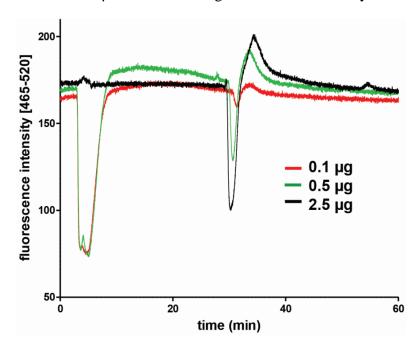
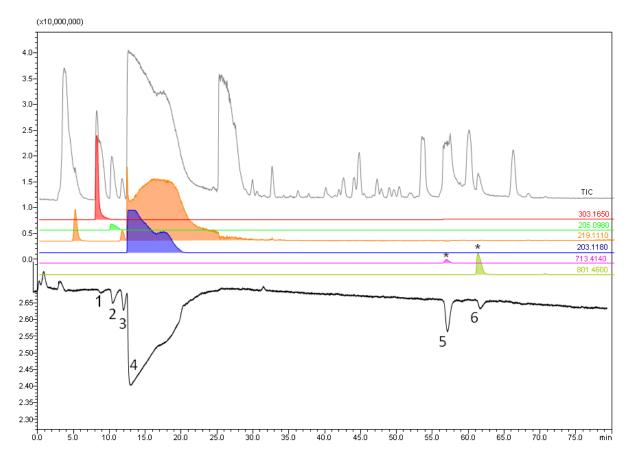
Miniaturized Bioaffinity Assessment Coupled to Mass Spectrometry for Guided Purification of Bioactives from Toad and Cone Snail

Ferry Heus ^{1,†}, Reka A. Otvos ^{1,2,†}, Ruud L.E.G. Aspers ³, Rene van Elk ², Jenny I. Halff ¹, Andreas W. Ehlers ⁴, S &bastien Dutertre ⁵, Richard J. Lewis ⁵, Sybren Wijmenga ³, August B. Smit ², Wilfried M.A. Niessen ^{1,6} and Jeroen Kool ^{1,*}


- AIMMS Division of BioMolecular Analysis, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1083 HV Amsterdam, The Netherlands; E-Mails: ferryheus@gmail.com (F.H.); r.a.otvos@vu.nl (R.A.O.); j.i.halff@student.vu.nl (J.I.H.); w.m.a.niessen@vu.nl (W.M.A.N.)
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; E-Mails: rene.van.elk@vu.nl (R.E.); guus.smit@vu.nl (A.B.S.)
- Department of Biophysical Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; E-Mails: r.aspers@nmr.ru.nl (R.L.E.G.A.); s.wijmenga@nmr.ru.nl (S.W.)
- AIMMS Division of Organic Chemistry, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1083 HV Amsterdam, The Netherlands; E-Mail: a.w.ehlers@vu.nl
- The Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia; E-Mails: s.dutertre@imb.uq.edu.au (S.D.); r.lewis@imb.uq.edu.au (R.J.L.)
- hyphen MassSpec Consultancy, de Wetstraat 8, 2332 XT Leiden, The Netherlands

Received: 9 December 2013; in revised form: 23 January 2014 / Accepted: 26 January 2014 / Published: 13 February 2014


[†] These authors contributed equally to this work.

^{*} Author to whom correspondence should be addressed; E-Mail: j.kool@vu.nl; Tel.: +31-205987542; Fax: +31-205987543

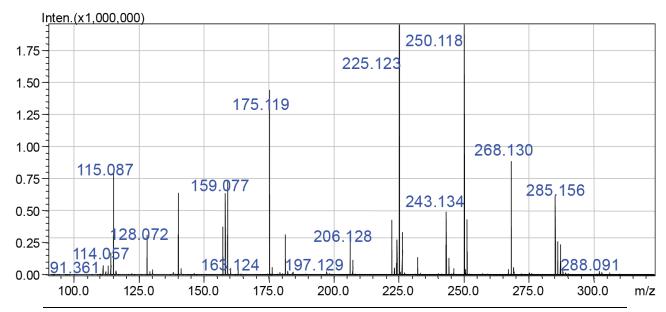

Figure S1. On-line bioassay analysis of three consecutive 500 nL sample injections containing 0.1, 0.5 and 2.5 μ g crude *Conus textile* venom. The 0.1 and 0.5 μ g venom injections also contained 40 μ M nicotine to align the MS and bioassay trace.

