MMPB/GBSA method. These techniques are considered more successful in determin-
ing the binding affinity between the docked ligand and the receptor protein. The formation
of strong intermolecular systems and stable complexes is evident from the highly negative
net binding energies observed in all the docked and control complexes. The dominant
force responsible for the stability of the complexes is the van der Waals force, which
ensures the docking of the ligands at the designated site and stabilizes the systems. Specif-
ically, the net van der Waals energies of HSP90AA1_Cosmosiin, HSP90AA1_Quercetin,
HSP90AA1_Rosmarinic acid, HSP90AA1_ Rubinin, and HSP90AA1_Alvespimycin were
found to be −41.25 kcal/mol, −46.01 kcal/mol, −44.69 kcal/mol, −51.01 kcal/mol, and
−55.94 kcal/mol, respectively.

Furthermore, the electrostatic energies of each docked complex were remarkably
consistent. Among all the computed energies, the solvation energy had the least impact
and made a negative contribution to the net energy. In MM-GBSA, the net solvation en-
ergies for HSP90AA1_Cosmosiin, HSP90AA1_Quercetin, HSP90AA1_Rosmarinic acid,
HSP90AA1_Rubinin, and HSP90AA1_Alvespimycin were 8.08 kcal/mol, 7.14 kcal/mol,
7.78 kcal/mol, 8.66 kcal/mol, and 8.09 kcal/mol, respectively. On the other hand, in
MM/PBSA, the net solvation energies for the same compounds were 7.52 kcal/mol,
8.06 kcal/mol, 7.65 kcal/mol, 8.16 kcal/mol, and 8.04 kcal/mol, respectively. Additional
details regarding the energy terms and their corresponding values can be found in Table 4.
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Table 4. Docked complexes MMPB/GBSA energies in kcal/mol.

Parameter HSP90AA1_Cosmosiin HSP90AA1_Quercetin HSP90AA1_Rosmarinic Acid HSP90AA1_Alvespimycin HSP90AA1_Rubinin

MM/GBSA

Energy van der Waals −41.25 −46.01 −44.69 −55.94 −51.01

Energy Electrostatic −11.02 −10.67 −12.08 −13.71 −14.08

Total Gas Phase Energy −52.27 −56.68 −56.77 −69.65 −65.09

Total Solvation Energy 8.08 7.14 7.78 8.09 8.66

Net Energy −44.19 −49.54 −48.99 −61.56 −56.43

MM/PBSA

Energy van der Waals −41.25 −46.01 −44.69 −55.94 −51.01

Energy Electrostatic −11.02 −10.67 −12.08 −13.71 −14.08

Total Gas Phase Energy −52.27 −56.68 −56.77 −69.65 −65.09

Total Solvation Energy 7.52 8.06 7.65 8.04 8.16

Net Energy −44.75 −48.62 −49.12 −61.61 56.93
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4. Discussion

Disease treatments with many components and different targets have received in-
creased interest, and this is one of the benefits of traditional Chinese medicine. C. myxa has
traditionally been used in folk medicine. Many of its constituents have been demonstrated
in studies to have anti-cancer properties and can help prevent the development of LC [55].
However, the precise processes of C. myxa in LC therapy have not yet been fully established.
The active components of C. myxa and the mechanisms linked with the therapeutic effect
of C. myxa on LC were investigated using network pharmacology, survival analysis, and
molecular docking.

In the current investigation, the active components and associated targets of C.
myxa were screened from the IMPPAT, Swiss Target Prediction, and STITCH databases.
DEGs were extracted from LC datasets GSE39791, GSE76427, GSE22058, GSE87630, and
GSE112790 using the p-value < 0.05 and logFC > 1 for up- and logFC < −1 for down-
regulated genes [56]. Plant-related and disease-related DEGs were intersected to find
overlapping targets, and 173 potential target genes were found. Using the degree threshold,
10 hub genes were identified from the PPI network.

The GO functional enrichment study revealed that the hub genes were related with
GO keywords such as drug response, inflammatory response, ethanol response, positive
regulation of cell proliferation, plasma membrane, cytosol, endoplasmic reticulum mem-
brane, extracellular exosome, identical protein binding, protein heterodimerization activity,
and binding of zinc ion. The KEGG pathways related to the hub genes include metabolic
pathways, cAMP signaling pathway, cancer pathway, alcoholic liver disease, AGE-RAGE
signaling pathway in diabetic complications, IL-17 signaling pathway, and AMPK signaling
pathway. After a survival analysis, and drug–target–pathway analysis, five hub genes
(HSP90AA1, ESR1, CYP3A4, CDK1, and MMP9) were discovered to be involved in the
overall survival of LC patients. These five genes have been identified as targets of C. myxa’s
active constituents associated with LC, making them the most dependable genes for use in
clinical studies.