Figure S2. An analysis of a 500 nL sample containing 5 µg *Bufo alvarius* skin secretion extract obtained identical binding signals and attributed masses as the *Bufo marinus* extract analysis.

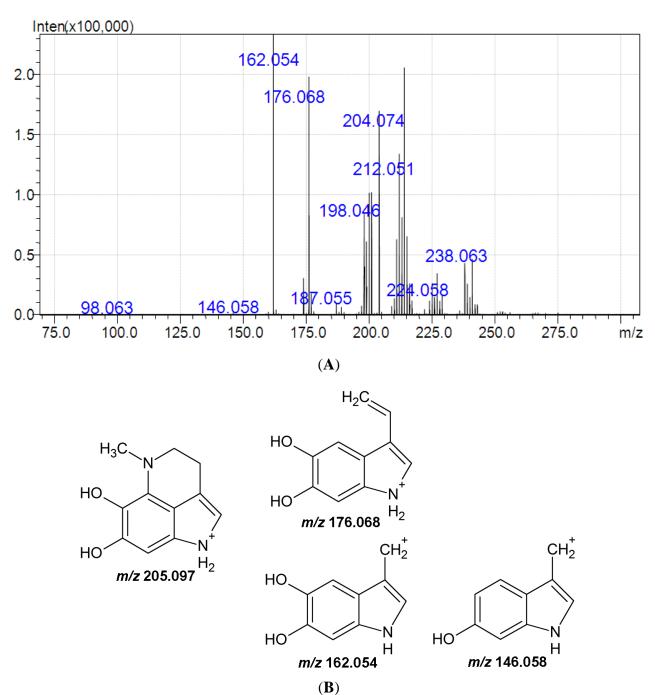
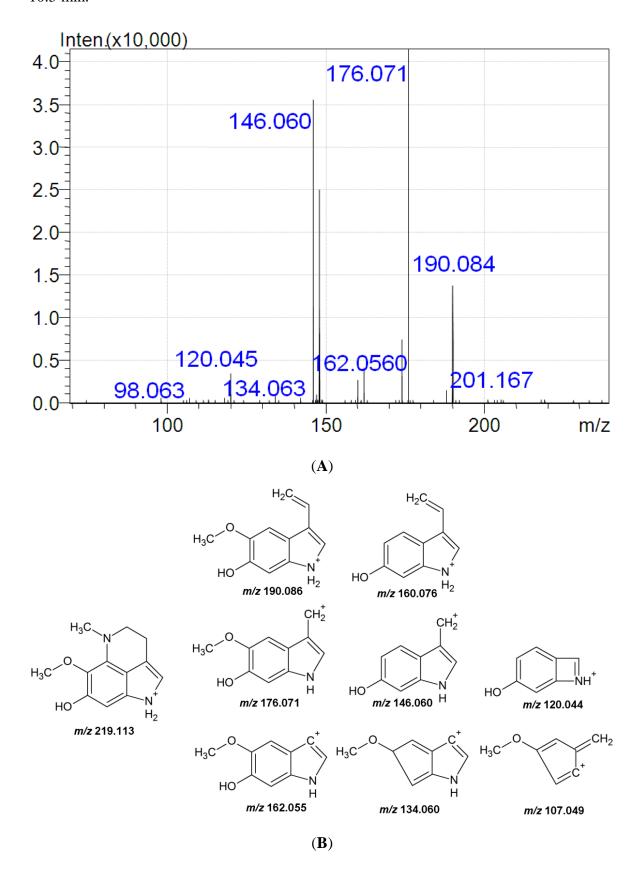
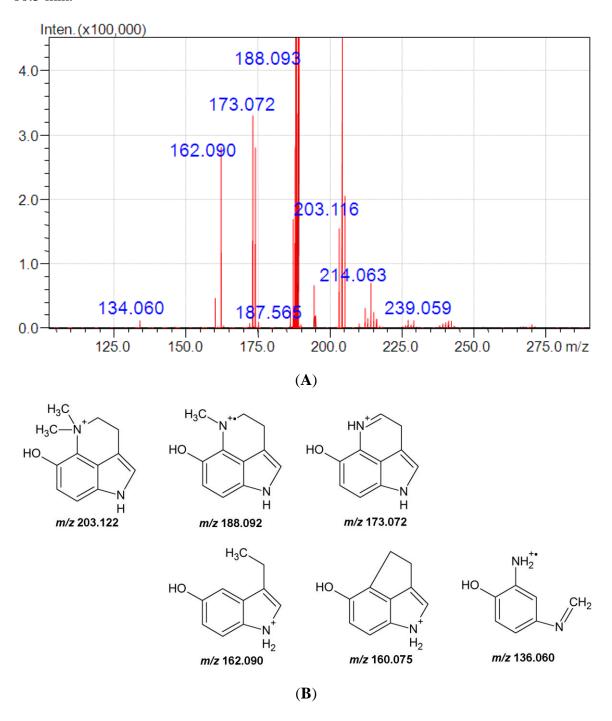
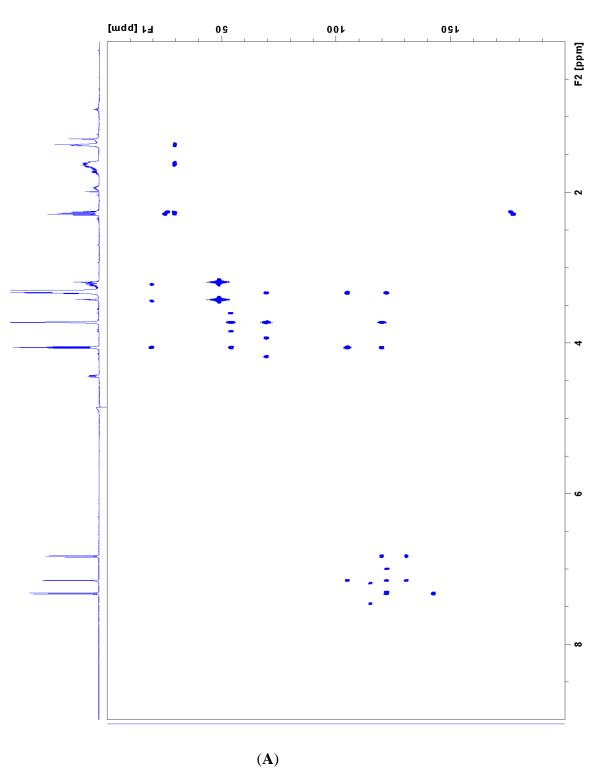