The results of the network analysis and survival analysis indicated HSP90AA1 as an
important protective factor in LC treatment. Higher HSP90AA1 expression is linked to
depression in HCC patients [57]. From survival and network analysis, one essential target
HSP90AA1 was tested for anti-LC effectiveness by binding with ten active components
of C. myxa. The docking analysis results confirmed our findings, which revealed that the
chemicals cosmosiin, rosmarinic acid, quercetin, and rubinin can have stable interactions
with the binding sites of the target gene. The binding affinity and RMSD value indicate that
the active constituents of C. myxa have higher binding affinity and lower RMSD compared
to the positive control drug alvespimycin, which indicates that these constituents have
more potential and stable binding with HSP90AA1.

Animal models play a crucial role in understanding the role of HSP90AA1 in liver
cancer. Research has shown that targeting HSP90AA1 can lead to inhibition of cancer cell
proliferation and survival, making it a potential therapeutic target [57,58]. These animal
models allow researchers to study the effects of HSP90AA1 inhibition on tumor growth,
metastasis, and response to treatment, providing essential data for the development of
novel cancer therapies [59].

The molecular dynamic simulation, solvent-accessible surface area (SASA) analy-
sis, and MMPB/GBSA analysis provided insightful data on the interactions between the
HSP90AA1 target protein and various ligands, including cosmosiin, quercetin, rosmarinic
acid, rubinin, and alvespimycin. Firstly, the RMSD analysis revealed stable receptor–ligand
interactions throughout the simulation period, with RMSD values indicating minimal
deviation from the initial structure. Notably, all systems maintained RMSD values below
3 Å, suggesting structural stability. However, subtle differences were observed in the mean
RMSD values, with rubinin displaying the lowest mean deviation of 1.49 Å, indicating
slightly tighter binding compared to other ligands. Secondly, RMSF analysis provided
insights into the flexibility of receptor residues in the presence of ligands. While most
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residues exhibited average stability (<5 Å), notable variations were observed among the
ligands. Rubinin exhibited the highest RMSF values, indicating greater flexibility, po-
tentially due to loop pressure within the system. Furthermore, RoG analysis indicated
consistent compactness of the systems over time, with minimal impact on ligand–receptor
binding. However, slight differences were observed in maximum, mean, and minimum
RoG values among the ligands, suggesting subtle variations in complex conformation.
The SASA analysis revealed differences in the surface area of HSP90AA1 interacting with
solvent molecules upon ligand binding. While all ligands displayed similar average SASA
values, variations were observed in the lowest and highest SASA values, indicating distinct
solvent accessibility patterns influenced by ligand structure. Finally, MMPB/GBSA analysis
provided insights into the binding affinity and stability of the complexes. Highly negative
net binding energies indicated strong intermolecular interactions and stable complexes
for all ligands. Van der Waals forces predominantly contributed to complex stability, with
electrostatic energies showing remarkable consistency across complexes.

As a result, this network-pharmacology-based investigation elaborates the mechanism
of action of active drugs, their associated probable target genes, and link pathways to treat
LC, laying the groundwork for additional experimental validation of the findings. Despite
the fact that we have presented some intriguing data, more research and clinical studies are
required to better investigate the potential of C. myxa and prove its medicinal potential.

5. Conclusions

This investigation elucidates the efficacy of multicomponent, multi-target drug combi-
nations and uncovers novel therapeutic targets for LC treatment. Through the integration
of network pharmacology, survival analysis, molecular docking, and molecular dynamics
simulations, a comprehensive understanding of the molecular mechanisms underlying C.
myxa in LC therapy has been achieved. The network analysis highlights the multi-targeting
nature of C. myxa compounds, concurrently impacting multiple pathways implicated in
LC progression. Particularly, the identification of the HSP90AA1 gene as a promising
therapeutic target offers potential avenues for LC prevention and intervention, with the
prospect of enhancing treatment efficacy. Despite these advancements, it is imperative
to acknowledge the inherent limitations of the present study, underscoring the need for
further phytochemical and pharmacological investigations to validate and expand upon
our findings. This research establishes a robust scientific framework for exploring the
therapeutic potential of C. myxa in LC management, paving the way for future studies
aimed at optimizing its clinical application and improving patient outcomes.
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