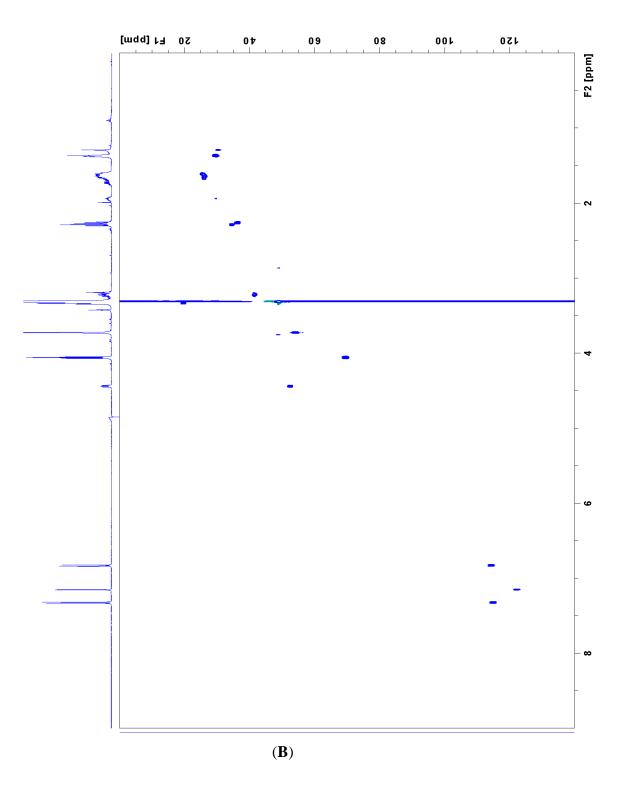
Figure S3. MS^2 spectrum of the unknown bioactive compound with m/z 303.168, eluting at 8.5 minutes. In the table below Figure S3, the proposed molecular formula, and proposed fragmentation of the compound is shown.

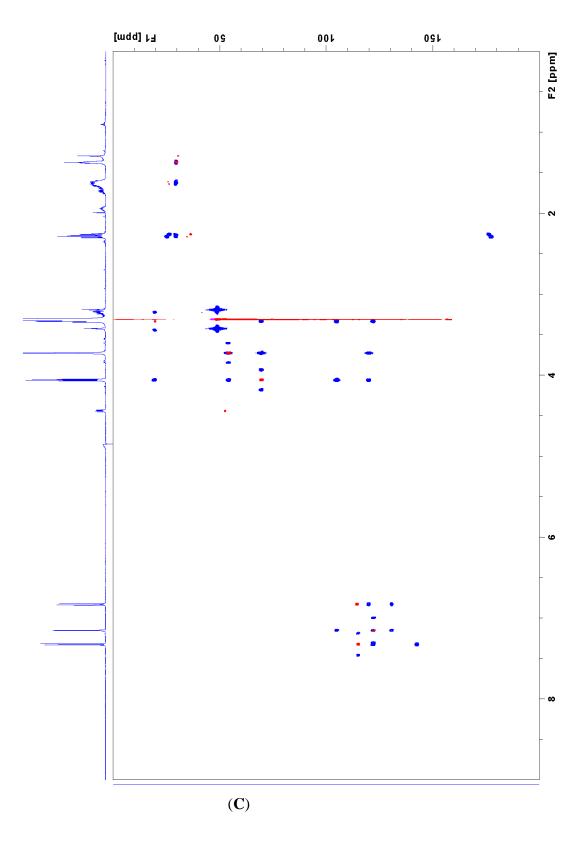


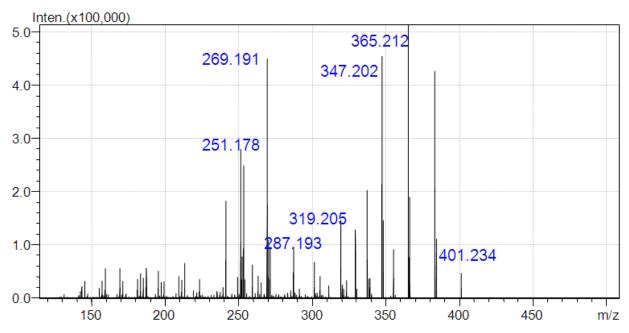
m/z	Formula	Interpretation
303.168	$C_{12}H_{23}N_4O_5^{}$	$[M+H]^+$
285.156	$C_{12}H_{21}N_4O_4$	Loss of H ₂ O
268.130	$C_{12}H_{18}N_3O_4$	Loss of H ₂ O and NH ₃
250.118	$C_{12}H_{16}N_3O_3$	Loss of 2×H ₂ O and NH ₃
243.134	$C_{11}H_{19}N_2O_4$	Loss of CH ₄ N ₂ O, e.g., NH ₃ and HNCO
225.123	$C_{11}H_{17}N_2O_3$	Loss of H ₂ O from m/z 243
181.133	$C_{10}H_{17}N_2O$	Loss of C ₂ H ₆ N ₂ O ₄ , e.g., 2xH ₂ O and 2xHNCO
175.119	$C_6H_{15}N_4O_2$	Loss of $C_6H_8O_3$
159.077	$C_6H_{11}N_2O_3$	Loss of $C_6H_{12}N_2O_2$
140.082	$C_6H_{10}N_3O$	Loss of C ₆ H ₁₃ NO ₄
128.072	$C_6H_{10}NO_2$	Loss of $C_6H_{13}N_3O_3$
115.087	$C_5H_{11}N_2O$	Loss of $C_7H_{12}N_2O_4$ or $C_6H_{12}N_2O_2$ and CO_2
91.361		Not consistent, too big mass defect

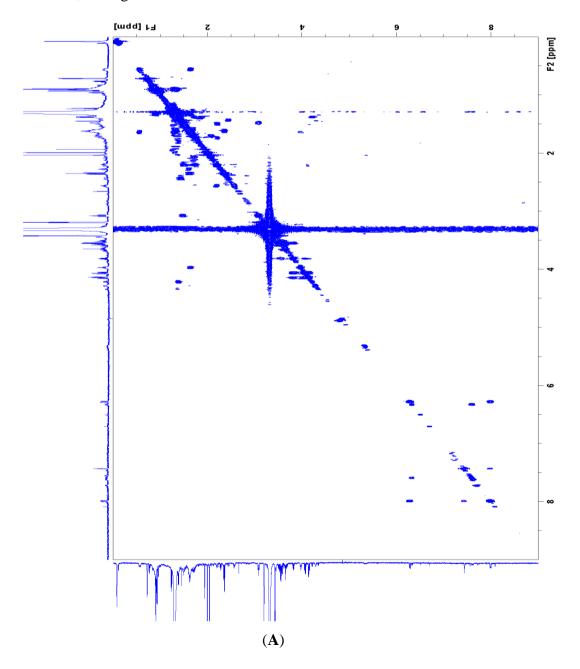

Figure S4. (A) MS^2 spectra of the bioactive compound with m/z 205.098, eluting at 10.0 min. (B) The proposed structure, and proposed fragmentation scheme of the bioactive compound with m/z 205.098, eluting at 10.0 min.

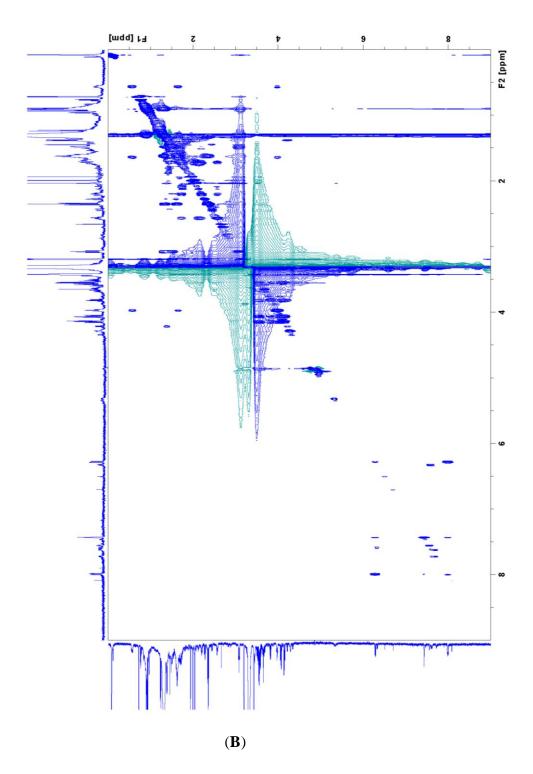

Figure S5. (A) MS^2 spectrum, proposed structure, and proposed fragmentation scheme of the bioactive compound with m/z 219.112, eluting at 10.5 min. (B) Proposed structure and proposed fragmentation scheme of the bioactive compound with m/z 219.112, eluting at 10.5 min.




Figure S6. (A) MS^2 spectrum, proposed structure, and proposed fragmentation scheme of the bioactive compound with m/z 203.118, eluting at 10.5 min. (B) Proposed structure, and proposed fragmentation scheme of the bioactive compound with m/z 203.118, eluting at 10.5 min.


Figure S7. (A) HMBC-NMR spectrum of the bioactive compound with m/z 203.118, eluting at 10.5 min. (B) HSQC-NMR spectrum of the bioactive compound with m/z 203.118, eluting at 10.5 min. (C) HSQCHMBC-NMR spectrum of the bioactive compound with m/z 203.118, eluting at 10.5 min.




Figure S8. MS^2 spectrum, proposed structure, and proposed fragmentation scheme of the bioactive compound with m/z 401.235, eluting at 58.0 min. Most of the peaks in the MS^2 spectrum can be readily interpreted, e.g., in terms of water and CO losses, although it is generally unclear where exactly these losses occur.

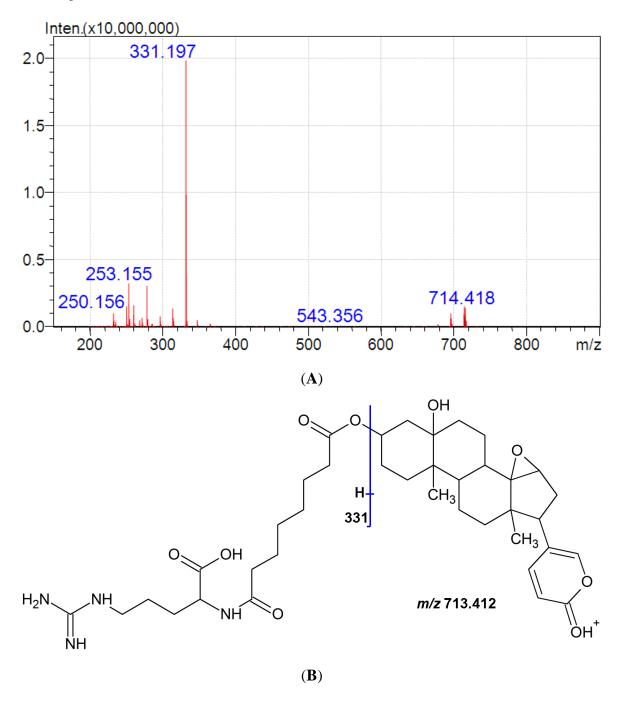

m/z	Formula	Interpretation
401.234	$C_{24}H_{33}O_5^{}$	$[M+H]^+$
383.222	$C_{24}H_{31}O_4^{+}$	Loss of H ₂ O
365.212	$C_{24}H_{29}O_3^{+}$	Loss of 2 \times H ₂ O; Loss of H ₂ O from m/z 383
355.228	$C_{23}H_{31}O_5^{}$	Loss of HCOOH or CO and H ₂ O; Loss of CO from m/z 383
347.202	$C_{24}H_{27}O_2^{+}$	Loss of 3 \times H ₂ O; Loss of H ₂ O from m/z 365
337.218	$C_{23}H_{29}O_2^{+}$	Loss of 2 \times H ₂ O and CO; Loss of H ₂ O from m/z 355
329.191	$C_{24}H_{25}O^{+}$	Loss of 4 \times H ₂ O; Loss of H ₂ O from m/z 347
319.205	$C_{23}H_{27}O^{+}$	Loss of 3 \times H ₂ O and CO; Loss of H ₂ O from m/z 337
301.195	$C_{23}H_{25}^{+}$	Loss of $4 \times H_2O$ and CO; Loss of H_2O from m/z 319
287.193		No matches within 5 mDa
269.191	$C_{19}H_{25}O^{+}$	Loss of $C_5H_8O_4$; Loss of $C_5H_4O_2$ from m/z 365
253.196	$C_{19}H_{25}^{^{+}}$	Loss of $C_4H_4O_2$ from m/z 337
251.178	$C_{19}H_{23}^{+}$	Loss of H_2O from m/z 269
241.159	$C_{17}H_{21}O^{+}$	Loss of C_2H_4 from m/z 269
213.164	$C_{16}H_{21}^{+}$	Loss of CO from m/z 241

Figure S9. (A) COSY-NMR spectrum of the bioactive compound with m/z 401.235, eluting at 58.0 min. (B) TOCSY-NMR spectrum of the bioactive compound with m/z 401.235, eluting at 58.0 min.

Figure S10. (A) MS² spectrum of the bioactive compound with m/z 713.412, eluting at 62.0 min. (B) Proposed structure and proposed fragmentation scheme of the bioactive compound with m/z 713.412, eluting at 62.0 min. The minor fragments can be considered as secondary fragments of the ion with m/z 331 and are consistent with subsequent losses of H₂O, CO and/or NH₃, e.g., loss of water to the ion with m/z 313, loss of NH₃ to m/z 296, loss of H₂O to m/z 278, and either loss of H₂O to m/z 260 or CO to m/z 250. The ion with m/z 253 is consistent with the loss of HN=C=CH and 2 × H₂O from the fragment ion with m/z 331.

